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Abstract: This paper studies the co-ordinated average consensus of multi-agent system under Cartesian co-ordinate
coupling in a discrete-time setting with switching sampling interval. Two cases are considered: 1) network without
sampling delay; 2) network with sampling delay. For both cases, by algebraic graph theory and matrix theory, we
analyze the convergence of the system and not only prove the existence of the sampling period, the Euler angle of
the rotation matrix and sampling delay, but also give the approach of how to choose them. Our study shows that
the eigenvalues of the corresponding Laplacian matrix, the size of the Euler angle, sampling period and delay have
an important effect on consensus. Finally, some numerical simulations are presented to illustrate our theoretical
results.
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1 Introduction
In recent years, consensus problem of multi-agent sys-
tems (MASs) has appeared as a new challenging area
of research due to its broad applications in many areas
such as computer science, vehicle systems, unmanned
air vehicles, scheduling of automated highway sys-
tems, formation control of satellite clusters (see [1-12]
and the references therein), etc. The main objective in
the consensus problems is to design appropriate pro-
tocols and algorithms such that a group of agents can
converge to a consistent value.

Different from the traditional consensus algo-
rithms, collective motion from consensus with Carte-
sian coordinate coupling [13-17] has received much
attention. [14-16] investigated a team of vehicles in
3D by introducing a rotation matrix to an existing con-
sensus algorithm for single-integrator kinematics. It
was shown that both the network topology and the
value of the Euler angle affected the resulting collec-
tive motion. [16] further extended the results in [15]
from single-integrator kinematics to double-integrator
dynamics and proved that the network topology, the
damping gain and the value of the Euler angle affect-
ed the resulting collective motion. A common as-
sumption in [15-17] is that information transmission
among agents is also continuous. However, informa-
tion may not be transmitted continuously due to the
unreliability of communication channels, the limita-

tions of sensing ability of agents, and the constraints
of total cost. Thus, it is more practical to consider the
case of sample-based information transmission for its
extensive applications.

Recently, some results for multi-agent systems
via sampled control have been obtained in [18-29]. In
[24], Ren et al. studied the collective motion patterns
for a group of autonomous vehicles in a discrete-time
setting with time delay and proposed sufficient con-
ditions on the network topology, the sampling period,
the time delay and the Euler angle such that differ-
ent collective motion pattern can be achieved. How-
ever, the sampling interval investigated in [24] was
assumed to be constant and time-invariant. Assum-
ing the sampling interval is time-varying, in [11, 12],
Gao et al. used the Lyapunov method to solve con-
sensus problems of second-order multi-agent sampled
control system under undirected networks and only
sufficient consensus criteria were established. Fur-
thermore, in [25], Wang et al. studied the average-
consensus problem of second-order multi-agent sam-
pled control system with switching sampling interval
and not only proved the existence of the scaling pa-
rameter and switching sampling interval but also gave
the approach of how to choose them. But it didn’t in-
vestigate the Cartesian co-ordinate coupling protocol
with time delay or give us a specific range of sampling
interval either. Nevertheless, as pointed out in [14],
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Cartesian co-ordinate coupling can be regarded as a
rather significant part of coordinated motions play-
ing an important role in applications involving multi-
agent networks repetitive movements such as cooper-
ative patrol including cooperating mobile robots men-
tioned in [2], mapping, sampling or surveillance. This
motivates us to write this paper.

In this paper, we will investigate the consensus
problems of multi-agent switched system via sampled
control protocol with Cartesian coordinate coupling.
Consensus problems with switching sampled data and
sampling delay based on a rotation matrix are consid-
ered. Different from the discussion in [24] investigat-
ed co-ordinated collective motion pattern under fixed
sampling period, this paper focuses on the consen-
sus problems for multi-agent system via the switch-
ing sampling interval. Besides, compared with [25],
in absence of time delay and specific range of system
parameters, we further consider Cartesian co-ordinate
coupling and consensus criteria are established for
multi-agent system with time delay. Combining these
two aspects, the contributions of this paper are t-
wofold: (I) We consider the switching sampling peri-
od rather than fixed and general non-period case since
fixed case is special and it is difficult to establish better
results for general non-period sampling(like [11, 12]).
(II)We not only prove the existence of the sampling in-
terval, Euler angle of the rotation matrix and sampling
delay via Cartesian co-ordinate coupling protocol, but
also give a specific range of the system parameters to
guarantee consensus of multi-agent system.

The remainder of this paper is organized as fol-
lows. Some basic definitions and supporting results
are presented in the next section. Our main results are
given in Section 3 and Section 4. Numerical examples
are given in Section 5 to illustrate our results and
present the relationship among consensus, topology
graph, sampling period, Euler angle and sampling
delay. In Section 6, some concluding remarks and
future research topics are discussed.

Notations: We use standard notations throughout
this paper. MT is the transpose of the matrix M .
M−1 is the inverse of the matrix M . rank(M) de-
notes the rank of the matrix M .⊗ is the Kroneck-
er product. 1n = [1, · · · , 1]T ∈ Rn and 0 rep-
resents any zero matrix with appropriate dimension-
s. Let ℓ = {1, 2, · · · , n}, ℓ1 =: {0, 1, · · · }, ℓ2 =:
{1, 2, · · · , 3n}. For any square matrix H, Λ(H) de-
notes the set of all eigenvalues of H. In denotes the
n × n identity matrix. Matrices, if their dimensions
are not explicitly stated, are assumed to be compatible
for algebraic operations. ι and .̄ denote the imaginary
unit and the complex conjugate of a number, respec-
tively.

2 Preliminaries
In this section, some basic knowledge on graph theory,
problem formulations, some definitions and lemmas
are given as the preliminaries of this paper.

2.1 Graph Theorem

Let G = (V, E ,A) be an undirected graph with
the set of nodes V={v1, v2, · · · , vn}, set of edges
E ⊆ V × V , and a weighted adjacency matrix
A = [aij ] ∈ Rn×n with nonnegative adjacency ele-
ments aij . An edge of G is denoted by eij = (vj , vi).
The adjacency elements associated with the edges
of the graph are positive, i.e., eij ∈ E if and only
if aij > 0. Moreover, we assume aii = 0 for all
i ∈ ℓ. The set of neighbors of node vi is denoted
by Ni={vj ∈ V : (vj , vi) ∈ E}. Since the graph
is undirected, it means once eij = (vj , vi) is an
edge of G, eji = (vi, vj) is an edge of G as well.
As a result, the adjacency matrix A is a symmetric
nonnegative matrix. Correspondingly, the Lapla-
cian matrix of the undirected graph is defined as
L = [ℓij ] ∈ Rn×n,where

ℓij =


−aij , i ̸= j,

n∑
k=1,k ̸=i

aik, i = j.

An important property of L is that all the row sums
and column sums of L are zero and thus 1n is either
a right or a left eigenvector of L associated with zero
eigenvalue. µi ∈ Λ(L), i ∈ ℓ, denotes the ith eigen-
value of Laplacian matrix.

A path between each distinct nodes i and
j is a finite ordered sequence of distinct edges
(i, k1), (k1, k2), · · · , (kl, j). A graph is said to be con-
nected if there exists a path between any two distinct
nodes of the graph.

2.2 Problem Formulations

Assume that each agent has the dynamics given by

ṙi(t) = ui(t),∀i ∈ ℓ, (1)

where ri(t) :=

 xi(t)
yi(t)
zi(t)

 ∈ R3, ui(t) ∈ R3 are, re-

spectively, the state and control input associated with
the ith agents.

A consensus algorithm investigated in [14] for
system (1) is given as

ui(t) =
∑
vj∈Ni

aijC(rj(t)− ri(t)), ∀i ∈ ℓ, (2)
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where aij ≥ 0,∀i, j ∈ ℓ, and the matrix C ∈ R3×3

denotes a rotation matrix. This paper assumes that
each agent can receive the information of positions
from its neighbors at sampling times. Without loss
of generality, we let t0, t1, · · · denote the sampling
times. A sampled-data control protocol induced from
(2) is given as follows:

ui(t) =
∑
vj∈Ni

aijC(rj(tk)− ri(tk)), t ∈ [tk, tk+1),

(3)
where i ∈ ℓ, k ∈ ℓ1 =: {0, 1, · · · }. It follows from (3)
that the control input of each agent during [tk, tk+1) is
time-invariant. Then, we can obtain

ri(tk+1) = ri(tk)+(tk+1− tk)ui(tk),∀i ∈ ℓ, k ∈ ℓ1.
(4)

Let Tk = tk+1 − tk, k ∈ ℓ1, then

ri(tk+1) = ri(tk) + Tkui(tk),∀i ∈ ℓ, k ∈ ℓ1, (5)

where ri(tk) represents the position of the ith agent at
kth sampling time.
Assumption 1. Tk is selected in turn from the set
of{h, 2h}, where h > 0, i.e., T0 = h, T1 = 2h, T2 =
h, T3 = 2h, · · · .
Remark 1. In this paper, we only consider
the case that all the intervals are selected in turn
from the set {h, 2h}. For the set {l1h, l2h} and
{l1h, l2h, · · · , lmh}, similar analysis can be obtained.

Define r(k) = [rT1 (tk), r
T
1 (tk), · · · , rTn (tk)]T .

Then the network dynamics system is summarized as
follows:

r(k + 1) = (I3n − Tk(L⊗ C))︸ ︷︷ ︸
Φk

r(k), (6)

where Φk ∈ {Φ0,Φ1},

Φ0 = I3n − h(L⊗ C),

Φ1 = I3n − 2h(L⊗ C).

Remark 2. System (6) is a periodic switched system
with two subsystems matrices Φ0,Φ1. By Remark 2
in [12], system (1) achieves consensus if and only if
system (6) reaches consensus.
From system (6), we can get

r(1) = Φ0r(0),
r(2) = Φ1r(1) = (Φ1Φ0)r(0),
r(4) = (Φ1Φ0)r(2),
...
r(2k) = (Φ1Φ0)r(2(k − 1)), k ∈ ℓ1.

Let ξ(k) = r(2k), then

ξ(k + 1) = (Φ1Φ0)ξ(k), k ∈ ℓ1. (7)

Remark 3. By Assumption 1, we know that t0 =
0, t1 = h, t2 = 3h, t3 = 4h, t4 = 6h, t5 = 7h, t6 =
9h, · · · . Then, it is easily obtained that t2k = 3hk.
Hence,

ξ(k) = r(2k) =

 r1(t2k)
...

rn(t2k)

 =

 r1(3hk)
...

rn(3hk)

 .

Remark 4. Cartesian co-ordinate coupling has wide
applications in engineering fields. Most existing lit-
eratures concerning this topic often assume that the
sampling period is fixed. However, in real applica-
tions, the ideal assumption cannot be achieved. On
the other hand, it is really difficult to deal with purely
time-varying sampling issue and the results obtained
are far from satisfaction [11, 12]. Therefore, we are
inspired to investigate the average co-ordinate consen-
sus via switching sampling interval.

Before moving on, we need the following lem-
mas.

2.3 Basic Lemmas

In this subsection, we introduce some lemmas, which
will play an important role in the proof of our main
theorems.

Lemma 1. (Lemma 1.1 in [14]) The Laplacian ma-
trix L has at least one zero eigenvalue and all the oth-
er eigenvalues are positive. The topology graph G is
connected if and only if L has a simple zero eigenval-
ue and all the nonzero eigenvalues are positive. Φ1Φ0

has at least three 1 eigenvalues.

Lemma 2. (Lemma 1.20 in [14]) Given a rotation
matrix C ∈ R3×3, let a = [a1, a2, a3]

T and θ de-
note, respectively, the Euler axis(i.e., the unit vector
in the direction of rotational) and the Euler angle(i.e.,
the rotational angle). The eigenvalues of the matrix
C are 1, eιθ, e−ιθ with associated right eigenvectors
given by, respectively, ζ1, ζ2, ζ3 = ζ̄2, and associ-
ated left eigenvectors given by, respectively, ϖ1 =
ζ1, ϖ2 = ζ̄2, ϖ3 = ζ̄3, where ζ1 = a, ζ2 = [(a22 +

a23)sin
2( θ2),−a1a2 sin

2( θ2) + ιa3 sin(
θ
2)| sin(

θ
2)|,

− a1a3 sin
2( θ2)− ιa2 sin(

θ
2)| sin(

θ
2)|]

T .

Lemma 3. ([32]) Suppose that U ∈ Rp×p, V ∈ Rq×q,
X ∈ Rp×p, and Y ∈ Rq×q. The following statements
are true.

(i)(U + X)⊗ V = U ⊗ V + X ⊗ V;
(ii)(U ⊗ V)(X ⊗ Y) = (UX)⊗ (VY);
(iii)If U and V are symmetric, so is U⊗V.

Moreover, suppose that U has the eigenvalues βi with
associated eigenvectors fi ∈ Cp, i = 1, 2, · · · , p,
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and V has eigenvalues ϱj with associated eigenvectors
gj ∈ Cq, j = 1, 2, · · · , q. Then the pq eigenvalues of
U ⊗ V are βiϱj with associated eigenvectors fi ⊗ gj ,
i = 1, 2, · · · , p, j = 1, 2, · · · , q.

Lemma 4. System (1) under sampled control protocol
(3) reaches consensus if and only if system (7) reaches
consensus.

Proof: Since the proof of Lemma 4 is obvious, we
delete it for space saving. ⊓⊔
Remark 5. By Lemma 4, to solve the consensus prob-
lem of system (1), we only need analyze the consensus
of system (7).

3 Consensus Analysis for Switched
Sampled Control System

This section will establish two theorems to solve the
consensus problem of switched multi-agent system
via sampled control without delay.

Assumption 2. 3−2hµi ̸= 0, where µi, i ∈ ℓ, denotes
eigenvalue of Laplacian matrix L corresponding to the
undirected graph.

Proposition 5. The multiplicity of 1 eigenvalue in the
matrix Φ1Φ0 is three times as many as that of zero
eigenvalue in Laplacian matrix L if and only if As-
sumption 2 holds.

Proof:It follows from Lemmas 2-3, that the eigenval-
ues of L⊗ C are µi, µie

ιθ, µie
−ιθ, i ∈ ℓ,

Φ1Φ0 = I3n − 3h(L⊗ C) + 2h2(L⊗ C)2.

Let λj , j = 1, 2, · · · , 3n denote the eigenvalue of
Φ1Φ0. We can easily get

λ3i−2 = 1− 3hµi + 2h2µi
2,

λ3i−1 = 1− 3hµie
ιθ + 2h2µi

2eι2θ,

λ3i = 1− 3hµie
−ιθ + 2h2µi

2e−ι2θ, i ∈ ℓ.

By Lemma 1, we obtain that when µi = 0 or µi =
3
2h , Φ1Φ0 has 1 eigenvalue.

(Sufficiency.) Since µi ̸= 3
2h . One knows if once

µi = 0, then λ3i−2 = λ3i−1 = λ3i = 1. So it is easy
to prove that Laplacian matrix L has a zero eigenvalue
with algebraic multiplicity m if and only if the matrix
Φ1Φ0 has a 1 eigenvalue with algebraic multiplicity
3m.

(Necessity.) Now we prove the necessity by con-
tradiction. If the condition µi ̸= 3

2h is not satis-
fied, there at least exists l ∈ {2, 3, · · · , n}, such that

µl =
3
2h . Obviously, we have λ3l−2 = 1, which im-

plies that the multiplicity of 1 eigenvalue of the matrix
Φ1Φ0 is not triple as many as that of zero eigenvalue
of the matrix L, which results in contradiction. ⊓⊔

Theorem 6. Consider an undirected graph G. The
co-ordinated average consensus of system (1) under
sampled control protocol (3) can be achieved if and
only if the matrix Φ1Φ0 has exactly three 1 eigen-
values and all the other eigenvalues lie in the unit

circle. In particular, xi(t) → 1
n

n∑
i=1

xi(0), yi(t) →

1
n

n∑
i=1

yi(0), zi(t) → 1
n

n∑
i=1

zi(0), as t → ∞.

Proof: The matrix Φ1Φ0 can be written in Jordan
canonical form, i.e., Φ1Φ0 = MJM−1, where J is
the Jordan canonical form of Φ1Φ0 with λl, l ∈ ℓ2
as the diagonal element. M := [m1,m2, · · · ,m3n],
where mk is the right or generalized right eigenvec-
tor of the matrix Φ1Φ0. M−1 := [pT1 , p

T
2 , · · · , pT3n]T ,

where pk is the left or generalized left eigenvector of
the matrix Φ1Φ0. Moreover, pTkmk = 1, pTkml =
0, l ̸= k, k ∈ ℓ2.

(Sufficiency.) Since the matrix Φ1Φ0 has exactly
three 1 eigenvalues and all the other eigenvalues lie in
the unit circle, then Jordan canonical form J can be

written as


1

1
1

J̄

 , where J̄ is Jordan block

corresponding to those eigenvalues of Φ1Φ0 which lie
in the unit circle. i.e., lim

k→+∞
(J̄)k = O(3n−3)×(3n−3).

It follows from Lemma 2 and Lemma 4 that 1n ⊗ ζi,
1
n1n⊗ ϖi

ϖT
i ζi

, i = 1, 2, 3 are right and left eigenvectors
associated with 1 eigenvalue of Φ1Φ0, respectively.
So

M =
[

1n ⊗ ζ1, 1n ⊗ ζ2, 1n ⊗ ζ3, ∗ · · · ∗
]
,

M−1 =



1
n1Tn ⊗ ϖT

1

ϖT
1 ζ1

1
n1Tn ⊗ ϖT

2

ϖT
2 ζ2

1
n1Tn ⊗ ϖT

2

ϖT
2 ζ2

∗
...
∗


.

By (7), we get

ξ(k) = (Φ1Φ0)ξ(k − 1) = · · · = (Φ1Φ0)
kξ(0). (8)
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Then,

lim
k→+∞

ξ(k) = M


1

1
1

0

M−1ξ(0)

= (
1

n
1n1Tn ⊗ I3)ξ(0).

Obviously,

lim
k→+∞

∥xi(3hk)− 1
n1Tnx(0)∥ = 0,

lim
k→+∞

∥yi(3hk)− 1
n1Tny(0)∥ = 0,

lim
k→+∞

∥zi(3hk)− 1
n1Tnz(0)∥ = 0.

For any t ≥ 0, there exists a nonnegative integer k,
such that t ∈ [tk, tk+1). Obviously, t → +∞ is equiv-
alent to k → +∞. Hence, when t → +∞, ∥xi(t) −
1
n1Tnx(0)∥ → 0, ∥yi(t) − 1

n1Tny(0)∥ → 0, ∥zi(t) −
1
n1Tnz(0)∥ → 0. Therefore, the co-ordinated average
consensus of system (1) under sampled control proto-
col (3) is achieved.

(Necessity.) Now we prove the necessity by con-
tradiction.

If the condition that matrix Φ1Φ0 has exactly
three 1 eigenvalues and all the other eigenvalues are
in the unit circle is not satisfied, then by Proposition
5, the multiplicity of 1 eigenvalue in Φ1Φ0 is at least
three. Hence, there are three cases needed to be dis-
cussed.

Case I: Φ1Φ0 has exactly three 1 eigenvalues, and
there exists at least an eigenvalue which is not in the
unit circle;

Case II:Φ1Φ0 has more than three 1 eigenvalues ,
and all the other eigenvalues lie in the unit circle;

Case III: Φ1Φ0 has more than three 1 eigenvalues,
and there exists at least an eigenvalue which is not in
the unit circle.

For these three cases, we get lim
k→+∞

(Φ1Φ0)
k

doesn’t exist or has a rank more than three. Thus, sys-
tem (1) under protocol (3) can not reach consensus,
which results in a contradiction. ⊓⊔
Theorem 7. For an undirected graph G, the co-
ordinated average consensus of system (1) under sam-
pled control protocol (3) can be achieved if and only if
the graph G is connected and h, Euler angle θ satisfy
the following conditions:

(1) 0 < h < min
µ∈Λ+(L)

{ 3

2µ
},

(2) max
µ∈Λ+(L)

{−1,H1} < cosθ < min
µ∈Λ+(L)

{1, H2},
(9)

where

H1 =
3 + 6hµ−

√
4(hµ)4 − 4(hµ)2 + 9

8hµ
,

H2 =
3 + 6hµ+

√
4(hµ)4 − 4(hµ)2 + 9

8hµ
,

Λ+(L) represents the set of the positive eigenval-
ues of Laplacian matrix L.

Proof: By Lemma 1 and Proposition 5, the topol-
ogy graph is connected ⇔ L has only one zero
eigenvalue⇔Φ1Φ0 has only three 1 eigenvalues.There
exists h > 0 and Euler angle θ such that all the other
eigenvalues of the matrix Φ1Φ0 except three 1 eigen-
values lie in the unit circle if and only if the following
inequalities have a solution:

|λ3i−2| < 1,
|λ3i−1| < 1,
|λ3i| < 1, i = 2, 3, · · · , n,

where λ3i−2, λ3i−1, λ3i are defined as in the proof of
Proposition 5, i.e.,

|1− 3hµi + 2h2µi
2| < 1,

|1− 3hµie
ιθ + 2h2µi

2eι2θ| < 1,

|1− 3hµie
−ιθ + 2h2µi

2e−ι2θ| < 1, i = 2, 3, · · · , n,

⇔ 
−2 < 2h2µi

2 − 3hµi < 0,

8h2µi
2(cosθ)2 + (−6hµi − 12h2µ2

i )cosθ
+3h4µ4

i + 5h2µ2
i < 0, i = 2, 3, · · · , n,

⇔
0 < h <

3

2µ
,

3+6hµ−
√

4(hµ)4−4(hµ)2+9

8hµ < cosθ,

3+6hµ+
√

4(hµ)4−4(hµ)2+9

8hµ > cosθ, i = 2, 3, · · · , n.

Summarizing the above discussions, we can easi-
ly obtain (9). Then we complete the proof. ⊓⊔

4 Consensus under Switching Sam-
pling Delay

If sampling induced time delay is concerned, the situ-
ation becomes more complicated. We assume that the
sampling delay τ is fixed and less than the sampling
period, i.e., 0 < τ < h.

In this situation, the protocol becomes

ui(t) =


∑

j∈Ni

aijC(rj(tk−1)− ri(tk−1)), t ∈ [tk, tk + τ),∑
j∈Ni

aijC(rj(tk)− ri(tk)), t ∈ [tk + τ, tk+1),

(10)
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where C is a symmetric rotation matrix.
Similar to previous analysis, then we can obtain

ri(tk+1) = ri(tk)+τui(tk−1)+(Tk−τ)ui(tk), ∀i ∈ ℓ, k ∈ ℓ1.
(11)

Denote ξ(k) =: [ξT1 (k), ξ
T
2 (k), · · · , ξTn (k)]T ,

ξi(k) =: [ξTi1(k), ξ
T
i2(k), ξ

T
i3(k)]

T ,
ξi1 =: [xi(tk−1), xi(tk)]

T , ξi2 =: [yi(tk−1), yi(tk)]
T ,

ξi3 =: [zi(tk−1), zi(tk)]
T , i ∈ ℓ, then the network dy-

namics is summarized as follows:

ξ(k + 1) = Ψ(k)ξ(k), k ∈ ℓ1, (12)

where Ψ(k) ∈ {Ψ0,Ψ1},

Ψ0 = I3n ⊗A0 + (L⊗ C)⊗B0, A0 =

[
0 1
0 1

]
,

B0 =

[
0 0
−τ −(h− τ)

]
,

Ψ1 = I3n ⊗A0 + (L⊗ C)⊗B1,

B1 =

[
0 0
−τ −(2h− τ)

]
.

From system (12), we can easily get

ξ(2k) = (Ψ1Ψ0)ξ(2(k − 1)), k ∈ ℓ1.

Let χ(k) = ξ(2k), then

χ(k + 1) = (Ψ1Ψ0)χ(k), k ∈ ℓ1. (13)

Remark 6. Similar to Remark 3, we get

χ(k) = ξ(2k) =

 ξ1(2k)
...

ξn(2k)

 =



ξT11(2k)
ξT12(2k)
ξT13(2k)

...
ξTn1(2k)
ξTn2(2k)
ξTn3(2k)


,

where

ξTi1(2k) =

[
xi(t2k−1)
xi(3hk)

]
, ξTi2(2k) =

[
yi(t2k−1)
yi(3hk)

]
,

ξTi3(2k) =

[
zi(t2k−1)
zi(3hk)

]
, i ∈ ℓ, k ∈ ℓ1.

Assumption 3. 3 − (2h − 3τ)νi ̸= 0, where νi, i =
1, 2, · · · , 3n, denotes the eigenvalue of matrix L⊗C.

Proposition 8. The multiplicity of 1 eigenvalue in the
matrix Ψ1Ψ0 is three times as many as that of zero
eigenvalue in Laplacian matrix L if and only if As-
sumption 3 holds.

Proof:Denote r(k) = [rT1 (tk), r
T
2 (tk), · · · , rTn (tk)]T ,

then system (12) can be rewritten as follows:[
r(k)

r(k + 1)

]
= Γ(k)

[
r(k − 1)
r(k)

]
, (14)

where Γ(k) ∈ {Γ0,Γ1},

Γ0 =

[
0 I3n

−τ(L⊗ C)L I3n − (h− τ)(L⊗ C)

]
,

Γ1 =

[
0 I3n

−τ(L⊗ C)L I3n − (2h− τ)(L⊗ C)

]
.

It’s easy to verify that E−1
p (Ψ1Ψ0)Ep = Γ1Γ0,

i.e., Γ1Γ0 ∼ Ψ1Ψ0. Ep ∈ R6n×6n is a permutation
matrix. Let s denote eigenvalue of matrix Γ1Γ0, then
we get

det(sI6n − Γ1Γ0)

= det[s2I3n + (3hL̂− h1h2L̂
2 − I3n)s+ τ2L̂2],

i.e.,

det(sI6n − Γ1Γ0)

=

3n∏
i=1

[s2 + (3hνi − h1h2ν
2
i − 1)s+ τ2ν2i ],

where h1 = h−τ, h2 = 2h−τ, L̂ = L⊗C, νi, i ∈ ℓ2
is defined as in Assumption 3.
It’s easy to obtain that when νi = 0 or νi = 3

2h−3τ ,
Ψ1Ψ0 has 1 eigenvalue.Without loss of generality, by
Lemma 3, suppose ν3j−2 = µj , ν3j−1 = µje

ιθ, ν3j =

µje
−ιθ, µj ∈ Λ(L), j ∈ ℓ.
(Sufficiency.) Since νi ̸= 3

2h−3τ , we have ν1 =
ν2 = ν3 = 0, when µ1 = 0, which obviously im-
plies the matrix Ψ1Ψ0 has a 1 eigenvalue with alge-
braic multiplicity 3 by solving the above characteris-
tic polynomial of Ψ1Ψ0. Therefore, the multiplicity
of 1 eigenvalue in the matrix Ψ1Ψ0 is triple as many
as that of zero eigenvalue in Laplacian matrix L.

(Necessity.) Since the proof is similar to that of
the necessity in Proposition 5, we omit it here for s-
pace saving. ⊓⊔

4.1 Consensus Analysis for Switched Sam-
pled Control System

In this subsection, we mainly establish two theorems
to solve the consensus problem of switched systems
via sampled-data control with time delay.

Theorem 9. Consider an undirected graph G. The
co-ordinated average consensus of system (1) under
sampled control protocol (10) can be achieved if and
only if the matrix Ψ1Ψ0 has exactly three 1 eigen-
values and all the other eigenvalues lie in the unit

circle. In particular, xi(t) → 1
n

n∑
i=1

xi(0), yi(t) →

1
n

n∑
i=1

yi(0), zi(t) → 1
n

n∑
i=1

zi(0), as t → ∞.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Yongli Cheng, Dongmei Xie

E-ISSN: 2224-2856 26 Issue 1, Volume 8, January 2013



Proof: (Sufficiency.) By Proposition 8, since the
matrix Ψ1Ψ0 has exactly three 1 eigenvalues, then
the matrix L has a simple 0 eigenvalue. Suppose
the eigenvalues of L, L ⊗ C be 0, µ2, · · · , µn, and
0, 0, 0, ν4, · · · , ν3n, respectively. Since the topology
graph is an undirected graph and C is a symmetric
matrix, by Lemma 3, one knows that L⊗C is a sym-
metric matrix and can be diagonalizable. i.e., there
exists a non-singular matrix M such that

M−1(L⊗ C)M = diag{0, 0, 0, ν4, · · · , ν3n}.

Hence,

(M−1 ⊗ I2)Ψ0(M ⊗ I2)

= M̂−1 [I3n ⊗A0 + (L⊗ C)⊗B0] M̂

= I3n ⊗A0 + diag{0, 0, 0, ν4, · · · , ν3n} ⊗B0

= diag{A0, A0, A0, Q4, · · · , Q3n}
, Λ0.

where

M̂ = M ⊗ I2, M̂
−1 = M−1 ⊗ I2.

Similarly,

(M−1 ⊗ I2)Ψ1(M ⊗ I2)

= diag{A0, A0, A0, D4, · · · , D3n}
, Λ1,

where

A0 =

[
0 1
0 1

]
, B0 =

[
0 0
−τ −(h− τ)

]
,

Qi =

[
0 1

−τνi 1− (h− τ)νih

]
, i = 4, · · · , 3n.

Di =

[
0 1

−τνi 1− (2h− τ)νih

]
, i = 4, · · · , 3n.

Ψ1Ψ0

= M̂Λ1M̂
−1M̂Λ0M̂

−1

= M̂(Λ1Λ0)M̂
−1

= M̂diag{A0, A0, A0, D4Q4, · · · , D3nQ3n}M̂−1,

Hence,Ψ1Ψ0 and diag{A0, A0, A0, D4Q4, · · · , D3nQ3n}
have the same eigenvalues due to their similarities.
From (13), we get

χ(k) = (Ψ1Ψ0)χ(k − 1) = · · · = (Ψ1Ψ0)
kχ(0). (15)

Furthermore, by Lemma 3, we have

(Ψ1Ψ0)
k

= M̂ diag{A0, A0, A0, (D4Q4)
k, · · · , (D3nQ3n)

k}︸ ︷︷ ︸
Ξ

M̂−1.

Since Ψ1Ψ0 has exactly three eigenval-
ues and all the other eigenvalues lie in
the unit circle, then all the eigenvalues of
diag{A0, A0, A0, D4Q4, · · · , D3nQ3n} have
the same characters. Hence, the eigenvalues of
DiQi, i = 4, 5, · · · , 3n, lie in the unit circle.
Furthermore,

lim
k→+∞

(DiQi)
k = O2×2, i = 4, 5, · · · , 3n.

Then, we can obtain

lim
k→+∞

χ(k)

= lim
k→+∞

(Ψ1Ψ0)
kχ(0)

= lim
k→+∞

(M ⊗ I2)Ξ(M
−1 ⊗ I2)χ(0)

= (M ⊗ I2)Ξ0(M
−1 ⊗ I2)χ(0)

= [1n(
1

n
1n)T ⊗ I3]⊗

[
0 1
0 1

]
χ(0),

where M,M−1 are defined as in Theorem 6,

Ξ0 = diag{A0, A0, A0, O2×2, · · · , O2×2},

χ(0) =



ξ11(0)
ξ12(0)
ξ13(0)

...
ξn1(0)
ξn2(0)
ξn3(0)


,

ξi1(0) =
[
xi(t−1), xi(0)

]T
, ξi2(0) =

[
yi(t−1), yi(0)

]T
,

ξi3(0) =
[
zi(t−1), zi(0)

]T
.

It is easy to get ∥xi(3hk)−
1

n

n∑
i=1

xi(0)∥ → 0, ∥xi(t2k−1)−

1

n

n∑
i=1

xi(0)∥ → 0, ∥yi(3hk)−
1

n

n∑
i=1

yi(0)∥ → 0, ∥yi(t2k−1)−

1

n

n∑
i=1

yi(0)∥ → 0, ∥zi(3hk)−
1

n

n∑
i=1

zi(0)∥ → 0, ∥zi(t2k−1)−

1

n

n∑
i=1

zi(0)∥ → 0, as k → +∞. For any t ≥ 0,

there exists a non-negative integer k such that t ∈
[tk, tk+1). Obviously, t → +∞ is equivalent to k →
+∞. Therefore, ∥xi(t) − 1

n1Tnx(0)∥ → 0, ∥yi(t) −
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1
n1Tny(0)∥ → 0, ∥zi(t)− 1

n1Tnz(0)∥ → 0, as t → +∞.
Hence, the average-consensus of system (1) under
sampled delay control protocol (10) is achieved.

(Necessity.) Now, we prove the necessity by con-
tradiction. If the condition that matrix Ψ1Ψ0 has ex-
actly 1 eigenvalue with multiplicity of three and all the
other eigenvalues are in the unit circle is not satisfied,
then by Proposition 8, the multiplicity of 1 eigenvalue
in Ψ1Ψ0 is at least three. Hence, there are three cases
needed to be discussed.

Case I: Ψ1Ψ0 has exactly three 1 eigenvalues, and
there exists at least an eigenvalue which is not in the
unit circle;

Case II: Ψ1Ψ0 has more than three 1 eigenvalues,
, and all the other eigenvalues lie in the unit circle;

Case III: Ψ1Ψ0 has more than three 1 eigenval-
ues, and there exists at least an eigenvalue which is
not in the unit circle.
In either case, lim

k→+∞
(DiQi)

k ̸= O2×2, i =

4, 5, · · · , 3n. We get lim
k→+∞

(Ψ1Ψ0)
k doesn’t exist or

has a rank more than three. Thus, system (1) under
protocol (10) can not reach consensus, which results
in contradiction. ⊓⊔

It’s difficult to obtain the solutions of sampling
period h, Euler angle θ and sampling delay τ for the
general rotation matrix C. To give a specific range
of sampling period h and sampling delay τ , we will
investigate a special case of the rotation matrix, i.e.,
C = I3 in the sequel.

Theorem 10. For an undirected graph G, the co-
ordinated average consensus of system (1) under sam-
pling delay control protocol (10) can be achieved if
and only if the graph G is connected and h, sampling
delay τ should satisfy the following conditions:

(1) 2h− 3τ < min
µ∈Λ+(L)

3

µ
,

(2) If 0 < h < min
µ∈Λ+(L)

12− 4
√
2

7µ
, or

h > max
µ∈Λ+(L)

12 + 4
√
2

7µ
,

then 0 < τ < min
µ∈Λ+(L)

{h, 1
µ
},

If max
µ∈Λ+(L)

12− 4
√
2

7µ
< h < min

µ∈Λ+(L)

12 + 4
√
2

7µ
,

then 0 < τ < min
µ∈Λ+(L)

{H3,
1
µ
},

(16)

where

H3 =
3hµ−

√
−7(hµ)2 + 24(hµ)− 16

4µ
.

Proof: (Necessity.) By Theorem 9, if the co-ordinated
average-consensus of system (1) under sampling de-
lay control protocol (10) can be achieved, one knows
that Ψ1Ψ0 has exactly three 1 eigenvalues and all the

other eigenvalues lie in the unit circle. Moreover, by
Proposition 8, L has a simple 0 eigenvalue. Then,
the graph G is connected by Lemma 1. Since Ψ1Ψ0

and diag{A0, A0, A0, D4Q4, · · · , D3nQ3n} have the
same eigenvalues, the eigenvalues of Ψ1Ψ0 can be ob-
tained by solving the equation

det

[
s −1
0 s− 1

]3 3n∏
i=4

ai(s) = 0,

where

ai(s)

= det(sI2 −DiQi)

= det

[
s+ τνi −1 + h1νi

τνi − τh2νi
2 s− 1 + h3νi − h1h2νi

2

]
,

i = 4, · · · , 3n,

where h1 = h− τ, h2 = 2h− τ, h3 = 3h− τ.
It is obvious that Ψ1Ψ0 has three 1 eigenvalues

and three 0 eigenvalues. Noting that these three 0
eigenvalues lie in the unit circle without explanation-
s. The other eigenvalues can be obtained by solving
ai(s) = 0, i = 4, 5, · · · , 3n. Noticing that they have
the same form, we can analyze them uniformly. S-
ince ν3j−2 = ν3j−1 = ν3j = µj , j = 2, · · · , n, then
we only need to determine the Schur stability of the
following polynomial:

a(s)

= det

[
s+ τν −1 + h1ν

τν − τh2ν
2 s− 1 + h3ν − h1h2ν

2

]
= s2 + (3hν − h1h2ν

2 − 1)s+ τ2ν2

= s2 + (3hµ− h1h2µ
2 − 1)s+ τ2µ2,

where h1 = h − τ, h2 = 2h − τ ,µ ∈ Λ+(L) denotes
the positive eigenvalue of Laplacian matrix L.

By Jury criterion [33], a(s) is Schur stable if and
only if the following conditions hold:
(a) a(1) > 0;
(b) a(−1) > 0;
(c) τ 2µ2 < 1.
Then,

a(1) = 1 + 3hµ− 2h2µ2 + 3hτµ2 − τ2µ2 − 1 + τ2µ2

= 3hµ− 2h2µ2 + 3hτµ2

= hµ(3− 2hµ+ 3τµ).

From (a), we have

a(1) > 0 ⇔ 3− 2hµ+ 3τµ > 0 (17)

⇔ 2h− 3τ <
3

µ
. (18)

a(−1) = 1− 3hµ+ 2h2µ2 − 3hτµ2 + τ2µ2 + 1 + τ2µ2

= 2τ2µ2 − 3hµ2τ + 2h2µ2 − 3hµ+ 2.
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From (b), we have

a(−1) > 0 ⇔ 2τ2µ2−3hµ2τ+2h2µ2−3hµ+2 > 0.
(19)

For the inequality (19), if

∆ := −µ2(7h2µ2 − 24hµ+ 16) > 0,

we have

12− 4
√
2

7µ
< h <

12 + 4
√
2

7µ
.

Then, we can easily obtain

τ <
3hµ−

√
−7h2µ2 + 24hµ− 16

4µ
.

If
∆ = −µ2(7h2µ2 − 24hµ+ 16) < 0,

we get

h <
12− 4

√
2

7µ
, or h >

12 + 4
√
2

7µ
,

which implies that (19) holds for any 0 < τ < h.
From (c), we have

τ2µ2 < 1 ⇔ 0 < τ <
1

µ
. (20)

Therefore, summarizing the above discussions,
ai(s), i = 4, 5, · · · , 3n, is Schur stable if and only
if the following conditions hold:

2h− 3τ < min
µ∈Λ+(L)

{ 3
µ
},

If 0 < h < min
µ∈Λ+(L)

12− 4
√
2

7µ
, or h > max

µ∈Λ+(L)

12 + 4
√
2

7µ
,

then 0 < τ < min
µ∈Λ+(L)

{h, 1
µ
},

If max
µ∈Λ+(L)

12− 4
√
2

7µ
< h < min

µ∈Λ+(L)

12 + 4
√
2

7µ
,

then 0 < τ < min
µ∈Λ+(L)

{H3,
1
µ
},

where

H3 =
3hµ−

√
−7(hµ)2 + 24(hµ)− 16

4µ
.

(Sufficiency.) Because the graph is connected, 0
is a simple eigenvalue of L. Then, by Proposition 8,
Ψ1Ψ0 has exactly three 1 eigenvalues. From the proof
of necessity, one obtains that if h, τ satisfy (16), then
ai(s), i = 4, · · · , 3n, is Schur stable, i.e., all the other
eigenvalues of Ψ1Ψ0 lie in the unit circle except three
1 eigenvalues. Hence, by Theorem 10, the average-
consensus of system (1) under sampling delay control
protocol (10) can be achieved. ⊓⊔

5 Numerical Simulations
In this section, an example is given to illustrate our
theoretical results.

The topology graph in our example has 0-1
weight. Consider the system (1) in 2-D with 4 agents
(see Figure 1 below), where ri(t) = [xi(t), yi(t)]

T ∈
R2, i = 1, 2, 3, 4.

����
1

����
4

����
3

����
2

"
"

"
"
"
"

"
""

Figure 1. The topology graph of agents.
The four eigenvalues of the corresponding Laplacian
matrix

L =


3 −1 −1 −1
−1 2 −1 0
−1 −1 2 0
−1 0 0 1

 ,

are µ1 = 0, µ2 = 1, µ3 = 3, µ4 = 4. C ∈ R2×2 is
given by [

cos(θ) sin(θ)
− sin(θ) cos(θ)

]
.

By Figure 1 and Lemma 1, we can see that the
topology graph is connected.
Case I. Network without sampling delay.

By Theorem 7, we can easily get that 0 < h <
0.375, 0 < θ < arccos 0.7087 can guarantee the con-
sensus of system (1) under the sampled control proto-
col (3). By choosing h=0.3, θ =

π

6
, Figure 2 shows

that the system (1) can achieve consensus with the ini-
tial values r1(0) = [1, 2]T , r2(0) = [1, 0]T , r3(0) =
[1, 1]T , r4(0) = [0, 1]T . Whereas, Figure 3 shows that
system (1) under the sampled control protocol (3) can-
not reach consensus with the same initial values by
choosing h = 0.3, θ =

π

4
.

Case II. Network with sampling delay.
For simplicity, let C = I2. By Theorem 10, sys-

tem (1) under the sampling delay control protocol (10)
can achieve consensus with 0 < h < 0.2265, 0 < τ <
h or 0.3020 < h < 0.6306, then 0 < τ < 0.2728.
By choosing h = 0.6, τ = 0.2, Figure 4 shows
that system (1) can reach consensus with initial val-
ues r1(0) = [−1,−1]T , r2(0) = [0,−1]T , r3(0) =
[0,−1]T , r4(0) = [−1,−2]T . However, Figure 5
shows that system (1) cannot achieve consensus by
choosing h = 0.6, τ = 0.3 with the same initial val-
ues.
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Figure 2. State trajectories of the four agents with
h = 0.3, θ = π
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Figure 3. State trajectories of the four agents with
h = 0.3, θ = π
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Figure 4. State trajectories of the four agents with
h = 0.6, τ = 0.2

0

50

100

150

−2

−1

0

1

2

x 10
10

−1

−0.5

0

0.5

1

x 10
17

 

 

P
os

iti
on

−
x

TimePosition−y

x1
x2
x3
x4

Figure 5. State trajectories of the four agents with
h = 0.6, τ = 0.3
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6 Conclusion
In this paper, the co-ordinated average-consensus of
single-integrator multi-agent coupling sampled con-
trol system with switching sampling interval has been
investigated. By the iterative product method, the
continuous-time multi-agent system can be equiva-
lently transformed into a linear discrete-time system.
Through analyzing the eigenvalues of system matrix,
sufficient and necessary conditions for reaching co-
ordinated average-consensus under undirected fixed
topology are established. Then, we generalize our
results to the case of discrete-time system with sam-
pling delay. Finally, an example is provided to illus-
trate the effectiveness of the theoretical results. Our
future work will focus on studying the consensus of
the double-order multi-agent dynamic system under
Cartesian co-ordinated coupling sampled control pro-
tocol, switching topology and sampling delay, respec-
tively.
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