
Computer based control with real-time capabilities

MICHAL BLAHO, SAMUEL BIELKO, ĽUDOVÍT FARKAS, PETER FODREK
Institute of Control and Industrial Informatics

Faculty of Electrical Engineering and Information Technology
Slovak University of Technology
Ilkovičova 3, 812 19 Bratislava

SLOVAK REPUBLIC
michal.blaho@stuba.sk

Abstract: - Control systems in many fields require perfect time accuracy and reliability. That is why guaranteed
real-time behavior is needed. It is evident by the growing trend of the use of fieldbuses in building of
Networked Control Systems. The software layer has a very significant influence on the system performance and
requires thorough examination before the utilisation of a specific real-time system. The goal of this paper is to
present and examine run-time environments that support real-time capabilities. We compare the performance of
RTAI and Java Real-Time System in controlling of a sample plant with quick response and present our
previously developed real control systems that are based on the use of RTAI that runs the real-time layer of the
control system and Java that is responsible for the user interaction.

Key-Words: - Real-time control, RTAI, Java Real-Time System, RC-RC filter, Networked Control Systems,
Fieldbus

1 Introduction
The trend in building control systems is the use of
Networked Control Systems (NCS). This idea is
based on digital systems for collecting data from
sensors and controlling actuators. The elements of
NCS are connected via industrial communication
fieldbuses or via wireless connections [1].
However, these processes require real-time
command execution and data acquisition, so
appropriate real-time operating systems or software
tools have to be used. Examples of other systems
that require real-time execution are banking
systems, military systems, avionics or robotics, and
providing real-time control for them is a challenging
task [2, 3, 4]. The task is particularly challenging
due to the need to reconciliate the hardware and the
software layer of the control system. The software
has a very significant influence on the resources and
that is why resource analysis and evaluation of real-
time systems at the aspect of software are needed
[5].
According to [5], the most urgent issues in this area
are the need to model various complex relationships
among all kinds of resources, resource scheduling
and resource optimization. The authors propose
process algebra as a formal method to describe and
analyze concurrent, asynchronous and
nondeterministic behavior of real-time systems.

There are some literature references of the
possibility of using GPUs (Graphics Processing
Units) in scheduling of real-time tasks [6, 7].
However, it is a challenging task, but if succesful,
the use of GPUs for hard real-time scheduling
would be an important contribution to hard real-time
operating systems. It is due to the vast
computational performance of the GPUs.
According to [8], when prorotyping a real-time
control system, it is useful to set and abide standards
for the interfaces between the components, because
it facilitates rapid prototyping from the simulation
stage to the implementation stage. The basic idea
when using this technique is that the controllers
would not know if the information comes from the
simulation code or from the sensor itself.
Some systems that require hard real-time signal
processing (e.g. motion control systems),
traditionally employ dedicated processors like DSPs
(Digital Signal Processors) or microcontrollers.
Altough these processors are specifically designed
to carry out signal processing tasks by executing
code while keeping a guaranteed interrupt latency,
the CPUs in the standard computers can do the same
if they run a real-time operating system like RTAI
[9].
There are several applications that present the
usefulness of computer based control systems with
real-time capabilities. The majority of these systems
are extended to real-time capabilities by extending

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Michal Blaho, Samuel Bielko, Ludovít Farkas, Peter Fodrek

E-ISSN: 2224-2856 16 Volume 9, 2014

their operating systems by patches like RTAI or by
using real-time Java for example.
The authors of [10] demonstrated online realization
of experiments with hard real-time control using
Linux RTAI, RTAI-XML server, Comedi and
jRTAILab. Matlab, Simulink, OPC toolbox and a
PLC (Programmable Logic Controller) were used in
[11] in a real-time model predictive control
application. Real-time remote control of a robot
manipulator using Java and Client-Server
Architecture was developed in [12]. An overview of
existing solutions to Java Embedded real-time
systems was presented in [13]. Authors of [14]
present a reservation-based real-time Java
environment for Windows NT entitled Chocolate. A
real-time Java hardware and software system for use
in embedded applications was presented in [15]. The
paper [16] was dedicated to the challenges in
implementing the real-time specification for Java in
a commercial real-time Java virtual machine.
This paper presents the possible use of RTAI and
real-time Java in building of control systems. It
explains the types of real-time systems, Java Real-
Time System, RTAI and compares their
performance in controlling a test plant. We also
present our previously developed real control
systems that are based on the use of RTAI that runs
the real-time layer of the control system and Java
that is responsible for the user interaction.
The rest of this paper is organized as follows. The
next section addresses real-time systems in general.
Part three is devoted to Java Real-Time System and
to explaining its features. RTAI is presented in part
four. Parts five and six present the controlled system
and the results of the comparison between
individual software controllers. The existing RTAI
based real control systems are shown in part seven,
while the last part is the conclusion of this paper.

2 Real-Time
There are several definitions according which we
can say if our system or application behaves real-
time (RT). One of those is: “With real-time
programming, the overall goal is to ensure that a
system performs its tasks, in response to real-world
events, before a defined deadline. Regardless of
whether that deadline is measured in microseconds
or days, as long as the task is finished before that
deadline, the system is considered real-time" [17].
To simplify it we can say that the system is real-
time if it behaves exactly how we expect it to
behave in the meaning that it has two key qualities:
predictability and determinism.

There are several types of real-time systems
depending on when the task is allowed to execute.
In soft RT systems, the task has to execute before
deadline, however occassional missing of the
deadline may occur without causing major error.
That tells us, that in soft RT there still is some task
completion value after missing deadline but it‘s
decreasing rapidly. In hard RT systems, none of the
tasks can miss the deadline, because its task
completition value after deadline is zero and it can
cause a fatal error. The third type is isochronal RT
which is similar to hard RT. In isochronal RT, there
is a “response window“ and outside it, the value of
the task being executed is zero.
If we want our PC to provide RT behaviour it is not
only about the power of hardware but it needs
software support as well. That means we need an
operating system with RT behaviour such as Solaris
and while building our applications, we need to
have access and control over every resource we
need. Java Real-Time System (JRTS) with its Real-
Time Specifications for Java (RTSJ) provides
exactly this, and it broadens the use of Java to new
fields. Similarly the RTAI patch for Linux extends
the capabilities of the Linux OS for use in RT
demanding applications.

3 Java
The Java project was initiated in 1991 at Sun
Microsystems and its first stable version was
released in 1995. It has become very popular in a
short time and it still holds its position as one of the
most popular programming languages. It is further
developed under the Oracle Corporation. Java is an
object-orientated, familiar and architecture
independent programming language [18]. This
means that after compiling the code it doesn’t need
to be recompiled before running on other
architectures. Java is distributed in several editions
like Java card, Java ME, Java SE, Java EE, Java FX
and others. The most common is Java SE which we
have chosen for the comparison of control software
qualities in controlling fast systems with JRTS and
RTAI.

3.1 Java SE
The most general answer to why Java SE can't be
used as the core engine in RT applications, would
be: “Because it wasn’t designed in this way.” Java
SE is designed to take the most from the power
provided by today’s PCs and servers and to have
huge throughput. RT systems usually have lower

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Michal Blaho, Samuel Bielko, Ludovít Farkas, Peter Fodrek

E-ISSN: 2224-2856 17 Volume 9, 2014

throughput to make sure that all threads don’t miss
their deadlines.
The garbage collector used in Java SE is the main
culprit of latency and jitter. The other one is the
Just-in-Time collector. Java SE also has lack of
possibilities to prioritize threads, so the programmer
doesn’t have access and control over all resources.
Java SE is also missing high resolution timers and
also the Java Virtual Machine (JVM) is not designed
to be jitter free and deterministic.
Altough Java SE can't be used as the core for RT
applications, there are ways of how to use it as the
user interface. We will discuss that matter later in
this paper.

3.2 Java Real-time System
Java Real-time System (JRTS) is a Java
implementation compliant with Real Time
Specification for Java. The syntax stays the same as
with Java SE, but this implementation brings several
improvements in it’s design, which make it
completely deterministic and predictable and
therefore suitable for developing RT applications.
The last stable version released is 2.2. JRTS can
operate only under three operating systems and
these must be preemptable, must have high-
resolution timers and support priority inheritance,
interrupt shielding and schedulable interrupts [17].
This three Operating systems are: Solaris 10 (update
6, 7). Red Hat Enterprise Linux MRG 1.1 Errata and
SUSE Linux Enterprise Server 10 SP2 with Real
Time Extension and of course their later releases.
And now we can briefly examine the RT features
which JRTS brings.

3.2.1 RT Garbage Collector
Real-Time Garbage Collector (RTGC) in JRTS is
based on RTGC from Roger Henriksson. The
garbage collector (GC) postpones it’s work until
high priority threads finish their work so it doesn’t
affect their activity. RTGC in JRTS is fully
concurrent, mark and sweep, parallel, non-
generational, non-moving, non-compacting and self-
tuning. It uses tri-color marking scheme, fixed-sized
memory blocks and works in three modes according
to the current needs [17]. The modes are: normal,
boosted and deterministic. RTGC switches between
these modes according to the memory needs and the
switches of modes are defined by preset memory
thresholds. These modes differ in the number of
working GC threads and the influence they have on
the activity of low priority threads.

3.2.2 Scheduling and RT Threads
To schedule objects properly, JRTS cooperates with
the OS. Everything about scheduling begins with an
object from the Schedulable class. There are
several subclasses of this class which represent
threads and asynchronous events. JRTS allows us to
set priorities, importance and periodic, aperiodic or
sporadic modes of execution for this objects.
As for threads, JRTS brings two new types of
threads represented by objects from the
RealtimeThread (RTT) and NoHeapReal-
timeThread (NHRT) classes. In general the main
difference between these two types of threads is that
RTTs should be used for soft RT tasks with their
guaranteed latencies of maximum 200µs, while
NHRTs don’t have access to heap memory region so
they are not influenced by garbage collection and
that makes them perfect for hard RT requirements.
The latencies of NHRT tasks are guaranteed to be
under 20µs plus there may be jitter +/- 10µs.

3.2.3 Memory management
There are four memory regions in JRTS which
extend the abstract class MemoryArea. The first
region, which is basically the same as in Java SE is
Heap memory.
The second memory region is Immortal memory
which is created when JVM starts and also the
objects in it live for the whole time the JVM lives.
The third memory region is called Scoped memory.
Immortal and Scoped memory regions are both not
affected by garbage collections.
The last memory region is Physical memory which
might be used in cases we need to communicate
with specialized hardware.

3.2.4 Support for Synchronization and
Asynchronous Events Handling
Synchronization is one of the key features in RT
applications. When neglected, huge latencies and
priority changes may appear. JRTS has therefore
two basic rules to avoid these problems:

1. Threads which are ready to run get the
access to synchronized resources first.

2. Priority inversion control is used to avoid
unwanted latencies when accessing
synchronized resources.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Michal Blaho, Samuel Bielko, Ludovít Farkas, Peter Fodrek

E-ISSN: 2224-2856 18 Volume 9, 2014

These rules are applied in Wait Free Queues which
are used to exchange data between objects with hard
and soft RT behavior.
But JRTS also thinks of events which are not
periodic or we don’t know when they occur. They
are handled thanks to the Asynchronous Event
Handler which allows us to bind the execution of
our code to any event inside or outside JVM. Java
RTS is capable of handling tens of thousands
asynchronous event handlings and we don’t even
need to care about the resources, because JVM
solves it for us.
These principles allow us also asynchronous transfer
of control of one place in code to another as a
response to some event and asynchronous thread
termination.

3.2.5 High Resolution Clock
JRTS provides two high resolution time classes,
which allow us to do arithmetic operations with time
and also time and date operations. These classes are
AbsoluteTime and RealtiveTime. The first one
represents a specific point in time given as a
combination of milliseconds and nanoseconds. The
second class represents an interval in time, which is
handy when setting the behavior of periodic objects.
As for timers, they can be set to perform
periodically - PeriodicTimer or one time only -
OneShotTimer. They are dependent on hardware
so we can get different results when using the same
code on different systems. It is also crucial, that the
OS we run JRTS on provides access to high
resolution timers.

4 RTAI
Another way of achieving RT operation of our
programs is to use RTAI. RTAI is a shortcut for
Real Time Application Interface for Linux, an open
source project started in 1998 by professor Paolo
Mantagezza from Politecnico di Milano. We have
chosen it due to its hard RT capabilities, easy way
of downloading and the fact that it’s free of charge.
On the other hand the installation of RTAI isn’t very
simple and requires thorough reading of the
installation manual.
RTAI is not an operating system, but it’s a
modification to Linux kernel which compensates the
lack of RT support and helps to make the system
more predictable and with lower latencies [19]. In
other words it changes ordinary Linux into Linux
with industrial qualities. It has support for many
platforms as x86, x86_64, ARM, PowerPC etc.

Additionally, there is also a tool called RTAI-Lab
which is perfect for working with block diagrams.
RTAI works in two modes: User Mode and Kernel
Mode. Working with User Mode is simpler due to
easier communication with the rest of Linux and
access to more resources. For our work we decided
to use the Kernel Mode to gain the lowest possible
latencies even though we ran into some difficulties
here. They were associated with the more
complicated way to communicate with the rest of
the system, in our case the absence of certain
functions in the rtai_comedi driver which can
otherwise be found in the standard version.

4.1 RTAI Kernel Mode
In the Kernel Mode we work with the kernel
modules. There are two basic functions
init_module() and cleanup_module() in each
kernel module. The init_module() function
represents an entry point to the module and is called
each time our module is inserted into running
kernel. The purpose of it is to prepare our module
for running and it is also a perfect place for
allocation of resources and starting RT tasks. RT
task RT_TASK and its handling function must be
created to use the RT features of RTAI.
The cleanup_module() function is the exact
opposite, meaning that everything we started with
init_module() is stopped and discarded here.
This function is called each time we remove the
module from the kernel.
After writing our code we have to generate a kernel
object name_of_module.ko. The best way to do
this is to create a Makefile with a specific
structure. The kernel module is put to function by
the command insmod name_of_module.ko and
removed by the command rmmod
name_of_module.ko.

4.2 RTAI User Mode
RTAI User Mode is generally more popular than
Kernel Mode because working with it is much
simpler. It is just a simple GNU\Linux task with a
main() function, where the RT tasks are started. To
compile programs written in User Mode we can use
GCC compiler, but it requires linking of special
flags [20]. To run this programs, we usually need
to be root, unless we have not specified otherwise.

4.3 RTAI Modules and Schedulers
Schedulers are the center of RTAI. There are two
types of them - rtai_lxrt and rtai_sched and
both can be used either in the Kernel Mode or in the

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Michal Blaho, Samuel Bielko, Ludovít Farkas, Peter Fodrek

E-ISSN: 2224-2856 19 Volume 9, 2014

User mode. The difference between them is in the
relation to schedulable objects. The rtai_lxrt
sheduler supports hard RT and optional soft RT
behavior for Linux schedulable objects and
rtai_sched provides hard RT behavior not only to
Linux schedulable objects but also for its own RTAI
kernel tasks. [20] Even though there is a vast
functionality associated with these schedulers, when
we require more possibilities we can also use other
modules such as [19]:

§ rtai_fifos - a module which implements
fifo services. It is used to handle and display
data between kernel space and Linux space

§ rtai_shm - a module which allows memory
sharing between multiple RT tasks and linux
processes synchronously

§ rtai_pqueue - a module providing kernel-
safe message queues

§ rtai_pthread - a module providing hard
RT threads, where each thread is a task

§ rtai_comedi - a module representing
functionality of comedi project

§ rtai_mbx - a module providing functions of
a message box.

§ rtai_msg - a module providing functions
for message manipulation

§ rtai_sem - a module providing semaphores
for fifo synchronisation

§ rtai_hal - a module providing functions
used by RT tasks to handle interruptions and
communication with Linux processes

5 Control System
To test the RT qualities of the aforementioned
platforms, we had to choose an appropriate object to
control. We have chosen an RC-RC filter with quick
response. A DAQ card and other necessary software
tools have been used to communicate with the filter.

5.1 Used Hardware and Software
We used a dual core Intel processor PC with 2GB of
RAM. We tested all three mentioned RT OS’s and
ultimately we chose SUSE Linux Enterprise Server
11 SP1 with Real Time Extension to be the one we
run our JRTS experiments on. The RT kernel was
2.6.33.7. Even if we observed that Solaris is better
for running JRTS as long as it provides more
additional options like Thread Scheduling
Visualizer, we faced a huge problem with hardware
support here. For the RTAI experiments, we used
version Magma under Linux kernel 2.6.38.8.

5.2 Data Acquisition Card
To communicate with the controlled system we
have chosen the Advantech PCI-1711-U DAQ card.
It is a common card with analog and digital inputs
and outputs, FIFO memory, programmable counter,
programmable gain and Automatic channel/gain
scanning [21]. This card was more than sufficient
for our experiments. However, we ran into problems
here because the drivers were modified for the last
time in 2006, so they didn’t work under Linux
kernel used by us. At that moment we had three
options: modify the provided drivers, create our own
drivers or use project Comedi. We chose the last
option.
Project Comedi is an open source project providing
drivers and tools for DAQ. It is very convenient to
learn to work with this set of functions, because it
supports hundreds of DAQ cards and therefore we
don’t have to learn a new set of functions every time
we have some different DAQ at our disposal. What
is more, it has RT support for most of the hardware
[22].
The only problem we met at this stage was, that
Comedi is C-based. So we had to use JNI (Java
Native Interface) to communicate between JRTS
and the DAQ card.

5.3 Controlled System

Fig.1: Scheme of RC-RC filter

Table 1: Values of RC-RC components
R1 100 kΩ
R2 1 MΩ
C1 1 nF
C2 1 nF

We chose an RC-RC filter in Fig.1 designed with
component values stated in Table 1 to be the
controlled plant suitable for our experiments. It is a
linear second order system with the following
differential equation (1):

! = !!!!!!!!! + !!!! + !!!! + !!!! ! + !

! = !!! (1)

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Michal Blaho, Samuel Bielko, Ludovít Farkas, Peter Fodrek

E-ISSN: 2224-2856 20 Volume 9, 2014

The aforementioned plant was controlled by a PI
controller which parameters were set by means of
the Optimal Module method (2).

!! ! = !! +
!!!
!

!! =
!.!!!!

!!
− 1 !!! =

!.!!!!
!!

 (2)

We then converted the PI controller into a discrete
PS controller. Its algorithm is in equation (3) while
the sampling period for the conversion was set to
140 µs:

! ! = ! ! − 1 + !!! ! + !!!(! − 1) (3)

6 Results of the experiments
We carried out two experiments according to which
we wanted to compare the RT capabilities of the
previously described software frameworks. The
period of our discrete controller was set to 140µs in
all cases. This period was chosen on behalf of the
recommendation stated in [23] and also because it is
suitable for comparison of RTT and NHRT when
we take into consideration their guaranteed
latencies. The first experiment was carried out
without additional CPU load and the second was
carried out with additional CPU load. The
comparison of the performance of the individual
software tasks helped us to choose the ultimate RT
framework for our future work.
We ran an infinite cycle in which for the first 100
samples the desired system output was 1V, for the
next 100 samples 2V, and then we gave the RC-RC
filter time to get back to zero for the last 200
samples. This was repeating infinitely. We
measured the first and the n-th cycle (in our case
third) several times and then statistically evaluated.
This procedure is pictured in Fig. 2.

Fig.2: Illustration of the measuring procedure

At first we measured the system behavior by
implementing the control algorithm with JRTS
RTT, JRTS NHRT, Java SE thread and RTAI
RT_TASK in n-th cycle without additional PC load.
Meaning that no other applications or programs
were running on the computer. The system output is
in Fig.3, the corresponding controller output while
measuring with RT systems in Fig.4, and the
corresponding error rate in Fig. 5. We can see that
the output in case of controlling with JRTS RTT is
different compared to the other tasks. This is caused
by relatively big latency of the RTT tasks (the tasks
are executed sooner then required). In Fig.6 the
plant output while controlling with Java SE is
shown. Obviously in this case the output performs
poorly and the answer for its behavior can be found
in figure Fig.7. With Java SE each period was
exceeded several times and the controller was
therefore only jumping between its maximal and
minimal output values (Fig.7). The corresponding
error rate is in Fig. 8.

Fig.3: System output of the n-th cycle when using
RTAI and JRTS without additional computer load

Fig.4: Corresponding controller output to Fig. 3.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Michal Blaho, Samuel Bielko, Ludovít Farkas, Peter Fodrek

E-ISSN: 2224-2856 21 Volume 9, 2014

Fig.5: Corresponding error rate to Fig. 3

Fig.6: System output of n-th period when using Java
SE without additional computer load

Fig.7: Corresponding controller output to Fig. 6

Fig.8: Corresponding error rate in each sample to
Fig. 6.

In the second experiment we decided to not use Java
SE anymore, since it showed unacceptable
performance for RT applications. This time we
added load to the system by running two Matlab
benchmarks at the same time. The benchmarks were
causing over 70% CPU usage. We also took in our
focus the first period of the cycle. Let us call it “the
initialization period”.
According to Fig.9 and Fig.10 we compare the
system output in the initialization period and the n-
th period under the load. In Fig.11 and Fig.12 we
can see corresponding errors in each sample. In the
initialization period, the most interesting part are the
several samples of JRTS NHRT at the beginning.
They are significantly shorter and it causes a big
overregulation. However, in the n-th period, the
behavior of NHRT is even better than when
controlling without additional load. This is
something we ran into under all supported operating
systems when using JRTS. Therefore we think it is a
property of the x86 architecture we were using. It
has processor saving modes and generally it is not
deterministic by its design at all. When under
constant load, the processor does not execute its
saving state, hence its performance is better
compared to the case when the saving state is
executed frequently. We didn’t want to explore RT
behavior on expensive industrial machines but on
regular computers. Our major tool was supposed to
be software.
In the case of JRTS RTT we can’t see any
significant change in sampling behavior. But since
this kind of RT treads is designed for soft RT
behavior, we can still say that is performing
acceptably even in short periods. RTAI is
performing comparably in both of the experiments.
However, since we are working directly in Linux
kernel it is not so surprising because it isn’t
influenced by Linux processes and can access
hardware much faster.

Fig.9: System output of the 1-st cycle when using
RTAI and JRTS with additional computer load

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Michal Blaho, Samuel Bielko, Ludovít Farkas, Peter Fodrek

E-ISSN: 2224-2856 22 Volume 9, 2014

Fig.10: System output of the n-th cycle when using
RTAI and JRTS with additional computer load

Fig.11: Corresponding error rate of each sample to
Fig. 9

Now we present all the previous data in column
charts and tables to make a better comparison of the
qualities of the frameworks with the help of exact
values (Fig. 13-15, Table 2-4).

Fig.12: Corresponding error rate of each sample to
Fig. 10

Fig.13: Comparison of sample lengths while
measuring without additional PC load in n-th cycle

Fig.14: Comparison of sample lengths while
measuring with additional PC load in 1-st cycle.

Fig.15: Comparison of sample lengths while
measuring with additional PC load in n-th cycle

0	

500	

1000	

1500	

2000	

2500	

3000	

JRTS_RTT	 JRTS_NHRT	 RTAI	 Java	 SE	

t	 (
µs
)	

System	

Comparison	 of	 sample	 lengths,	 no	
addiFonal	 load,	 n-‐th	 cycle	

average	 sample	
(µs)	

shortest	 sample	
(µs)	

longest	 sample	
(µs)	

0	
50	
100	
150	
200	
250	
300	
350	
400	
450	

JRTS_RTT	 JRTS_NHRT	 RTAI	

t	 (
µs
)	

System	

Comparison	 of	 sample	 lengths,	 with	
addiFonal	 load,	 1-‐st	 cycle	

average	 sample	
(µs)	
shortest	 sample	
(µs)	
longest	 sample	
(µs)	

0	

50	

100	

150	

200	

JRTS_RTT	 JRTS_NHRT	 RTAI	

t	 (
µs
)	

System	

Comparison	 of	 sample	 lengths,	 with	
addiFonal	 load,	 n-‐th	 cycle	

average	 sample	
(µs)	
shortest	 sample	
(µs)	
longest	 sample	
(µs)	

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Michal Blaho, Samuel Bielko, Ludovít Farkas, Peter Fodrek

E-ISSN: 2224-2856 23 Volume 9, 2014

Table 2: statistical data related to measuring without
additional PC load in n-th cycle

System JRTS
RTT

JRTS
NHRT RTAI Java

SE
Average

sample (µs) 96.279	 134.047	 143.029	 1	 190	
Shortest

sample (µs) 92.006	 60.416	 139.693	 1	 113	
Longest

sample (µs) 136.294	 149.632	 152.091	 2	 665.5	
Standard
deviation 4.571	 14.626	 3.302	 172.953	
Overall

time (µs) 19	 256	 26	 809	 28	 606	 238	 010	

Table 3: statistical data related to measuring with
additional PC load in 1-st cycle

System JRTS RTT JRTS
NHRT RTAI

Average
sample (µs) 111.206	 134.415	 142.271	

Shortest
sample (µs) 102.554	 61.952	 139.376	

Longest
sample (µs) 419.277	 166.272	 286.390	
Standard
deviation 23.364	 15.141	 10.626	
Overall

time (µs) 22	 241	 26	 883	 28	 454	

Table 4: Statistical data related to measuring with
additional PC load in n-th cycle

System JRTS RTT JRTS
NHRT RTAI

Average
sample (µs) 96.219	 138.231	 140.070	

Shortest
sample (µs) 92.314	 117.760	 139.299	

Longest
sample (µs) 130.458	 143.680	 146.851	
Standard
deviation 3.897	 5.302	 1.047	
Overall

time (µs) 19	 244	 27	 646	 28	 014	

In the last experiment we tried to calibrate RTAI.
The main point of this experiment was, that the
performance of RTAI can be influenced by
measuring latencies and then including these
measurements in RTAI settings. We measured that

the latency of our computer is 6841ns. We then
included this information in the RTAI configuration,
recompiled it, reinstalled it and measured the
latencies again. This time we gained a value of
8747ns and we did the procedure again. The results
are shown on figures Fig.16 and Fig.17.

Fig.16: System output of n-th cycle when using
RTAI before and after calibration

Fig.17: Corresponding error rate of each sample to
Fig.16

7 Existing RTAI based control systems
After evaluating the data from the tables above, we
concluded that the framework with the most
predictable behavior is RTAI. However, the use of
Java is not excluded.

Our solution is the use of RTAI extension of the
standard Linux kernel combined with a Java based
graphical user interface (GUI). The use of RTAI
combined with an upper level interaction is also
described in [8, 24].

Because the modification of the Linux operating
system for real-time control does not change the
functionality of the original system, we can use all
of the software features that the OS offers in the
user space. The limitation for the selection of the
programming environment is that it has to provide
resources for using interprocess communication and
all of the enhanced functionality the programmer

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Michal Blaho, Samuel Bielko, Ludovít Farkas, Peter Fodrek

E-ISSN: 2224-2856 24 Volume 9, 2014

wants to implement in the GUI (image processing,
sound processing, database, etc.) [25].

The control system runs on a standard PC and it
is divided into two parts:

• lower control level (real-time, kernel space)
• upper control level (non real-time, user space)

The lower control level (procedural level) consists
of sensors, actuators and the control PC
interconnected by a fieldbus. The software
controller is a set of RTAI kernel modules that
communicate with the user space by the tools of
Linux interprocess communication:

• RT FIFO pipes
• shared memory
• mailboxes

The upper level is responsible for communication
with the user and for the tasks, that do not have to
run in real-time. It can perform visualization and
complex tasks over the collected data (database,
image processing, sound processing, statistical
evaluation).
We decided to create the upper control level in the
Java programming language because it is a platform
independent, object oriented and very popular
programming language with a vast number of
libraries that satisfy all needs for the user interface.
The communication with the lower level is handled
by the Java Native Interface (JNI) and the
aforementioned methods of interprocess
communication.
By using the Standard Widget Toolkit we were able
to achieve the native look and feel of the underlying
OS.
Examples of our existing control systems based on
the described software model are a plasma metal
cutting machine Fig. 18, 19 and a computer
controlled water fountain Fig. 20, 21.
Both of the existing control systems utilize the
combination of the best features of both RTAI and
Java in terms of RT performance and user
experience. A feature that contributes to the security
of the systems is the protection of the computer by
the Java interpreter from breaking the OS. It is very
important because even if the GUI crashes, the RT
task can be safely ended, thus bringing the machine
to a safe state [25].
Both applications show that even if JRTS is not
used as the RT software framework, Java SE can be
used in control in combination with RTAI.

Fig.18: Plasma cutting machine.

Fig.19: Plasma cutting machine - detail.

Fig.20: Water fountain

Fig.21: Water fountain - detail.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Michal Blaho, Samuel Bielko, Ludovít Farkas, Peter Fodrek

E-ISSN: 2224-2856 25 Volume 9, 2014

7 Conclusion
This paper has presented and examined the software
run-time environments that support real-time
capabilities. Two software frameworks have been
presented. The first of them was the Java Real-Time
System. We examined its garbage collector,
scheduling and RT threads, memory management,
synchronization and event handling and the high
resolution clock.
The second software framework was the RTAI
modification of the Linux kernel. This modification
brings the support for RT kernel modules that run
deterministically and independently on the user
interface. However, it also offers support for RTAI
user mode.
In order to choose the better of the presented
software frameworks for our future work, we had to
put togehter a control system and compare their
performance. The chosen plant was an RC-RC filter
with a quick response. We programmed a PI
controller in each of the frameworks and ran them
with the same parameters. The comparison shows
that the performance of RTAI is more deterministic,
thus it is better suitable for our applications.
However, the use of Java in control was not
excluded by that statement, because two examples
of networked control systems based on two-level
software structure have been presented. The first of
them was a plasma cutting machine and the second
was a computer operated water fountain with sound
and light effects. Both of the examples show the
advantages of the proposed architecture by running
time-critical RT threads in the kernel and the UI
which is not time-critical in Java. The Java
environment provides an easy way of creating rich
and intuitive user interfaces and the ability of sound
and graphics processing with the use of additional
libraries. The communication between the two
levels is managed by means of RT fifo pipes and
shared memory.

8 Acknowledgments
This work was supported by the scientific grant
agency of the Ministry of Education of the Slovak
Republic and of Slovak Academy of Sciences under
contract No. VEGA-1/1256/12. It was supported by
the Slovak Research and Development Agency
under contract No. APVV-0211-10 as well.

References:
[1] T. Murgaš, P. Fodrek, Ľ. Farkas, Networked

Control System Using Linux Real Time
Application Interface, Recent Researches in

Engineering and Automatic Control : ECC´11:
2nd European Conference of Control,
ECME´11: 2nd European Conference of
Mechanical Engineering, ECCIE´11: 2nd
European Conference of Civil Engineering,
ECCE´11: 2nd European Conference of
Chemical Engineering; Puerto De La Cruz,
Tenerife, Spain, 10.-12. December 2011. - :
WSEAS Press, 2011. - ISBN 978-1-61804-057-
2. - pp. 53-58

[2] R. Bachnak, C. Steidley, M. Mendez, J.
Esparza, D. Davis, Real-Time Control of a
Remotely Operated Vessel, Proceedings of the
5th WSEAS Int. Conf. on Signal Processing,
Robotics and Automation, Madrid, Spain,
February 15-17, 2006 (pp188-194), ISBN: 960-
8457-41-6

[3] B. Tabakova, Design and Implementation of
Real-Time Fuzzy Control for Thermodynamic
Plant, Proceedings of the 9th WSEAS
International Conference on FUZZY SYSTEMS
(FS’08), Sofia, Bulgaria, May 2-4, 2008, ISBN:
978-960-6766-57-2

[4] M. Blaho, S. Bielko, P. Fodrek, T. Murgaš,
Deterministic platforms for real-time control
systems, Latest Trends in Circuits, Automatic
Control and Signal Processing : Proceedings of
the 3rd International Conference on Circuits,
Systems, Control, Signals (CSCS'12), Barcelona,
Spain, 17-19 October, 2012, ISSN 1790-5117,
pp. 249-253

[5] Y. Zhu, Z. Huang, G. Zhang, Modeling and
Analysis of Real-Time Software based on
Resource Communicating Sequential Process,
Proceedings of the International Conference on
Information Engineering and Computer Science
(ICIECS 2009), 19-20 December, 2009.

[6] P. Fodrek, Ľ. Farkas, T. Murgaš, Realtime
Scheduling Using GPUs - Proof of Feasibility,
Recent Researches in Circuits, Systems,
Communications & Computers : ECS´11: 2nd
European Conference of Systems; ECCTD´11:
2nd European Conference of Circuits
Technology and Devices; ECCOM´11: 2nd
European Conference of Communications;
ECCS´11: 2nd European Conference of
Computer Science; Puerto De La Cruz,
Tenerife, Spain, 10 - 12 December, 2011, ISBN
978-1-61804-056-5, pp. 285-289.

[7] P. Fodrek, Ľ. Farkas, M. Blaho, M. Foltin, J.
Hnát, T. Murgaš, Real-Time Scheduling Using
GPUs-Advanced and More Accurate Proof of
Feasibility, Journal of Communication and

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Michal Blaho, Samuel Bielko, Ludovít Farkas, Peter Fodrek

E-ISSN: 2224-2856 26 Volume 9, 2014

Computer, Vol. 9, No. 8 (2012), ISSN 1548-
7709, pp. 863-871

[8] L. García, M. J. López, J. Lorenzo,
Hardware/Software Environment for Process
Identification, Robust Controller Design and
Hard Real Time Implementation, Proceedings
of the 5th WSEAS International Conference on
Telecommunications and Informatics, Istanbul,
Turkey, May 27-29, 2006, pp. 503-508.

[9] M. Chiandone, S. Cleva, G. Sulligoi, PC-based
feedback acceleration control using Linux
RTAI, 13th European Conference on Power
Electronix and Applications (EPE '09), 8-10
September 2009.

[10] Z. Janík, K. Žáková, Real-time experiments
in remote laboratories based on RTAI, 15th
International Conference on Interactive
Collaborative Learning (ICL 2012), 26-28
September, 2012.

[11] M. Mrosko, E. Miklovičová, Real-Time
Model Predictive Control, Mathematical
Methods and Techniques in Engineering and
Environmental Science : 4th WSEAS
International Conference on Visualization,
Imaging and Simulation, Catania, Sicily,
November 3-5, 2011, pp. 138-143.

[12] F. M. Raimondi, L. S. Ciancimino, M.
Melluso, Real-Time Remote Control of a Robot
Manipulator using Java and Client-Server
Architecture, Proceedings of the 7th WSEAS
international conference on Automatic control,
modeling and simulation (ACMOS '05), Prague,
2005, pp. 122-126.

[13] M. T. Higuera-Toledano, Towards an
Analysis of Garbage Collection Techniques for
Embedded Real-Time Java Systems,
Proceedings of the 12th IEEE International
Conference on Embedded and Real-Time
Computing Systems and Applications, 2006, pp.
97 - 100.

[14] D. de Niz, R. Rajkumar, Chocolate: a
reservation-based real-time Java environment
on Windows/NT, 6th IEEE Real-Time
Technology and Applications Symposium (RTAS
2000), 2000, pp. 266 - 275.

[15] M. Pfeffer, S. Uhrig, Th. Ungerer, U.
Brinkschulte, A real-time Java system on a
multithreaded Java microcontroller,
Proceedings of the 5th International Symposium
on Object-Oriented Real-Time Distributed
Computing (ISORC 2002), 2002, pp. 34 - 41.

[16] M. H. Dawson, Challenges in Implementing
the Real-Time Specification for Java (RTSJ) in
a Commercial Real-Time Java Virtual Machine,

Proceedings of the 11th International
Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC 2008), 2008,
pp. 241 - 274.

[17] G. Bollella, E. J. Bruno, Real-Time Java
Programming with Java RTS, USA
Crawfordsville: R.R. Donelley, 2009. 409 p,
ISBN 978-0-13-714298-9 .

[18] ORACLE, Java Help Center [online],
[quoted on 2013-03-26], Available online at:
http://www.java.com/en/download/faq/index_ge
neral.xml

[19] DIPARTIMENTO DI INGEGNERIA
AEROSPAZILE, DIAPM RTAI - Beginner’s
Guide [online]. Milano: Politecnico di Milano,
2006, [quoted on 2013-03-26]. Available for
download at:
https://www.rtai.org/index.php?module=docum
ents&JAS_DocumentManager_op=downloadFil
e&JAS_File_id=32

[20] G. Racciu, P. Mantegezza, RTAI 3.4 User
Manual [online], 2006 [quoted on 2013-03-26].
Available for download at:
https://www.rtai.org/index.php?module=docum
ents&JAS_DocumentManager_op=viewDocum
ent&JAS_Document_id=44

[21] ADVANTECH, Datasheet PCI-1711
[online], [quoted on 2013-03-26], Available for
download at:
http://downloadt.advantech.com/ProductFile/Do
wnloadfile3/1-32A92F/PCI-1711L_DS.pdf

[22] COMEDI.org, Comedi documentation
[online], [quoted on 2013-03-26], Available
online at: http://comedi.org/doc/index.html

[23] L. Harsányi, et al., Teória automatického
riadenia, Bratislava: Slovenská technická
univerzita v Bratislave, 1998, 216 p, ISBN 80-
227-1098-9.

[24] L. García, M. J. López, J. Lorenzo,
Hardware-in-the-loop Environment for Control
Systems evaluation under Linux/RTAI,
Proceedings of the 6th WSEAS International
Conference on Applied Computer Science,
Tenerife, Canary Islands, Spain, December 16-
18, 2006.

[25] T. Murgaš, P. Fodrek, Ľ. Farkas, Using Open
Source Technology in Building of Control
Systems, Latest Trends in Information
Technology : Proc. of the 1st WSEAS
International Conference on Information
Technology and Computer Networks
(ITCN'12), Vienna, Austria, 10-12 November
2012, WSEAS Press, 2012, ISBN 978-1-
61804-134-0, pp. 55-60.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Michal Blaho, Samuel Bielko, Ludovít Farkas, Peter Fodrek

E-ISSN: 2224-2856 27 Volume 9, 2014

