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Abstract: This paper deals with observer design for non-linear single output systems. When a classical observer
error linearization by output injection is not possible due to restrictive existence conditions, a simple approxima-
tion scheme is proposed. The method can be applied to a wider class of non-linear systems. Our approach is
constructive and can be implemented using computer algebra packages. The design procedure is carried out for
two example systems.
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1 Introduction
We consider the observer design problem for a non-
linear single output system

ẋ = f(x), y = h(x) (1)

with smooth maps f : X → Rn and h : X → R
defined on an open subset X ⊆ Rn. During the
last decades, several different observer design meth-
ods have been developed and analyzed [1–3].

Observer design is often carried out in appropri-
ate coordinates. A very popular approach has been
suggested in [4, 5], where high gain observer de-
sign is carried out using the observability canonical
form [6, 7]. Similarly, the Byrnes-Isisodri normal
form [8, 9] can be employed to design unknown input
observers [10, 11].

An especially suitable choice of the new coor-
dinates yields a system with linear output and lin-
ear dynamics driven by a non-linear output injec-
tion. This form is called observer canonical form
[12, 13]. The associated observer called normal form
observer has linear error dynamics. Starting with sin-
gle output systems [12, 13], this approach has been
extended into several directions, e.g. to multi output
systems [14–16] and to adaptive observers [17–19].

However, the existence conditions of the trans-
formation into observer canonical form are quite re-
strictive due to a non-generic involutivity condition.
Several publications are aimed at relaxing these exis-
tence conditions, e.g. by system immersion [20, 21],
dynamic error linearization [22–24] and by time-
transformation [25, 26]. Recent approaches do not as-

sume that the output map of the transformed system is
linear, which results in significantly weaker existence
conditons [27–30].

When exact error linearization by output injec-
tion is not possible, many approaches have been de-
veloped to achieve an approximate observer error lin-
earization, e.g. by an extended Taylor linearization
of the error dynamics [12, 31–33], higher order series
expansions [34–37], and with splines [38, 39]. Other
methods are presented in [40, 41].

In Section 2 we remind the reader of the exact
observer error linearization. Our approach to an ap-
proximate error linearization is explained in Section 3.
Computational issues are addressed in Section 4. The
developed observer design procedure is illustrated on
two example systems in Section 5.

2 Exact Observer Error Lineariza-
tion

First we recall observer design by exact error lin-
earization [12, 13]. The design methodology is
straightforward if there exists a diffeomorphism

z = T (x) with x = S(z) (2)

that transforms (1) into the form

ż = Az +α(cTz)
y = γ(cTz)

(3)
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Figure 1: Observer canonical form

with

A =


0 0 · · · 0 0
1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 ,

cT =
(

0 0 · · · 0 1
)
.

(4)

The linear part described by (4) is in dual Brunovsky
form [42]. The map α is an output injection and
the map γ describes an output transformation. The
form (3) is called observer canonical form [6, 7] and
depicted in Fig. 1.

For a system in form (3), the observer

˙̂z = Aẑ +α(γ−1(y)) + k(γ−1(y)− cT ẑ)
x̂ = S(ẑ)

(5)
yields an observation error z̃ = z− ẑ governed by the
linear time-invariant error dynamics

˙̃z = (A− kcT ) z̃. (6)

Since the pair (4) is observable, the eigenvalues of the
linear error system (6) can be placed arbitrarily via the
observer gain k ∈ Rn. More precisely, for a desired
characteristic polynomial

det(sI−(A−kcT )) = p0+p1s+· · ·+pn−1s
n−1+sn

of the error dynamcis (6) we have to use the gain vec-
tor k = (p0, . . . , pn−1)T .

The difficulty of this approach is the transforma-
tion of system (1) into (3). The existence conditions
of (3) are given by the next theorem [13]. For Lie
derivatives and Lie brackets we use the same notation
as in [9, 43].

Theorem 1 In a neighbourhood of x0 ∈ X there ex-
ists a diffeomorphism (2) transforming (1) into (3) if
and only if

1. dim
(
dh(x0), Lfdh(x0), . . . , Ln−1

f dh(x0)
)

=
n,

2. [adi
fv, ad

j
fv](x) = 0 for 0 ≤ i, j ≤ n − 1 and

all x in a neighbourhood of x0,

where the vector field v is the solution of

LvL
k
fh(x) =

{
0 for k = 0, . . . , n− 2

β(h(x)) for k = n− 1
(7)

for an appropriate scalar-valued continuous func-
tion β with β(h(x0)) 6= 0.

The first condition is the well-known observability
rank condition. The vector field v is the last col-
umn of the inverse observability matrix scaled by 1/β.
In other words, v is the solution of Q(x)v(x) =
β(h(x)) ∂

∂xn
with the observability matrix

Q(x) =

 dh(x)

dLn−1
f h(x)

 .

The construction of the transformation (2) is based
on the Simultaneous Rectification Theorem [43, The-
orem 2.36]:

Theorem 2 Consider r vector fields v1, . . . ,vr :
X → Rn. Assume that these vector fields are lin-
early independent at x0 ∈ X and that [vi,vj ](x) = 0
holds for 1 ≤ i, j ≤ r and all x in a neighbourhood
of x0. Then there exists a change of coordinates (2)
such that

T ′(x)vi(x) =
∂

∂zi
and vi(x) = S′(z)

∂

∂zi
(8)

holds for 1 ≤ i ≤ r in a neighbourhood of x0.

Proof. There exists n−r vector fields vr+1, . . . ,vn

such that v1, . . . ,vn are linearly independent at x0.
We construct the inverse transformation as follows

x = S(z) = ϕv1
z1
◦ϕv2

z2
◦ · · · ◦ϕvn

zn
(x0), (9)

where ϕvi
t denotes the flow1 of vector field vi at

time t. By construction we have S(0) = x0. The
first order series expansion of (9) has the form

x = S(z)
= v1(x0)z1 + · · ·+ vn(x0)zn +O(‖z‖2).

(10)
1Recall that the flow ϕv

t of a vector field v : X → Rn is the
general solution of the associated ordinary differential equation
ẋ(t) = v(x(t)).
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The associated Jacobian matrix

S′(0) = (v1(x0),v2(x0), . . . ,vn(x0)) ∈ Rn×n

is regular since the vector fields occurring there are
linearly independent. Therefore, S is a local diffeo-
morphism.

Condition [vi,vj ] ≡ 0 implies that

ϕvi
zi
◦ϕvj

zj ≡ ϕ
vj
zj ◦ϕvi

zi

for 1 ≤ i, j ≤ r, see [43, Lemma 2.3.4]. Then, we
have

∂
∂zi
S(z) = ∂

∂zi
ϕv1

z1
◦ · · · ◦ϕvi

zi
◦ · · · ◦ϕvn

zn
(x0)

= ∂
∂zi
ϕvi

zi
◦ϕv1

z1
◦ · · · ◦ϕvi−1

zi−1

◦ϕvi+1
zi+1 ◦ · · · ◦ϕvn

zn
(x0)

= vi(ϕv1
z1
◦ · · · ◦ϕvi

zi
◦ · · · ◦ϕvn

zn
(x0))

= vi(S(z)) = vi(x)

for 1 ≤ i ≤ r. This implies (8). ut
The proof of Theorem 1 is based on Theorem 2

with r = n and vi = adi−1
−f v for i = 1, . . . , n. Many

systems of practical relevance fulfill the observability
rank condition of Theorem 1, but violate the integra-
bility condition 2. If the existence conditions in Theo-
rem 1 are fulfilled, there exists several different ways
for the symbolic computation of the normal form ob-
server (5), see [41, 44–47].

3 Approximate Observer Error Lin-
earization

Our approximation of the observer form (5) is based
on a slightly modified version of Theorem 2:

Corollary 3 Consider n vector fields v1, . . . ,vn :
X → Rn. Assume that these vector fields are lin-
early independent at x0 ∈ X and that [vi,vj ](x) = 0
holds for 1 ≤ i, j ≤ r and all x in a neighbourhood
of x0. Then there exists a change of coordinates (2)
such that

1. Eq. (8) holds for 1 ≤ i ≤ r in a neighbourhood
of x0, and

2. Eq. (8) holds for 1 ≤ i ≤ n at the point x0.

Proof. Consider the map (9). The locally exact rec-
tification of the first r vector fields follows immedi-
ately from the proof of Th. 2. The point-wise rectifi-
cation follows directly from the linearization (10). ut

The rectification according to Theorem 2 and
Corollary 3 is sketchted in Fig. 2 for n = 2 as well
as r = 2 and r = 1, respectively.

Now, we will discuss the transformation of sys-
tem (1) into an approximate observer form

ż = f̄(z) = Az + α̂(zr, . . . , zn)
y = h̄(z) = γ̂(zn).

(11)

Due to the usage of the weaker form (11) instead of (3)
our approach belongs to the class of methods called
approximate observer error linearization [38, 40, 41].
Because the system linearized in the origin is in ob-
server canonical form, our design methodology is also
related to local approximations via series expansions
[12, 31, 35, 36].

Sufficient existence conditions for (11) are given
in the following theorem:

Theorem 4 Assume that for a point x0 ∈ X there is
an integer r ∈ {1, . . . , n} such that

1. dim
(
dh(x0), Lfdh(x0), . . . , Ln−1

f dh(x0)
)

=
n,

2. [adi
fv, ad

j
fv](x) = 0 for 0 ≤ i, j ≤ r − 1 and

all x in a neighbourhood of x0,

where the vector field v is the solution of (7) for
an appropriate scalar-valued continuous function β
with β(h(x0)) 6= 0. Then, the map

x = S(z) = ϕv
z1
◦ϕad−f v

z2 ◦ · · · ◦ϕ
adn−1
−f v

zn (x0) (12)

is a local diffeomorphism having the inverse z =
T (x) with T (x0) = 0. Under this change of coor-
dinates system (1) is transformed into the approxi-
mate observer form (11). Moreover, the linearization
of (11) at z = 0 is in observer canonical form.

The existence conditions in Theorem 4 are
weaker than these in Theorem 1 because the involu-
tivity condition must only hold for Lie brackets up to
order r − 1 instead of n− 1.

Proof. From the observability rank condition we
conclude that (7) has a unique solution v for a given
map β. Moreover, Eq. (7) implies that matrix product dh(x0)

...
dLn−1

f h(x0)

(v(x0), . . . , adn−1
−f v(x0)

)

=

 0 β(x0)
. . .

β(x0) ∗


(13)
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Figure 2: Rectification of n = 2 vector fields: (a) originial flows, (b) rectification according to Theorem 2 for
r = 2, (c) partial rectification according to Corollary 3 for r = 1

is an lower trianglular matrix, see [9, Lemma 4.1.2].
The matrix is regular since β(x0) 6= 0. Therefore,
the vectors v(x0), . . . , adn−1

−f v(x0) are linearly inde-
pendent. Now we apply Corollary 3. The diffeomor-
phism (2) with (12) results in

T∗ad
i
−fv =

∂

∂zi+1
for i = 0, . . . , r − 1 (14)

in a neighbourhood of x0, where T∗ denotes the dif-
ferential of the diffeomorphism T . The diffeomor-
phism transforms the maps of system (1) into

f̄(z) = T∗f(x)|x=S(z)

h̄(z) = h(x)|x=S(z) .

Due to (13) we have

∂
∂zi+1

h̄ =
〈
dh, adi

−fv
〉

=
{

0 for i = 0, . . . , n− 2,
β(x) for i = n− 1.

(15)
Therefore, the output map h̄ has the form given
in (11). Next we consider the vector field

f̄ = f̄1
∂

∂z1
+ · · ·+ f̄n

∂
∂zn

.

Because of (14) we have

∂
∂zi+1

= T∗ad
i
−fv

= T∗[−f , adi−1
−f v]

= [−T∗f , T∗adi−1
−f v]

= [−f̄ , ∂
∂zi

]

=
∑n

j=1

((
∂

∂zi
f̄j

)
∂

∂zj

) (16)

for i = 1, . . . , r−1. Comparing both sides of (16) we
get ∂

∂zi
f̄j = 0 for 1 ≤ j ≤ n, j 6= i+1, 1 ≤ i ≤ r−1

and ∂
∂zi
f̄i+1 = 1 for 1 ≤ i ≤ r − 1. This implies

that the transformed vector field f̄ has the form given
in (11) in a neighbourhood of z = 0 (see Fig 3(a)).

Finally, we consider the linearization of the trans-
formed system. The output map is already in the
appropriate form (cf. (15)). The diffeomorphism (2)
with (12) from Corollary 3 is such that

T∗ad
i
−fv =

∂

∂zi+1
for i = 0, . . . , n− 1

holds in the point x0. Then, Eq. (16) is also valid
in the point x = x0 (and z = 0, resp.) for i =
0, . . . , n−1. Therefore, we have ∂

∂zi
f̄j(0) = 0 for 1 ≤

j ≤ n, j 6= i+ 1, 1 ≤ i ≤ n− 1 and ∂
∂zi
f̄i+1(0) = 1

for 1 ≤ i ≤ n−1. Hence, the Jacobian matrix has the
form sketched in Fig. 3(b), i.e., the system linearized
in the origin z = 0 is in observer canonical form. ut

Assume that system (1) can be transformed into
the approximate observer form (11). We suggest an
observer of the form

˙̂z = Aẑ + α̂(ẑr, . . . , ẑn−1, γ̂
−1(y))

+k(γ̂−1(y)− ẑn)
x̂ = S(ẑ)

(17)

with the constant gain vector k ∈ Rn. The error dy-
namics is given by

˙̃z = (A− kcT )z̃ + α̂(zr, . . . , zn−1, zn)
− α̂(ẑr, . . . , ẑn−1, zn).

(18)

The last argument zn of both non-linearities in (18)
is the same and obtained from the measured output:
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Figure 3: Jacobians of f̄ : (a) in a neighbourhood of z = 0, (b) in the point z = 0

zn = γ̂−1(y). Otherwise, the error dynamics (18)
has the typical structure occurring in high gain de-
sign. Since f and h are assumed to be smooth, the
map α̂ is also smooth and at least locally Lipschitz. To
determine the observer gain vector k we can employ
several high gain design techniques [48–51]. Modern
approaches are also based on the concept of passiv-
ity [52, 53].

4 Computational Issues
For the implementation of (17) we need the transfor-
mation (2) with (12). Using the chain rule we get

ż = T ′(x)ẋ|x=S(z)

= T ′(x)f(x)|x=S(z)

= (S′(z))−1 f(x)|x=S(z)

= f̄(z).

(19)

In particular, to compute the form (3) we need the
map S, but we do not have to compute T symboli-
cally. The diffeomorphism S results from a concate-
nation of flows according to (12). To obtain the flows
we have to find the general solution of ordinary dif-
ferential equations. Computer algebra packages such
as Mathematica and Maple have build-in functions as
well as additional libraries to solve ordinary differen-
tial equations (e.g., see [54]). Unfortunately, many
differential equations cannot be solved symbolically.
In this cases, one could basically use any approximate
solution. In the following, we recall two approxima-
tion methodes. We explain these methods for a given
vector field v : X → Rn. To compute (12), we
also have to apply these procedures to the vector fields
ad−fv, . . . , ad

n−1
−f v from Section 3.

Taylor expansion The initial value problem for the
vector field v reads as

ẋ = v(x), x(0) = x0 ∈ X (20)

with x0 ∈ X . If v is analytic, the solution of (20) can
be expanded into an infinite series

x(t) = ϕv
t (x0) =

∞∑
k=0

ζk(x0)
tk

k!
(21)

with vector fields ζk : X → Rn, k ≥ 0. These vector
fields can be computed recursively by

ζk+1(x) = ζ′k(x) · v(x) with ζ0(x) = x.

The series (21) is called Lie series [55]. The function
values ζk(x0) of the vector fields can efficiently be
calculated with algorithmic differentiation [56–61].

Picard Iteration The initial value problem (20) is
equivalent to the integral equation

x(t) = x0 +
∫ t

0
v(x(τ))dτ.

In the proof of the existence and uniqueness theo-
rem of Picard-Lindelöff for ordinary differential equa-
tions, this integral equation is solved by the recursion

ξk+1(t) = x0 +
∫ t

0
v(ξk(τ))dτ with ξ0(t) = x0.

If the vector field v is Lipschitz continuous, we have
limk→∞ ξk(t) = x(t), see [62].

5 Example
We will illustrate our approach on two example sys-
tems. In both cases the transformation (12) can be
computed symbolically.
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5.1 Synchronous Motor
In [63], a synchronous motor is modelled by

ẋ1 = x2

ẋ2 = B1 −A1x2 −A2x3 sinx1 − 0.5B2 sin(2x1)
ẋ3 = u−D1x3 +D2 cosx1

y = x1,
(22)

where x1 denotes the rotor angle, x2 the speed devi-
ation and x3 the field flux linkage. The observability
matrix reads as

Q(x) = 1 0 0
0 1 0

−A2x3 cosx1 −B2 cos(2x1) −A1 −A2 sinx1

 .

Clearly, the observability matrix is singular for inte-
gral multiplicities of π.

We compute the starting vector field v symbol-
ically without specifying the map β. We obtain
[v, ad−fv] = [v, ad2

−fv] = 0 and

[ad−fv, ad
2
−fv] = µ(x1)

∂

∂x2
+ %(x)

∂

∂x3
(23)

with

µ(x1) =
β(x1)

sin(x1)
(cos(x1)β(x1)− 3 sin(x1)β′(x1))

and with a complicated function %. We will try to
choose β in such a way that the integrability condi-
tion of Theorem 1 is fulfilled. The second component
of (23) is identically zero if β satisfies the ordinary
differential equation

cos(x1)β(x1)− 3 sin(x1)β′(x1) = 0.

The general solution is β(x1) = C1(sin(x1))1/3 with
the constant C1. Even with this choise of β, the third
component of (23) is not the zero function. Hence,
system (22) cannot be transformed into the normal
form (3).

The aforementioned choice of β results in com-
plicated expressions for ad−fv and ad2

−fv. As the
integrability condition cannot be fulfilled anyway, we
will use the degree of freedom in order to simplify
the vector fields v, ad−fv, ad

2
−fv. With β(x1) =

−A2 sinx1 we obtain the simplest possible vector
field v(x) = ∂

∂x3
in form of the 3rd unit vector. The

next vector fields are

ad−fv(x) = −A2 sinx1
∂

∂x2
−D1

∂
∂x3

,

ad2
−fv(x) = −A2 sinx1

∂
∂x1
−A2(x2 cosx1

+ (A1 +D1) sinx1) ∂
∂x2

+D2
1

∂
∂x3

.

We have [v, ad−fv] = [v, ad2
−fv] = 0 but

[ad−fv, ad
2
−fv] 6= 0. Hence, the conditions of Theo-

rem 4 hold for r = 2 and x1 6= `π with ` ∈ Z. Using
x0 = (π/2, 0, 0)T , the transformation (12) becomes

x = S(z)

=

 2 arccos
(

exp(A2z3)√
1+exp(2A2z3)

)
(A1 +D1) sinh(A2z3)

D2
1z3

 .
(24)

With (24) we were able to compute the form (11)
of (22) symbolically. The vector field f̄ is too com-
plicate to be shown here, but its linearization

f̄
′(0) =

 0 0 B2D1 +A2D2

1 0 B2 −A1D1

0 1 −A1 −D1


is in observer canonical form. In z-coordinates, the
output becomes

y = h̄(z)

= γ̂(z3) = 2 arccos
(

exp(A2z3)√
1+exp(2A2z3)

)
.

For the simulation we used the parameter values
A1 = 0.2703, A2 = 12.01, B1 = 39.19, B2 =
−48.04, D1 = 0.3222 and D2 = 1.9. Moreover,
we used the initial values x(0) = (0.8, 0.1, 10)T and
x̂(0) = (0.8, 0, 0)T and the constant input u = 1.933.
The eigenvalues of the linear part of the error dynam-
ics were placed at −10 by k = (1000, 300, 30)T .
Fig. 4 shows the simulated trajectories. We used black
solid lines for the original system (22), blue dashed
lines for the observer (17) and green dashed-dotted
lines for the extended Luenberger observer [12, 32].
Indeed, the new observer shows a good performance.
For the discussion of observer design for similar ap-
plications we refer to [64–66].

5.2 Lorenz System
As a further example we consider the Lorenz system

ẋ1 = s(x2 − x1)
ẋ2 = ρx1 − x2 − x1x3

ẋ3 = x1x2 − bx3

y = x1

(25)

with the parameters s, ρ, b > 0, see [67]. The observ-
ability matrix has the form

Q(x) =

 1 0 0
−s s 0

s+ s(ρ− x3) −s− s −sx1

 .
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Figure 4: Trajectories of the motor model (22) with
the observer (17) and an extended Luenberger ob-
server

Clearly, the observability rank condition is violated
for x1 = 0. Using β(x1) = −sx1 we get v(x) = ∂

∂x3
,

ad−fv(x) = −x1
∂

∂x2
− b ∂

∂x3
, and ad−fv(x) =

−sx1
∂

∂x1
+((1 + b− s)x1 + sx2) ∂

∂x2
−(b− x1) ∂

∂x3
.

With x0 = (0, 0, 1)T , the transformation (12) be-
comes

x = S(z)

=

 exp(−sz3)
− exp(sz3)z2 + 1+b−s

s sinh(sz3)
z1 + bz3 − bz2 − 1

2s (1− exp(−2sz3))

 .

Again, the equations of the transformed system are
to complicated to be shown here, but can easily be
computed by (19) with computer algebra systems. Be-
cause of

[ad−fv, ad
2
−fv] = −2sx1

∂
∂x2
6= 0

the system cannot be transformed into observer
canonical form (3). Since [v, ad−fv] = 0 we have
r = 2, i.e., the map α̂ of (11) depends on z2 and z3,
but not on z1.

The simulation was carried out with the param-
eter values s = 10, b = 8/3, ρ = 24, and the ini-
tial value x(0) = (8, 11, 23)T . In this setting, the
plane x1 = 0 is not crossed, i.e., the observability rank
condition holds along the system’s trajectory. For the
observer we used the initial value x̂(0) = (1, 0, 0)T

and placed all three eigenvalues at −10. Fig. 5 shows
the simulation result. We used black solid lines for
the original system (25), blue dashed lines for the ob-
server (17) and green dashed-dotted lines for the high
gain observer suggested in [4, 5]. Although we also

Figure 5: Trajectories of the Lorenz system (25) with
the observer (17) and a high gain observer

designed an extended Luenberger observer, the sim-
ulation could not be carried out because the observer
trajectory went into a singularity of the observer gain.
However, the new observer (17) converges.

6 Conclusions

This paper outlined an observer design method for
single output systems. The procedure yields approx-
imately linear error dynamics. The design method
is constructive and can easily be implemented with
computer algebra packages such as Maple or Math-
ematica. Extensions to systems with inputs and multi-
output systems are straightforward.
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2000, pp. 334–341.

[12] D. Bestle, M. Zeitz, Canonical form observer
design for non-linear time-variable systems, In-
ternational Journal of Control, 1983, Vol. 38,
No. 2, pp. 419–431.

[13] A. J. Krener, A. Isidori, Linearization by out-
put injection and nonlinear observers, Systems &
Control Letters, 1983, Vol. 3, pp. 47–52.

[14] A. J. Krener, W. Respondek, Nonlinear ob-
servers with linearizable error dynamics, SIAM
J. Control and Optimization, 1985, Vol. 23,
No. 2, pp. 197–216.

[15] X.-H. Xia, W.-B. Gao, Non-linear observer de-
sign by observer canonical form, International
Journal of Control, 1988, Vol. 47, No. 4, pp.
1081–1100.

[16] X. H. Xia, W. B. Gao, Nonlinear observer design
by observer error linearization, SIAM J. Control
and Optimization, 1989, Vol. 27, No. 1, pp. 199–
216.

[17] R. Marino, Adaptive observers for single output
nonlinear systems, IEEE Trans. on Automatic
Control, 1990, Vol. 35, No. 9, pp. 1054–1058.

[18] R. Marino, P. Tomei, Global adaptive observers
for nonlinear systems via filtered transforma-
tions, IEEE Trans. on Automatic Control, 1992,
Vol. 37, No. 8, pp. 1239–1245.

[19] R. Marino, P. Tomei, Adaptive observers with ar-
bitrary exponential rate of convergence for non-
linear systems, IEEE Trans. on Automatic Con-
trol, 1995, Vol. 40, No. 7, pp. 1300–1304.

[20] J. Back, J. H. Seo, Immersion technique for non-
linear observer design, in: Proc. American Con-
trol Conference (ACC), 2002, pp. 2645–2646.

[21] J. Back, H. Shim, J. H. Seo, An algorithm for
system immersion into nonlinear observer form:
forced systems, in: Preprints of the 16th IFAC
World Congress, Prague, Czech Republic, 2005,
July 3-8.

[22] D. Noh, N. H. Jo, J. H. Seo, Nonlinear ob-
server design by dynamic observer error lin-
earization, IEEE Trans. on Automatic Control,
2004, Vol. 49, No. 10, pp. 1746–1750.

[23] J. Back, K. T. Yu, J. H. Seo, Dynamic observer
error linearization, Automatica, 2006, Vol. 42,
No. 12, pp. 2195–2200.

[24] K. T. Yu, J. Back, J. H. Seo, Constructive al-
gorithm for dynamic observer error linearization
via integrators: single output case, International
Journal of Robust and Nonlinear Control, 2007,
Vol. 17, No. 1, pp. 25–49.

[25] M. Guay, Observer linearization by output-
dependent time-scale transformations, IEEE
Trans. on Automatic Control, 2002, Vol. 47,
No. 10, pp. 1730–1735.

[26] W. Respondek, A. Pogromsky, H. Nijmeijer,
Time scaling for observer design with lineariz-
able error dynamics, Automatica, 2004, Vol. 40,
No. 2, pp. 277–285.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Klaus Robenack

E-ISSN: 2224-2856 18 Issue 1, Volume 8, January 2013



[27] N. Kazantzis, C. Kravaris, Nonlinear observer
design using Lyapunov’s auxiliary theorem, Sys-
tems & Control Letters, 1998, Vol. 34, pp. 241–
247.

[28] A. Krener, M. Xiao, Nonlinear observer design
in the Siegel domain, SIAM J. Control and Opti-
mization, 2002, Vol. 41, No. 3, pp. 932–953.

[29] M. Xiao, The global existence of nonlinear ob-
servers with linear error dynamics: A topolog-
ical point of view, Systems & Control Letters,
2006, Vol. 55, pp. 849–858.

[30] J. Deutscher, M. Bäuml, Design of nonlinear ob-
servers with approximately linear error dynam-
ics using multivariable Legendre polynomials,
Int. J. of Robust and Nonlinear Control, 2006.

[31] M. Zeitz, The extended Luenberger observer for
nonlinear systems, Systems & Control Letters,
1987, Vol. 9, pp. 149–156.

[32] J. Birk, M. Zeitz, Extended Luenberger observer
for non-linear multivariable systems, Interna-
tional Journal of Control, 1988, Vol. 47, No. 6,
pp. 1823–1836.

[33] J. Schaffner, M. Zeitz, Variants of nonlinear nor-
mal form observer design, in: Hijmeijer and Fos-
sen [3], 1999, pp. 161–180.

[34] S. Karahan, Higher degree linear approxima-
tions of nonlinear systems, Ph.D. thesis, Univer-
sity of California, Davis, 1989.

[35] A. Krener, M. Hubbard, S. Karaham, A. Phelps,
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[61] K. Röbenack, J. Winkler, S. Wang, Structure
matters – some notes on high gain observer de-
sign for nonlinear systems, in: Proc. of the
4th International Workshop on Equation-Based
Object-Oriented Modeling Languages and Tools
(EOOLT), Zurich, 2011.

[62] V. I. Arnold, Ordinary Differential Equations,
Springer, 1992.

[63] B. K. Mukhopadhyay, O. P. Malik, Optimal
control of synchronous-machine excitation by
quasilinearisation techniques, Proc. IEE, 1972,
Vol. 119, No. 1, pp. 91–98.

[64] H. R. Karimi, A. Babazadeh, Modelling and out-
put tracking of transverse flux permanent mag-
net machines using high gain observer and RBF
neural network, ISA Transactions, 2005, Vol. 44,
No. 4, pp. 445–456.

[65] I. I. Siller-Alcala, M. Abderrahim, J. Jaimes-
Ponce, R. Alcantara-Ramirez, Speed-Sensorless
Nonlinear Predictive Control of a Squirrel Cage
Motor, WSEAS Transactions on Systems and
Control, 2008, Vol. 3, No. 2, pp. 99–104.

[66] D. Zaltni, M. N. Abdelkrim, Synchronous Motor
Observability Study and a New Robust MRAS
Speed Observer with an Improved Zero-speed
Position Estimation Design for Surface PMSM,
WSEAS Transactions on Systems and Control,
2010, Vol. 7, No. 7, pp. 567–580.

[67] E. N. Lorenz, Deterministic non-periodic flow,
J. Atmos. Sci., 1963, Vol. 20, pp. 130–141.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Klaus Robenack

E-ISSN: 2224-2856 20 Issue 1, Volume 8, January 2013




