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Abstract: Fractional order system model represents the plant more adequately than integer order model. Fractional
order controller is naturally the suitable choice for these fractional order models as well as it is widely used for
integer order model also.The significance of fractional order control is that it is a generalization of classical control
theory. Most of the works in fractional order control systems are in theoretical nature and controller design and
implementation in practice is very small. In this paper, stability and performance analysis of fractional order
control systems are briefly explained. To show the effectiveness of article, paper demonstrates illustrative design
examples. The major purpose of this paper is to draw attention to the non-conventional way of system analysis and
its control.
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1 Introduction
Many research and studies on real systems in the field
of system identification during last few decades have
revealed the systems inherent fractional order dy-
namic behavior. Hence, using the notion of fractional-
order, it may be a step closer to the real world life as
the real processes are generally or most likely frac-
tional. This is the reason that the real dynamic sys-
tems can be better represented by the non-integer dy-
namic models. However, for many of them, the frac-
tionality may be very small. A typical example of a
fractional order system is the diffusion of heat into a
semi-infinite solid, where the heat flow q(t) in nature
is equal to the semi-derivative of the temperature T (t)
[1]

d0.5T (t)

dt0.5
= q(t) (1)

Clearly, using an integer order ordinary differential
equation (ODE), description for the above system may
differ significantly to the actual situation.

The significance of fractional order control sys-
tem is that it is a generalization of classical control
theory which could lead to more adequate modelling
and more robust control performance. Despite of this
fact, the integer-order controls are still more welcome
due to absence of accurate solution methods for frac-

tional order differential equations (FODEs). But re-
cently, many progresses in the analysis of dynamic
system modelled by FODEs have been made and ap-
proximation of fractional derivatives and integrals can
be used in the wide area of fractional order control
systems. It is also observed that PID controllers which
have been modified using the notion of fractional or-
der integrator and differentiator applied to the inte-
ger order or fractional order plant enhance the system
control performance. However, their results did not
extend to the more general fractional order PID con-
troller for any benchmark system but in this work, we
also consider a simple fractional order PID controller
design for DC motor to solve the above problems. The
main objective of this paper is to investigate the sta-
bility and performance of the fractional order control
system by illustrating some design examples.

Reference [2, 4, 6, 7] gives the idea of simple tun-
ing formulas for the design of PID controllers. Some
MATLAB function files are used in this paper to sim-
ulate the fraction order dynamic system using refer-
ence [3]. The rest of the article is organized as fol-
lows: In section 2, we present a brief introduction of
fractional order system and fractional calculus. Sec-
tion 3 presents the stability analysis of fraction or-
der systems with two illustrative examples. Section
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4 deals with performance analysis of fractional order
control system with two design examples. Section 5
concludes this paper by some remarks and conclusion.

2 Fundamentals of Fractional Order
System

2.1 A Brief Introduction to Fractional Cal-
culus

Fractional calculus is the generalization of integra-
tion and differentiation to fractional order fundamen-
tal operator αDβ

t f(t), where α and t are the limits and
β ∈ R is the order of the operation. The continuous
integro-differential operator is defined as [3]

αDβ
t f(t) =


dβ

dtβ
: β > 0,

1 : β = 0,∫ t
α(dτ)

−β : β < 0.

(2)

There are several definitions of fractional integration
and differentiation. The most often used are the
Grunwald-Letnikov (GL) definition and the Reimann
Liouville definition (RL). For a wide class of func-
tions, the two definitions-GL and RL are equivalent.
The GL definition [3] is given as:

Definition 1

αDβ
t f(t) = lim

h→0
h−β

[ t−α
h

]∑
j=0

(−1)j
(
β
j

)
f(t−jh), (3)

where [.] means the integer part. The RL definition [3]
is given as:

Definition 2

αDβ
t f(t) =

1

Γ (n− β)

dn

dtn

∫ t

α

f(τ)

(t− τ)β−n+1
dτ,

(4)

for (n − 1 < β < n) and where Γ(.) is the Gamma
function.
For many engineering applications, the Laplace trans-
form are often used. The Laplace transform of the
GL and RL fractional differointegral, under zero ini-
tial conditions for order β is given by

L
[
αD±β

t f(t); s
]
= s±βF (s) (5)

2.2 Fractional Order System
The fractional-order system is the direct extension of
classical integer-order systems. It is obtained from
the fractional-order differential equations. A typi-
cal n-term linear fractional order differential equation
(FODE) in time domain is given by

αnDβn
t y(t)+ · · ·+α1Dβ1

t y(t)+α0Dβ0
t y(t) = 0 (6)

Consider the control function which acts on the FODE
system (6) as follows:

αnDβn
t y(t)+..+α1Dβ1

t y(t)+α0Dβ0
t y(t) = u(t) (7)

On taking Laplace transform of equation (7), we get

αns
βnY (s)+..α1s

β1Y (s)+α0s
β0Y (s) = U(s) (8)

From equation (8), we can obtain a fractional order
transfer function as

G(s) =
Y (s)

U(s)
=

1

α0sβ0 + α1sβ1 + ..+ αnsβn
(9)

In general, the fractional-order transfer function
(FOTF) of a single variable dynamic system can be
defined as

G(s) =
b0s

γ0 + b1s
γ1 + · · ·+ bmsγm

a0sβ0 + a1sβ1 + · · ·+ ansβn
(10)

where bi(i = 0, 1 · · ·m), ai(i = 0, 1 · · ·n) are con-
stants and γi(i = 0, 1 · · ·m), βi(i = 0, 1 · · ·n) are
arbitrary real or rational numbers and without loss of
generality they can be arranged as γm > γm−1 >
· · · > γ0 and βm > βm−1 > · · · > β0.
The incommensurate fractional order system (10) can
also be expressed in commensurate form by the mul-
tivalued transfer function

H(s) =
b0 + b1s

1
ν + · · ·+ bms

m
ν

a0 + a1s
1
ν + · · ·+ ans

n
ν

, (ν > 1). (11)

Note that every fractional order system can be ex-
pressed in the form (11) and domain of the H(s) def-
inition is a Riemann surface with ν Riemann sheets.

3 Stability of Fractional Order Sys-
tem

A linear time-invariant system is stable if the roots of
the characteristic polynomial are negative or have neg-
ative real parts if they are complex conjugate. It means
that they are located on the left half of the complex
plane. In the fractional-order LTI case, the stability is
different from the integer one. Interesting point is that
a stable fractional system may have roots in the right
half of complex plane (see Fig.1).
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Figure 1: Stability region of LTI fractional order sys-
tems

Theorem 1 (Matignon’s stability theorem) [3]:The
fractional transfer function G(s) = N(s)

D(s) is stable if
and only if |arg(σi)| = q π

2 , where σ = sq, (0 < q <
2) with ∀σi ∈ C, ith root of D(σ) = 0.

Remark 1 When s =0 is a single root of D(s), the sys-
tem cannot be stable.

For theorem 1, the stability region suggested by
Fig.(1) tends to the whole s-plane when q = 0, cor-
responds to the Routh-Hurwitz stability when q = 1
and tends to the negative real axis when q = 2.

It should be noted that, only the denominator is
meaningful in stability assessment and the numerator
does not affect the stability of a FOTF. The stability of
fractional order system can be analyzed in other way
also. Consider the characteristic equation of a general
fractional order system in the form as:

α0s
β0 +α1s

β1 + · · ·+αns
βn =

n∑
i=0

αis
βi = 0. (12)

For βi = νi
ν , we transform the equation (12) into σ-

plane:
n∑

i=0

αis
νi
ν =

n∑
i=0

αiσ
νi = 0 (13)

where σ = s
k
m and m is the least common multiple of

ν.
For given αi, if the absolute phase of all roots of trans-
form equation (13) is |ϕσ| = |arg(σ)|, we can sum-
marize the following facts of stability for fractional
order systems :

1. The condition for stability is π
2m < |arg(σ)| <

π
m .

2. The condition for oscillation is |arg(σ)| = π
2m .

Otherwise the system is unstable.

3.1 Illustrative Examples
To show the effectiveness of stability concept for frac-
tional order system, we have demonstrated two illus-
trative examples.
Example 1
Consider the fractional order heater system [4] given
by

G(s) =
1

0.8s2.2 + 0.5s0.9 + 1
(14)

The characteristic equation of the system (14) can be
written as:

D(s) = 0.8s
22
10 + 0.5s

9
10 + 1 = 0 (15)

Now we write the transformed equation for equation
(15) in σ-plane as

D(σ) = 0.8σ22 + 0.5σ9 + 1 = 0 (16)

The equation (16) is solved using MATLAB function
solve( ) and we obtained the following roots:

σ1,2 = 0.3080± 0.9772i; |arg(σ1,2)| = 3.023

σ3,4 = 0.5243± 0.8359i; |arg(σ3,4)| = 1.010

σ5,6 = −0.9297± 0.4414i; |arg(σ5,6)| = 2.698

σ7,8 = −0.0254± 1.0111i; |arg(σ7,8)| = 1.595

σ9,10 = −0.2596± 0.9625i; |arg(σ9,10)| = 1.834

σ11,12 = −0.9970± 0.1182i; |arg(σ11,12)| = 3.023

σ13,14 = 0.7793± 0.6795i; |arg(σ13,14)| = 0.717

σ15,16 = −0.5661± 0.8633i; |arg(σ15,16)| = 2.151

σ17,18 = −0.7465± 0.6420i; |arg(σ17,18)| = 2.431

σ19,20 = 1.0045± 0.1684i; |arg(σ19,20)| = 0.1661

σ21,22 = 0.9084± 0.3960i; |arg(σ21,22)| = 0.411

(17)

Considering all roots listed in (17) of characteristic
equation (16), we find that complex conjugate roots
σ19,20 = 1.0045 ± 0.1684i; |arg(σ19,20)| = 0.1661,
satisfy the stability condition −π

m < arg(σ) < π
m ⇒

−0.3 < 0.1661 < 0.3 and |arg(σ)| > π
2m ⇒

0.1661 > 0.157. Hence it shows that fractional or-
der system G(s) is stable.

MATLAB function isstable defined under
fotf class [3] can also be used to test approxi-
mately the stability of a given fractional order transfer
function model (14). The returned argument say K is
the stability of the system, with 1 for stable and 0 for
unstable. Using this isstable function, the denom-
inator of G(s), 0.8s2.2 + 0.5s0.9 + 1 is checked and
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Figure 2: Poles position in complex σ-plane

it is found that K = 1, indicating the system is sta-
ble, with q = 0.1. Stability region for given fractional
order system (14) is shown in Fig.(2). The region of
stability depends on the value of q. Since q is 0.1, the
angle is around 9◦. Here we can see that G(s) has
more stability region. Now it can also be concluded
that system is stable even if it’s poles lie on the right
side of the complex plane.
Example 2
Consider fraction order system P (s) = 1

−1.5s0.5+1
The characteristic equation of P (s) can be written as

D(s) = −1.5s
5
10 + 1 = 0 (18)

The transformed equation of (18) in σ-plane for σ =

s
1
10 and m = 10 is given by

D(σ) = −1.5σ5 + 1 = 0 (19)

The roots are: σ1 = 0.9221, σ2,3 = −0.7460 ±
0.5420i and σ4,5 = 0.2849± 0.8769i.
Here |arg(σ2,3)| = 0.628, |arg(σ4,5)| = 1.25.
Thus no roots of equation (19) satisfy the stability
condition −π

m < arg(σ) < π
m and |arg(σ)| > π

2m .
It indicates that the given system P (s) is unstable.

4 Fractional Order Control
Fraction order control is the non-conventional way
of robust control based on fractional order derivative.
Most of the works in fractional order control systems
are in theoretical nature and controller design and im-
plementation in practice is very small. In this article,
main objective is to apply the fractional order control
(FOC) to analyze the system control performance. In

theory, the control system can include both the frac-
tional order plant to be controlled and fractional order
controller. However, in control practice, more com-
mon is to consider the fractional order controller only.
Here we demonstrate two scenarios - (a) Integer or-
der plant is being controlled by fractional order con-
troller and (b) fractional plant is being controlled by
fractional order controller.

The fractional-order PIλDµ controller is a gen-
eralization of PID controller with integrator of real or-
der λ and differentiator of real order µ. The transfer
function of fractional order PID controller is given by

C(s) = KP +
KI

sλ
+KDs

µ, (λ, µ > 0) (20)

Taking λ = 1 and µ = 1, we obtain a classical PID
controller. If λ = 0 and µ = 0, we can obtain a
PDµ and PIλ controller respectively. All these type
of controllers are particular case of the PIλDµ con-
troller, which is more flexible and gives an opportu-
nity to better adjust the dynamical properties of the
fractional-order control system

4.1 Fractional-Order Controller Design for
Integer Order Plant

Consider the transfer function model of DC motor [5],
given by

GDCM (s) =
0.08

s(0.05s+ 1)
(21)

The feedback control loop is depicted in Fig.3,
where C(s) is the transfer function of controller and
GDCM (s) is transfer function of motor. The applied
voltage Va control the angular velocity ω of the sys-
tem.

Figure 3: Feedback control loop

The several methods and tuning technique for frac-
tional order PID parameters were developed during
last decade [2, 4, 6, 7]. They are based on various
approaches. In this work, we select KP ,KI and KD

values for fractional order PID controller of DC motor
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only in two steps:
Step-01:The design of KP

Proportional gain KP is related to the static error Et

[%], settling time Tr [sec.] and overshoot Pr [%]. In
general, KP can be set through

KP ≥
(
100

Et

)
(22)

To find minimum static error, we select proportional
gain KP = 10.
Step-02:The design of KD, µ,KI and λ
To select these values for FOC design, we use follow-
ing controller synthesis scheme:
First we define the phase margin of the controlled sys-
tem as

ϕm = ̸ [C(s)GDCM (s)] + π (23)

The equation (23) can be accomplished by controller
C(s) = K(s) of the form{

K(s) = k1
k2s+1
sν

k1 =
1

KDCM
, k2 = τ

(24)

where τ = 0.05 is the time constant and KDCM =
0.08 is constant gain of the DC motor respectively.
Such controller (24) gives a constant phase margin.
Now using equation (23) and (24), we have

ϕm = arg [C(jω)GDCM (jω)] + π

= arg
[
k1KDCM

(jω)(1+ν)

]
+ π

= arg
[
(jω)−(1+ν)

]
+ π

= π − (1 + ν)π2

(25)

If we fix phase margin ϕm ≥ 60◦ for the controlled
object DC motor, we find the constants ν = 0.3 from
equation (25). The other desired constant values k1 =
12.5, k2 = 0.05 can be obtained from equation (24).

Now using these constants in equation (24), we
can obtain a fractional IλDµ controller, which is a
particular case of PIλDµ controller and has the form

K(s) = 0.625s0.7 +
12.5

s0.3
(26)

where KD = 0.625,KI = 12.5, µ = 0.7, λ = 0.3
Finally,on substituting the values of KP = 10 from
step-01 and KD = 0.625,KI = 12.5, µ = 0.7, λ =
0.3 from step-02 in equation (20), we obtain the fol-
lowing fractional order PID controller transfer func-
tion:

C(s) = 10 +
12.5

s0.3
+ 0.625s0.7 (27)

Now the transfer function of the feedback control loop
with the fractional order PID controller (27) is ob-
tained as{

Gcl =
Go(s)

1+Go(s)
= GDCM (s)C(s)

1+GDCM (s)C(s)

= 0.05s+0.8s0.3+1
0.05s2.3+s1.3+0.05s+0.8s0.3+1

(28)

where Go(s) is the transfer function of open control
loop with Go(s) =

0.05s+0.8s0.3+1
0.05s2.3+s1.3

.
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Figure 4: Step response of DC motor with fractional
order PID controller

The fractional order DC motor feedback system (28)
is simulated in MATLAB environment under fotf
class using reference [3]. The step response for
fraction order feedback system Gcl is obtained and it
is shown in Fig.(4). The design exhibits a very neg-
ligible overshoot and effectively achieves its steady
state within 5 second only.The bode diagram of the
controlled model is also presented in Fig.(5). It can
be seen that phase margin ϕm ≈ 74◦(> 60◦) and gain
margin is infinity, which satisfy our desired specifica-
tions.

4.2 Fractional-Order Controller Design for
Fractional Order Plant

We consider the following fractional order plant
model given in [4]:

GF (s) =
1

0.8s2.2 + 0.5s0.9 + 1
(29)

Using least-squares method, the following approxi-
mated integer order model corresponding to (29) was
obtained in [4]:

GI(s) =
1

0.714s2 + 0.2313s+ 1
(30)
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Figure 5: Bode diagram of DC motor with fractional
order PID controller

The comparison of unit step response of the systems
described by (29) and (30) are shown in Fig.(6).
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Figure 6: Comparison of unity step response of the
integer order model and the fractional order model

The integer order PD controller and the fractional or-
der PDµ were designed in [4]. The integer order PD
is given by

Gc(s) = 20.5 + 2.7343s (31)

while the fractional order PDµ is characterized by the
fractional order transfer function [4]

Gc = 20.5 + 3.7343s1.15 (32)

In Fig.(7), comparison of unit step response of the
closed loop fractional order system controlled by frac-
tional order PDµ controller and integer order PD

controller is presented.
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Figure 7: Comparison of unity step response of the
closed loop fractional order system with integer order
PD controller and with fractional order PDµ con-
troller
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Figure 8: Stability region of fractional order system
controlled by integer order PD controller

Stability analysis is also investigated for the designed
fractional order control system. The simulation results
for the stability of fractional order system controlled
by integer order controller and fractional order con-
troller are depicted in Fig.(8) and Fig.(9) respectively.

The conclusion is that the use of the fractional order
controller leads to an improvement of performance of
fractional order system (see Fig.(7)) and increases the
stability region of the system (see Fig.(8) and Fig.(9)).
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Figure 9: Stability region of fractional order system
controlled by fractional order PDµ controller

5 Conclusion
In this paper, stability and performance analysis of
fractional order control systems is investigated. The
basic ideas and technical formulations for the analy-
sis of fractional order control systems are presented.
Some illustrative design examples with simulation re-
sults have been demonstrated. The major purpose of
this paper is to draw attention to the non-conventional
way of system analysis and its control. We believe
that fractional order control can benefit control engi-
neering practitioners in number of ways.
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