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Abstract: - The mismatched perturbations and system chattering are the two main challenging problems in 
sliding mode control. This paper tries to solve these problems by deriving the invariant sets created by the 
sliding mode controller where the present work is devoted to a second order nonlinear affine system. If the state 
started in these sets it will not leave it for all future time. The first invariant set is found function to the initial 
condition only. Accordingly, the state bound is estimated and used when determining the gain of the sliding 
mode controller. This step overcomes an arithmetic difficulty that consists of calculating suitable controller 
gain value that ensures the attractiveness of the switching manifold with lower chattering behavior. Moreover 
to eliminate system chattering and to attenuate the effects of the mismatched perturbations, the signum function 
is replaced by an approximate form which yields a differentiable sliding mode controller.  Therefore, the state 
will converge to a second positively invariant set rather than the origin. The size of this set, as derived here, is 
function to the parameters that can be chosen by the designer. This result enables us to control the size of the 
steady state error which means also that the effect of mismatched perturbation is attenuated. The sliding mode 
controller is then applied to the servo actuator system with friction based on the derived invariant sets. The 
friction model is represented by the major friction components; Coulomb friction, the Stiction friction, and the 
viscous friction. The simulation results demonstrate the rightness of the derived sets and the ability of the 
differentiable sliding mode controller to attenuate the friction effect and regulate the state to the positively 
invariant set with a prescribed steady state error. 

Key-Words: -Positively Invariant Set, Sliding Mode Control, Servo Actuator, Friction Model.  

1 Introduction 
The Sliding mode control (SMC) is a well known 
robust technique, for its ability to reject the 
uncertainties in system model and to the external 
disturbances that satisfying the matching condition 
[1]. When the perturbations satisfy the matching 
condition, it enters the state equation at the same 
point as the control input [1]. The core idea of 
designing SMC algorithms consists in two steps; the 
first is the selecting a manifold in state space such 
that when the state is confined to it the state reaches 
asymptotically (slide) the origin unaffecting by the 
matched perturbations. This type of behavior is 
known as sliding motion. While the second is to 
designing a discontinuous control to enforce the 
state to the manifold and stay there for all future 
time. [2]. Due to its robustness and ease of 
implementation, the sliding mode control algorithm 
has been applied to many engineering application in 
the recent decade.  Stephen J. Doddes et al. [3] 
design a SMC for the permanent magnet 
synchronous motor drives. The SMC law was 
derived for a variable speed wind turbine by Oscar 

Barambones et al. [4]. Also the SMC was applied to 
active vehicle suspensions by Milad Geravand et al. 
[5]. The fuzzy logic is utilized in [5] to adjust the 
gains for the sliding mode control when applying it 
to the physical model of semi-active quarter-car 
suspension.  

In spite of the robustness of SMC against the 
matched disturbances and ease of implementation, 
but it have two main disadvantages. The first is in 
the case of mismatched disturbances. F. Castaños et 
al. [1] suggests use the integral sliding mode to 
reject the matched disturbances and the 𝐻𝐻∞  
techniques to attenuate the unmatched one. The 
Integral Sliding Mode Control (ISMC) is also 
applied for the nonlinear Systems with matched and 
mismatched perturbations by Matteo Rubagotti et al. 
[6]. The ISMC was also applied to the hydraulically 
actuated active suspension system, by Y. M. Sam et 
al. [7] in the presence of mismatched uncertainties. 
The second problem is the chattering behavior 
which is frequently appears in sliding mode control 
system for many reasons such as the non ideality of 
the switching process [2]. Methods for eliminating 
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the chattering in sliding mode control system are 
reported in  [2,8], but the simplest method is 
introduced by J. J. Sloten [9], where the signum 
function is replaced by a saturation function. By 
using saturation function the sliding mode controller 
will introduce a positively invariant set around the 
origin with a size determined by the design 
parameters [10]. H. K. Khalil [10], derives the 
invariant set created by the sliding mode controller 
that uses the saturation function as suggested by J. J. 
Sloten in reference [10]. The formulation of the 
disadvantages in sliding mode control, as mentioned 
above, is presented in the following section in terms 
of the interconnected systems. 

2 Problem Statement 
Consider a dynamical system described by: 
�̇�𝑥1 = 𝑥𝑥2                                                               (1-a) 
�̇�𝑥2 = 𝑓𝑓1 (𝑥𝑥1,𝑥𝑥2) + g1(𝑥𝑥1,𝑥𝑥2)𝑥𝑥3 + 𝑑𝑑1 (𝑥𝑥1,𝑥𝑥2, 𝑡𝑡) 
                                                                            (1-b) 
�̇�𝑥3 = 𝑓𝑓2(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3) + g2(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3)𝑢𝑢+
          𝑑𝑑2(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑡𝑡)                                          (1-c) 

𝑦𝑦 = 𝑥𝑥1  

where 𝑑𝑑1(𝑥𝑥1,𝑥𝑥2, 𝑡𝑡)  and 𝑑𝑑2(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑡𝑡)  are the 
mismatched and matched disturbances respectively. 
Many dynamical engineering systems have models 
similar to Eq. (1), like in electromechanical system 
where the upper subsystem (the model in Eqs. (1-a) 
and (1-b)) is the mechanical system and Eq. (1-c) is 
the electrical system model where  𝑑𝑑1 (𝑥𝑥1,𝑥𝑥2, 𝑡𝑡) may 
represents the uncertainty in system model, the 
friction force and external disturbances. This type of 
system is also known as interconnected system [11]. 
The servo actuator system is an example of this type 
of system, where the torque that actuates the 
mechanical system is not the actual input (for a D.C. 
motor the voltage is the signal which represents the 
actual input). Later, the servo actuator system, as an 
application example, will be selected to validate the 
results of the present work. 

From a control design point of view the system 
cannot be linearized via successive differentiation of 
the output 𝑦𝑦  due to the unknown and may be 
discontinuous disturbance 𝑑𝑑1 (𝑥𝑥1,𝑥𝑥2, 𝑡𝑡) . The 
Backstepping method, which regards 𝑥𝑥3 as a virtual 
controller, cannot also be used since the mismatched 
disturbance, generally, does not satisfy the linear 
growth condition [10,11]. This type of disturbance 
is known as a nonvanishing disturbance because 
𝑑𝑑1(0,0,𝑡𝑡) ≠ 0 . The best that 𝑥𝑥3  can do it, if it's 
regarded as a virtual controller, is to attenuate the 
effects of 𝑑𝑑1(𝑥𝑥1,𝑥𝑥2, 𝑡𝑡) [10]. This task may be 
accomplished via 𝐻𝐻∞ controller. In all cases, and 

since that the virtual controller must be a 
differentiable function to the state, the best that we 
can do it is to regulate the state to a positively 
invariant set including the origin and stay there for 
all future time. Controlling the size of the invariant 
set becomes the challenging task in this respect.  

In the present work we suggest the use of the 
sliding mode control theory in designing the virtual 
controller to control the size of the positively 
invariant set. The signum function that causes the 
discontinuity in sliding mode controller is replaced 
here by the arc tan function as an approximation. 
Approximating the signum function will eliminate 
the chattering and thus solve the chattering problem; 
also will attenuate the effect of the mismatched 
disturbance and that by regulating the state to a 
specified region including the origin. That means we 
can control the steady state error but of course 
cannot eliminate it. Consequently, but with a 
prescribed steady state error, the mismatched 
disturbance problem is solved. To this end, it is 
required to derive the invariant and the positively 
invariant sets for the system uses the sliding mode 
controller in order to implement the solutions 
suggested above to the chattering and to the 
mismatched disturbance problems. This will 
represents the task of the present work. 

The organization of this paper is as follows; the 
concept of the invariant set and the positively 
invariant set is introduced in section three. The 
positively invariant sets created by the sliding mode 
controller are derived in sections four and five, 
while in section six the results of the present work 
are demonstrated where the servo actuator system is 
used as an application example. 

 

3 Invariant Set 
The invariant and positively invariant sets are 
defined in this section, where we refer mainly to the 
excellent reference [10]. 

Conceptually any successful controller try to 
regulate the state to the origin or to a positively 
invariant set includes the origin. Moreover the 
controller will creates a region includes the origin 
known as the area of attraction [10].  If the state 
initiate inside the area of attraction the controller 
will be able to regulate it. If the area of attraction is 
the whole state space the controller is global, 
otherwise the control system is local. As an example 
the linear state feedback for a linearized nonlinear 
system create an area of attraction around the 
equilibrium point where the controller is generally 
local (see  p. 138 & 139 in [10]).     
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 The area of attraction forms the so called the 
positively invariant set. The set notion appears in 
control theory when we considered three aspects, 
which are crucial in control systems design, these 
are: constraints, uncertainties, and design 
specifications [12].  

So, consider the second order autonomous 
system  

�̇�𝑥 = 𝑓𝑓(𝑥𝑥) 

where 𝑥𝑥 ∈ ℛ2 and 𝑓𝑓(𝑥𝑥) is a locally Lipschitz map 
from a domain 𝐷𝐷 ⊂ ℛ2  into ℛ2 . Let 𝑥𝑥(𝑡𝑡)  be a 
solution to the second order autonomous system in 
Eq. (1) and also let 𝑥𝑥 = 0 be an equilibrium point; 
that is 𝑓𝑓(0) = 0. Now, the set  𝑀𝑀, with respect to 
the system in Eq. (1), is said to be invariant set if 

𝑥𝑥(0) ∈ 𝑀𝑀 ⇒ 𝑥𝑥(𝑡𝑡) ∈ 𝑀𝑀,   ∀𝑡𝑡 ∈ ℛ 

It means that: if 𝑥𝑥(𝑡𝑡) belongs to 𝑀𝑀  at some time 
instant, then it belongs to 𝑀𝑀 for all past and future 
time, i.e., it will never come from a region outside it 
or leave it for all future time. A set 𝑀𝑀 is said to be a 
positively invariant set if  

𝑥𝑥(0) ∈ 𝑀𝑀 ⇒ 𝑥𝑥(𝑡𝑡) ∈ 𝑀𝑀,   ∀𝑡𝑡 ≥ 0 

In this case the state may be come from outside the 
positively invariant set but will never leave for all 
future time. We also say that 𝑥𝑥(𝑡𝑡) approaches a set 
𝑀𝑀 as 𝑡𝑡 approaches infinity, if for each 𝜀𝜀 > 0there is 
𝑇𝑇 > 0 such that  

dist(𝑥𝑥(𝑡𝑡),𝑀𝑀) < 𝜀𝜀,∀𝑡𝑡 > 𝑇𝑇 
 
where dist(𝑥𝑥(𝑡𝑡),𝑀𝑀)  denotes the distance from a 
point 𝑥𝑥(𝑡𝑡)  to a set 𝑀𝑀 .The positive limit point is 
defined as the limit for the solution 𝑥𝑥(𝑡𝑡) when the 
time approaches infinity. The set of all positive limit 
points of 𝑥𝑥(𝑡𝑡)  is called the positive limit set of  
𝑥𝑥(𝑡𝑡) . Accordingly, the asymptotically stable 
equilibrium is the positive limit set of every solution 
starting sufficiently near the equilibrium point, 
while the stable limit cycle is the positive limit set 
of every solution starting sufficiently near the limit 
cycle. The solution approaches the limit cycle as 
𝑡𝑡 → ∞. The equilibrium point and the limit cycle are 
invariant sets, since any solution starting in either 
set remains in the set for  ∀𝑡𝑡 ∈ ℛ. Moreover, let the 
set of positively limit set for a point 𝑝𝑝 denoted by 
the 𝜔𝜔  limit set of 𝑝𝑝 , namely 𝜔𝜔(𝑝𝑝) , then some 
properties of  it are stated in the following fact [13]: 
Let 𝑀𝑀  be a compact, positively invariant set 
and 𝑝𝑝 ∈ 𝑀𝑀 , then 𝜔𝜔(𝑝𝑝)  satisfies the following 
properties: 

1. 𝜔𝜔(𝑝𝑝) ≠ ∅, that is, the 𝜔𝜔 limit set of a point is not 
empty. 

2. 𝜔𝜔(𝑝𝑝) is closed. 
3. 𝜔𝜔(𝑝𝑝) in a positively invariant set. 
4. 𝜔𝜔(𝑝𝑝) is connected. 
This fact, in later sections, will be helpful in 
determining the behavior of the state trajectory 
when it is initiated in a positively invariant set. 

4 The First Positively Invariant Set 
In the following analysis, the first invariant set for a 
second order system using a sliding mode controller 
is estimated. Consider the following second order 
affine system 

                    �̇�𝑥1 = 𝑥𝑥2 
                   �̇�𝑥2 = 𝑓𝑓(𝑥𝑥) + 𝑔𝑔(𝑥𝑥)𝑢𝑢 , 𝑔𝑔(𝑥𝑥) > 0       (2) 

Let the controller in Eq. (2) is the sliding mode 
controller 

              𝑢𝑢 = −𝑘𝑘sgn(𝑠𝑠) ,𝑠𝑠 = 𝑥𝑥2 + 𝜆𝜆𝑥𝑥1 , 𝜆𝜆 > 0    (3)                                                               

where 𝑠𝑠  is the switching function which it is 
selected such that the system at the switching 
manifold (𝑠𝑠 = 0) is attractive. The attractiveness of 
the switching manifold is the main idea behind the 
selection of the sliding mode controller gain 𝑘𝑘. To 
calculate 𝑘𝑘  we use the following nonsmooth 
Lyapunov function 

                                      𝑉𝑉 = |𝑠𝑠|                             (4)  

The switching manifold is guaranteed to be 
attractive if the derivative of the Lyapunov function 
is negative. Consequently,  
 
     �̇�𝑉 = �̇�𝑠 ∗ sgn(𝑠𝑠) 
         = {𝑓𝑓(𝑥𝑥)− 𝑔𝑔(𝑥𝑥)𝑘𝑘 ∗ sgn(𝑠𝑠) + 𝜆𝜆𝑥𝑥2} ∗ sgn(𝑠𝑠) 
         = −{𝑔𝑔(𝑥𝑥)𝑘𝑘 − (𝑓𝑓(𝑥𝑥) + 𝜆𝜆𝑥𝑥2) ∗ sgn(𝑠𝑠)}        (5)                                                                   

Now if 𝑘𝑘  is chosen such that �̇�𝑉 < 0 ,  then the 
switching manifold is attractive. Thus, 

                        𝑘𝑘 > max �𝑓𝑓(𝑥𝑥)+𝜆𝜆𝑥𝑥2
𝑔𝑔(𝑥𝑥) � = ℎ                 (6) 

When 𝑘𝑘  satisfies the inequality (6), then the state 
reaches  𝑠𝑠 = 0  in a finite time. In fact, satisfying 
inequality (6) is the main calculation problem 
during design process. Generally, we may use a 
large gain value to ensure satisfying inequality (6), 
and consequently the area of attraction becomes 
large. But the gain cannot be chosen freely without 
limit due to control saturation. As a result, the size 
of the area of attraction is determined directly by the 
gain value.  
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In this work, we aim to find the invariant set for 
a second order system that uses the sliding mode 
controller as given in Eq. (3). When the state 
initiated in it will never leave it for all future time. 
Hence, the gain is calculated depending on the 
invariant set size and the region of attraction will 
include at least the invariant set. In the literatures, 
the existence of the invariant set is assumed (by 
assign the maximum state value) and accordingly 
the sliding mode controller gain is calculated. In this 
case the sliding controller will be able to force the 
state toward the switching manifold at least when it 
initiated in this invariant set. However, the gain 
value may be large and again the saturation problem 
arises. Other designer, uses a certain gain value in 
the design of sliding controller and, may be, by 
doing extensive simulations they prove that the area 
of attraction will include the nominal initial 
conditions for a certain application [14]. 

To find the invariant set, we need to derive its 
bounds. The first bound on the invariant set is 
derived by using the Lyapunov function given in 
Eq. (4). Suppose that we use a certain value for the 
gain 𝑘𝑘 , then there is a certain basin of attraction 
such that the time rate of change of the Lyapunov 
function is less than zero, namely 

�̇�𝑉 < 0 ⇒ 𝑉𝑉(𝑡𝑡)− 𝑉𝑉(𝑡𝑡𝑜𝑜 ) < 0 
or 

|𝑠𝑠(𝑡𝑡)|− |𝑠𝑠(𝑡𝑡𝑜𝑜)| < 0 

Therefore the switching function level is bounded 
by: 

                      |𝑠𝑠(𝑡𝑡)| < |𝑠𝑠(𝑡𝑡𝑜𝑜 )| ,∀𝑡𝑡 > 𝑡𝑡𝑜𝑜                 (7) 

Of course the inequality (7) holds due to the action 
of the sliding mode controller with gain 𝑘𝑘. Hence, 
the inequality (7) shows that the state will lie in a 
region bounded by 

−𝑠𝑠(𝑡𝑡𝑜𝑜 ) < 𝑠𝑠(𝑡𝑡) < 𝑠𝑠(𝑡𝑡𝑜𝑜) ,∀𝑡𝑡 > 𝑡𝑡𝑜𝑜  

but without assign the equilibrium  point with 
respect to the switching function. So we need to 
show that, as it is known, that the switching 
manifold is attractive manifold due to the sliding 
mode controller. To prove the attractiveness of 
𝑠𝑠 = 0, the time derivative of the switching function 
is found first when 𝑘𝑘  satisfy inequality (6), as 
follows: 

�̇�𝑠 = �̇�𝑥2 + 𝜆𝜆�̇�𝑥1 = 𝑓𝑓(𝑥𝑥)− 𝑔𝑔(𝑥𝑥)𝑘𝑘𝑠𝑠𝑔𝑔𝑘𝑘(𝑠𝑠) + 𝜆𝜆𝑥𝑥2 

⇒ �̇�𝑠 = −𝛽𝛽(𝑥𝑥)𝑠𝑠𝑔𝑔𝑘𝑘(𝑠𝑠)  ,   0 ≤ 𝛽𝛽(𝑥𝑥) 

Now, we return to the Lyapunov function, Eq. (4), 
to find its derivative  

�̇�𝑉(𝑠𝑠) = �̇�𝑠 ∗ 𝑠𝑠𝑔𝑔𝑘𝑘(𝑠𝑠) 

⇒ �̇�𝑉(𝑠𝑠) = −𝛽𝛽(𝑥𝑥) < 0 

Since 𝑉𝑉(0) = 0  and �̇�𝑉(𝑠𝑠) < 0  in the set {𝑥𝑥 ∈
ℛ2:𝑠𝑠 ≠ 0}, then 𝑠𝑠 = 0 is a stable manifold (theorem 
4-1 in reference [10]). Moreover, we must note that 
the solution of the dynamical system at the 
switching manifold does not exist [15]. This is due 
to the discontinuity in sliding mode controller 
formula. Indeed the state will reach 𝑠𝑠 = 0 in a finite 
time. Ideally the state will slide along the switching 
manifold to the origin, i.e., the state trajectory will 
identify the switching manifold until it reaches the 
origin. Therefore, the bound given in the inequality 
(7) becomes: 

0 ≤ |𝑠𝑠(𝑡𝑡)| < |𝑠𝑠(𝑡𝑡𝑜𝑜)| 

⇒ 0 ≤ 𝑠𝑠(𝑡𝑡) ∗ 𝑠𝑠𝑔𝑔𝑘𝑘(𝑠𝑠) < 𝑠𝑠(𝑡𝑡𝑜𝑜) ∗ 𝑠𝑠𝑔𝑔𝑘𝑘(𝑠𝑠𝑜𝑜) 

But in sliding mode control  

𝑠𝑠𝑔𝑔𝑘𝑘(𝑠𝑠) = 𝑠𝑠𝑔𝑔𝑘𝑘(𝑠𝑠𝑜𝑜) ,∀𝑡𝑡 > 𝑡𝑡𝑜𝑜  
thus, 

           0 ≤ 𝑠𝑠(𝑡𝑡) ∗ 𝑠𝑠𝑔𝑔𝑘𝑘(𝑠𝑠) < 𝑠𝑠(𝑡𝑡𝑜𝑜) ∗ 𝑠𝑠𝑔𝑔𝑘𝑘(𝑠𝑠)         (8)                                                                          

Accordingly we have  

                �0 ≤ 𝑠𝑠(𝑡𝑡) < 𝑠𝑠(𝑡𝑡𝑜𝑜) for  𝑠𝑠 > 0
0 ≥ 𝑠𝑠(𝑡𝑡) > 𝑠𝑠(𝑡𝑡𝑜𝑜) for  𝑠𝑠 < 0�                 (9) 

In words, inequality (9) shows that if the state 
initiated in the positive side of the switching 
manifold, then the state will stay in an open region 
bounded by 𝑠𝑠 = 𝑠𝑠(𝑡𝑡𝑜𝑜 )  and 𝑠𝑠 = 0,∀𝑡𝑡 > 𝑡𝑡𝑜𝑜 . The 
same thing is happened if the state initiated with 
negative switching function level. Inequality (9) is 
the first bound; while the second is derived here for 
𝑥𝑥1 as follows: 

�̇�𝑥1 + 𝜆𝜆𝑥𝑥1 = 𝑠𝑠(𝑡𝑡) 

⇒ 𝑑𝑑�𝑒𝑒𝜆𝜆𝑡𝑡𝑥𝑥1(𝑡𝑡)� = 𝑒𝑒𝜆𝜆𝑡𝑡𝑠𝑠(𝑡𝑡)𝑑𝑑𝑡𝑡 
or 

𝑒𝑒𝜆𝜆𝑡𝑡𝑥𝑥1(𝑡𝑡)− 𝑥𝑥1(𝑡𝑡𝑜𝑜) = �𝑠𝑠(𝜏𝜏)𝑒𝑒𝜆𝜆𝜏𝜏
𝑡𝑡

𝑡𝑡𝑜𝑜

𝑑𝑑𝜏𝜏 

By taking the absolute for both sides and 
considering the inequality (7), we obtain 
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�𝑒𝑒𝜆𝜆𝑡𝑡𝑥𝑥1(𝑡𝑡)� − �𝑒𝑒𝜆𝜆𝑡𝑡𝑜𝑜𝑥𝑥1(𝑡𝑡𝑜𝑜)�
≤ �𝑒𝑒𝜆𝜆𝑡𝑡𝑥𝑥1(𝑡𝑡)− 𝑒𝑒𝜆𝜆𝑡𝑡𝑜𝑜𝑥𝑥1(𝑡𝑡𝑜𝑜)� 

        = �∫ 𝑠𝑠(𝜏𝜏)𝑒𝑒𝜆𝜆𝜏𝜏𝑡𝑡
𝑡𝑡𝑜𝑜

𝑑𝑑𝜏𝜏� ≤ ∫ |𝑠𝑠(𝜏𝜏)|𝑒𝑒𝜆𝜆𝜏𝜏𝑡𝑡
𝑡𝑡𝑜𝑜

𝑑𝑑𝜏𝜏 

        ≤ |𝑠𝑠(𝑡𝑡𝑜𝑜)|∫ 𝑒𝑒𝜆𝜆𝜏𝜏𝑡𝑡
𝑡𝑡𝑜𝑜

𝑑𝑑𝜏𝜏 = |𝑠𝑠(𝑡𝑡𝑜𝑜 )|
𝜆𝜆

�𝑒𝑒𝜆𝜆𝑡𝑡 − 𝑒𝑒𝜆𝜆𝑡𝑡𝑜𝑜 � 

⇒ �𝑒𝑒𝜆𝜆𝑡𝑡𝑥𝑥1(𝑡𝑡)� ≤ �𝑒𝑒𝜆𝜆𝑡𝑡𝑜𝑜 𝑥𝑥1(𝑡𝑡𝑜𝑜)�

+
|𝑠𝑠(𝑡𝑡𝑜𝑜 )|
𝜆𝜆 �𝑒𝑒𝜆𝜆𝑡𝑡 − 𝑒𝑒𝜆𝜆𝑡𝑡𝑜𝑜 � 

⇒ |𝑥𝑥1(𝑡𝑡)|≤ |𝑥𝑥1(𝑡𝑡𝑜𝑜)|𝑒𝑒−𝜆𝜆(𝑡𝑡−𝑡𝑡𝑜𝑜 )

+
|𝑠𝑠(𝑡𝑡𝑜𝑜)|
𝜆𝜆 �1 − 𝑒𝑒−𝜆𝜆(𝑡𝑡−𝑡𝑡𝑜𝑜 )� 

           ∴ |𝑥𝑥1(𝑡𝑡)| ≤ 𝑚𝑚𝑚𝑚𝑥𝑥 �|𝑥𝑥1(𝑡𝑡𝑜𝑜 )| , |𝑠𝑠(𝑡𝑡𝑜𝑜 )|
𝜆𝜆

�          (10) 

The result in the inequality (10) is a consequence of 
the convexity of the set 

Ψ = �𝑥𝑥1(𝑡𝑡):𝑥𝑥1(𝑡𝑡) = 𝜇𝜇|𝑥𝑥1(𝑡𝑡𝑜𝑜)| + (1− 𝜇𝜇)
|𝑠𝑠(𝑡𝑡𝑜𝑜 )|
𝜆𝜆 , 0

≤ 𝜇𝜇 ≤ 1� 

In this case the maximum element of the set is at 
𝜇𝜇 = 0  or at 𝜇𝜇 = 1 . Therefore the invariant set is 
bounded by the inequalities (9) and (10) in terms of 
the initial condition only. Accordingly, the invariant 
set is given by: 

Θ =
�𝑥𝑥 ∈ ℛ2: 0 ≤ 𝑠𝑠(𝑡𝑡)𝑠𝑠𝑔𝑔𝑘𝑘(𝑠𝑠) < 𝑠𝑠(𝑡𝑡𝑜𝑜)𝑠𝑠𝑔𝑔𝑘𝑘(𝑠𝑠), |𝑥𝑥1(𝑡𝑡)|≤

                                        𝑚𝑚𝑚𝑚𝑥𝑥 �|𝑥𝑥1(𝑡𝑡𝑜𝑜)|, |𝑠𝑠(𝑡𝑡𝑜𝑜 )|
𝜆𝜆

�  �   (11) 

The figure below plot the invariant set in the phase 
plane and one can find geometrically that the bound 
for 𝑥𝑥2(𝑡𝑡) inside Ψ is 

                |𝑥𝑥2(𝑡𝑡)|≤ 𝑚𝑚𝑚𝑚𝑥𝑥{|𝑥𝑥2(𝑡𝑡𝑜𝑜)| , |𝑠𝑠(𝑡𝑡𝑜𝑜 )|}       (12) 

 

 

Fig.1: Positively Invariant Set. 

5 The Second Positively Invariant Set 
In classical sliding mode control theory, there exist 
a trivial invariant set. This set is the origin of the 
state space where the controller regulates the state to 
it and kept the state there for all future time. The 
sliding mode control that does the above task is a 
discontinuous control and it may cause the 
chattering problem. There are many solutions to the 
chattering problem in the literatures (see references 
[2], [8] and [16]). A simplest method to remove 
chattering is by replacing the signum function, 
which it used in sliding mode controller, by an 
approximate form. This idea is first introduced by 
J.J. Sloten in [9] using the saturation function 
instead of the signum function. Later, many other 
approximate signum functions are used to remove 
chattering as found in reference [17]. However, 
when replacing the signum function the state will 
not be regulated to the origin, instead it will 
regulated to a certain set around the origin known as 
positively invariant set. The size of this set is 
determined by the design parameters and the 
approximation form. In the present work the signum 
function is replaced by the arc tan function, namely 

            𝑠𝑠𝑔𝑔𝑘𝑘𝑚𝑚𝑝𝑝𝑝𝑝𝑎𝑎𝑜𝑜𝑥𝑥 .(𝑠𝑠) = 2
𝜋𝜋
𝑡𝑡𝑚𝑚𝑘𝑘−1(𝛾𝛾𝑠𝑠)                 (13) 

where 𝑡𝑡𝑚𝑚𝑘𝑘−1(𝛾𝛾𝑠𝑠)  is a continuously differentiable, 
odd, monotonically increasing function with the 
properties: 

𝑡𝑡𝑚𝑚𝑘𝑘−1(0) = 0 

 lim|𝑠𝑠|→∞ 𝑡𝑡𝑚𝑚𝑘𝑘−1(𝛾𝛾𝑠𝑠) = lim𝛾𝛾→∞ 𝑡𝑡𝑚𝑚𝑘𝑘−1(𝛾𝛾𝑠𝑠) = 𝜋𝜋
2
𝑠𝑠𝑔𝑔𝑘𝑘(𝑠𝑠)    

and 

𝑠𝑠𝑔𝑔𝑘𝑘(𝑠𝑠) ∗ 𝑡𝑡𝑚𝑚𝑘𝑘−1(𝛾𝛾𝑠𝑠) = 𝑡𝑡𝑚𝑚𝑘𝑘−1(𝛾𝛾|𝑠𝑠|) ≥ 0 

The sliding mode controller (Eq. (3)), using the 
approximation in Eq.(13),  becomes 

                  𝑢𝑢𝑚𝑚𝑝𝑝𝑝𝑝𝑎𝑎𝑜𝑜𝑥𝑥 . = − 2𝑘𝑘
𝜋𝜋
𝑡𝑡𝑚𝑚𝑘𝑘−1(𝛾𝛾𝑠𝑠)               (14) 

Now, let us state the following: 
When the sliding mode controller uses the 
approximate signum function as given in Eq. (13), 
and the controller gain satisfy the inequality (6), 
then the state will be regulated to a positively 
invariant set defined by  

             Δ𝛿𝛿 = �𝑥𝑥 ∈ ℛ2: |𝑥𝑥1| < 𝛿𝛿
𝜆𝜆

, |𝑠𝑠| ≤ 𝛿𝛿�          (15) 

To prove that Δ𝛿𝛿  is positively invariant set for a 
second order affine system (Eq. (2)), we return to 
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use the Lyapunov function as given in Eq. (4) which 
has the time rate of change  

�̇�𝑉 = �𝑓𝑓(𝑥𝑥)− 𝑔𝑔(𝑥𝑥)
2𝑘𝑘
𝜋𝜋 𝑡𝑡𝑚𝑚𝑘𝑘−1(𝛾𝛾𝑠𝑠) + 𝜆𝜆𝑥𝑥2� 𝑠𝑠𝑔𝑔𝑘𝑘(𝑠𝑠) 

    = −�𝑔𝑔(𝑥𝑥) 2𝑘𝑘
𝜋𝜋
𝑡𝑡𝑚𝑚𝑘𝑘−1(𝛾𝛾|𝑠𝑠|) − �(𝑓𝑓(𝑥𝑥) + 𝜆𝜆𝑥𝑥2) ∗

                                                                                sgn(𝑠𝑠)} �  

For the switching manifold to be attractive �̇�𝑉 must 
be less than zero, namely 

 −�𝑔𝑔(𝑥𝑥) 2𝑘𝑘
𝜋𝜋
𝑡𝑡𝑚𝑚𝑘𝑘−1(𝛾𝛾|𝑠𝑠|) − (𝑓𝑓(𝑥𝑥) + 𝜆𝜆𝑥𝑥2)  ∗

                                                                   sgn(𝑠𝑠)� < 0 

⇒
2𝑘𝑘
𝜋𝜋 𝑡𝑡𝑚𝑚𝑘𝑘−1(𝛾𝛾|𝑠𝑠|) > 𝑚𝑚𝑚𝑚𝑥𝑥 �

𝑓𝑓(𝑥𝑥) + 𝜆𝜆𝑥𝑥2
𝑔𝑔(𝑥𝑥) � = ℎ 

or 
                             𝑘𝑘 > 𝜋𝜋ℎ

2𝑡𝑡𝑚𝑚𝑘𝑘 −1(𝛾𝛾|𝑠𝑠|)                       (16) 

Now, let |𝑠𝑠| = 𝛿𝛿 be the chosen boundary layer, then 
inequality (16) for a certain 𝛾𝛾 reveals that: for any 𝛿𝛿 
there is  𝑘𝑘, such that the state will be regulated to an 
open region  Γ given by 

                      Γ = {𝑥𝑥 ∈ ℛ2: |𝑠𝑠| < 𝛿𝛿}                   (17) 

Accordingly, the gain 𝑘𝑘 will be  

                     𝑘𝑘 = 𝛼𝛼𝜋𝜋ℎ
2𝑡𝑡𝑚𝑚𝑘𝑘 −1(𝛾𝛾𝛿𝛿 )   , 𝛼𝛼 > 1                  (18) 

In addition, to determine 𝛾𝛾, Eq. (18) may be written 
as: 

                         𝑘𝑘 = 𝛼𝛼ℎ𝛽𝛽,    𝛽𝛽 > 1                       (19) 

provided that; 

                              𝛾𝛾𝛿𝛿 = 𝑡𝑡𝑚𝑚𝑘𝑘 𝜋𝜋
2𝛽𝛽

                           (20) 

The next step in the determination of the invariant 
set Δ𝛿𝛿  is to found the boundary with respect to 
𝑥𝑥1 inside Γ . This is done by using the following 
Lyapunov function 

                               𝑉𝑉 = 1
2
𝑥𝑥1

2                                (21) 

with the 𝑥𝑥1 dynamics, from Eqs. (2) and (3): 

                       �̇�𝑥1 = −𝜆𝜆𝑥𝑥1 + 𝑠𝑠(𝑡𝑡)                        (22) 

Therefore the time rate of change for the Lyapunov 
function is 

�̇�𝑉 = 𝑥𝑥1 �̇�𝑥1 = 𝑥𝑥1 �−𝜆𝜆𝑥𝑥1 + 𝑠𝑠(𝑡𝑡)� = −𝜆𝜆|𝑥𝑥1 |2 + 𝑥𝑥1 𝑠𝑠(𝑡𝑡) 

≤ −𝜆𝜆|𝑥𝑥1 |2 + |𝑥𝑥1 ||𝑠𝑠(𝑡𝑡)| ≤ −𝜆𝜆|𝑥𝑥1 |2 + |𝑥𝑥1 |𝛿𝛿 

= −|𝑥𝑥1 |(𝜆𝜆|𝑥𝑥1 |− 𝛿𝛿) 

Thus, �̇�𝑉 ≤ 0  for the following unbounded interval: 

                                 |𝑥𝑥1 | > 𝛿𝛿
𝜆𝜆
                              (23) 

Inequality (23) proves that the state 𝑥𝑥1 will reach 
and stay within the interval −𝛿𝛿

𝜆𝜆
≤ 𝑥𝑥1 ≤

𝛿𝛿
𝜆𝜆
. This ends 

the proof that the set �𝑥𝑥 ∈ ℛ2: |𝑥𝑥1| < 𝛿𝛿
𝜆𝜆

, |𝑠𝑠| ≤ 𝛿𝛿� is 
positively invariant for the system in Eq. (2) where 
the sliding mode controller uses an approximate 
signum function (Eq. (14)). 

Note that the state inside Δ𝛿𝛿  may or may not 
reaches an equilibrium point; the situation depends 
on system dynamics, i.e., the state, instead of that, 
will reach a limit cycle inside Δ𝛿𝛿 . Consequently, 
and for the design purpose,  𝛿𝛿 may be determined 
according to a desired permissible steady state 
deviation of the state  𝑥𝑥1 and for a selected 𝜆𝜆, as a 
design parameter, as follows: 

                             𝛿𝛿 =  𝜆𝜆 ∗ 𝑥𝑥1𝑝𝑝𝑒𝑒𝑎𝑎 .                         (24) 

The set Δ𝛿𝛿  is now written as: 

        Δ𝛿𝛿 = �𝑥𝑥 ∈ ℛ2: |𝑥𝑥1| < 𝑥𝑥1𝑝𝑝𝑒𝑒𝑎𝑎 . , |𝑠𝑠| ≤ 𝛿𝛿�        (25) 

It is also noted that for arbitrary small 𝑥𝑥1𝑝𝑝𝑒𝑒𝑎𝑎 . the 
positively invariant set Δ𝛿𝛿  becomes arbitrary small 
and it may lead, again, to the state chattering. This 
situation may explain the chattering phenomena as 
the state oscillation with a very small width, i.e., the 
interval |𝑥𝑥1| < 𝑥𝑥1𝑝𝑝𝑒𝑒𝑎𝑎 . is very small. 

6 Sliding Mode Controller Design for    
Servo Actuator with Friction 

In this section the servo actuator system is adapted 
as an application example used to validate the 
results derived in this work. Consider the model for 
the servo actuator with friction: 

                         𝐽𝐽�̈�𝑥 = 𝑢𝑢 − 𝐹𝐹 − 𝑇𝑇𝐿𝐿                         (26) 

where 𝑥𝑥 is the actuator position, 𝐽𝐽 is the moment of 
inertia,𝑢𝑢 is the control input torque, 𝐹𝐹 is the friction 
torque, including the static and dynamic 
components, and 𝑇𝑇𝐿𝐿 is the load torque. The friction 
model taken here is a combination of Coulomb 
friction  𝐹𝐹𝑐𝑐 , Stiction friction 𝐹𝐹𝑠𝑠 , and the viscous 
friction (for more details one can refer to the survey 
papers [18] &[19]), namely 
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𝐹𝐹 = 𝐹𝐹𝑠𝑠𝑒𝑒
−� �̇�𝑥�̇�𝑥𝑠𝑠

�
2

∗ 𝑠𝑠𝑔𝑔𝑘𝑘(�̇�𝑥) + 𝐹𝐹𝑐𝑐 �1 − 𝑒𝑒−�
�̇�𝑥
�̇�𝑥𝑠𝑠
�

2

�

∗ 𝑠𝑠𝑔𝑔𝑘𝑘(�̇�𝑥) + 𝜎𝜎�̇�𝑥 
or 

𝐹𝐹 = �𝐹𝐹𝑠𝑠𝑒𝑒
−� �̇�𝑥�̇�𝑥𝑠𝑠

�
2

+ 𝐹𝐹𝑐𝑐 �1 − 𝑒𝑒−�
�̇�𝑥
�̇�𝑥𝑠𝑠
�

2

�+ 𝜎𝜎|�̇�𝑥|� ∗

                                                                  𝑠𝑠𝑔𝑔𝑘𝑘(�̇�𝑥)       (27) 

where �̇�𝑥𝑠𝑠 is called the Stribeck velocity and 𝜎𝜎 is the 
viscous friction coefficient. In addition, the servo 
actuator model in Eq. (26) is considered uncertain 
with a bounded load torque. The uncertainty in the 
model parameters is assumed here to reach 20% of 
their nominal values. Note that the control input 𝑢𝑢  
in Eq. (26) can be regarded as the virtual control 
when compared with Eq. (1).   

Now, define 𝑒𝑒1 = 𝑥𝑥 − 𝑥𝑥𝑑𝑑  and 𝑒𝑒2 = �̇�𝑥 − �̇�𝑥𝑑𝑑 , then 
the system model in Eq. (26) in state space form (in 
(𝑒𝑒1, 𝑒𝑒2) plane) is written as: 

                �
�̇�𝑒1 = 𝑒𝑒2                                        
�̇�𝑒2 = �1

𝐽𝐽
� (𝑢𝑢 − 𝐹𝐹 − 𝑇𝑇𝐿𝐿)− �̈�𝑥𝑑𝑑

�            (28) 

In this work the desired position and velocity are 
taken as in reference [14]: 

�𝑥𝑥𝑑𝑑 = 1
16𝜋𝜋

𝑠𝑠𝑠𝑠𝑘𝑘(8𝜋𝜋𝑡𝑡)− 1
24𝜋𝜋

𝑠𝑠𝑠𝑠𝑘𝑘(12𝜋𝜋𝑡𝑡)   ⇒  |𝑥𝑥𝑑𝑑 | ≤ 5
48𝜋𝜋

   
�̇�𝑥𝑑𝑑 = 𝑠𝑠𝑠𝑠𝑘𝑘(10𝜋𝜋𝑡𝑡) ∗ 𝑠𝑠𝑠𝑠𝑘𝑘(2𝜋𝜋𝑡𝑡)   ⇒  |�̇�𝑥𝑑𝑑 | ≤ 1                     

�        

                                      (29) 

Also, the switching function and its derivative are 

         �
𝑠𝑠 = 𝑒𝑒2 + 𝜆𝜆𝑒𝑒1                                        
�̇�𝑠 = �1

𝐽𝐽
�(𝑢𝑢 − 𝐹𝐹 − 𝑇𝑇𝐿𝐿)− �̈�𝑥𝑑𝑑 + 𝜆𝜆𝑒𝑒2

�           (30) 

where 

�̈�𝑥𝑑𝑑 = 10𝜋𝜋 ∗ 𝑐𝑐𝑜𝑜𝑠𝑠(10𝜋𝜋𝑡𝑡)𝑠𝑠𝑠𝑠𝑘𝑘(2𝜋𝜋𝑡𝑡)− 2𝜋𝜋 ∗
              𝑠𝑠𝑠𝑠𝑘𝑘(10𝜋𝜋𝑡𝑡)𝑐𝑐𝑜𝑜𝑠𝑠(2𝜋𝜋𝑡𝑡)  

and 
 |�̈�𝑥𝑑𝑑 | ≤ 12𝜋𝜋. 

 
Since the calculation of 𝑘𝑘 as given in Eq. (19) 

depends on the initial condition, so we will design 
the sliding mode controller for two different loci of 
initial condition (the position and the velocity at 
time 𝑡𝑡 = 0). The first initial condition lies in the 
second positively invariant set (see (15)). While in 
the second case the initial condition is taken in the 
first positively invariant set and outside the second 
positively invariant set. The controller parameters 
are calculated for each case in appendices (A) and 

(B) using the following nominal parameters and 
external load values [20] 

Table 1: Nominal Servo Actuator Parameters and 
the External Load values 

Par. Definition Valu
e 

Unit
s 

𝐽𝐽𝑜𝑜  Moment of inertia.  0.2 𝑘𝑘𝑔𝑔𝑚𝑚2 
𝐹𝐹𝑠𝑠𝑜𝑜  Stiction friction. 2.19 𝑁𝑁𝑚𝑚 
𝐹𝐹𝑐𝑐𝑜𝑜  Coulomb friction. 16.69 𝑁𝑁𝑚𝑚 

�̇�𝑥𝑠𝑠𝑜𝑜  Stribeck velocity. 0.01 𝑎𝑎𝑚𝑚𝑑𝑑
/𝑠𝑠𝑒𝑒𝑐𝑐 

𝜎𝜎𝑜𝑜  viscous friction 
coefficient 0.65 

𝑁𝑁𝑚𝑚
∙ 𝑠𝑠𝑒𝑒𝑐𝑐
/𝑎𝑎𝑚𝑚𝑑𝑑 

𝑇𝑇𝐿𝐿𝑜𝑜 External Torque  2 𝑁𝑁𝑚𝑚 

The simulation results and discussions are presented 
in the following section. 

7 Simulations Result and Discussions 
For the first case the state is started from the rest, 
which means 𝑒𝑒(0) = (0,0) (this is because 𝑥𝑥𝑑𝑑 (0) =
�̇�𝑥𝑑𝑑 (0) = 0). In this case the state is initiated inside 
the positively invariant set Δ𝛿𝛿 , and accordingly the 
state will not leave it ∀𝑡𝑡 ≥ 0. The state after that 
reaches an invariant set (it stills inside Δ𝛿𝛿) , namely 
the 𝜔𝜔  limit set of the point 𝑒𝑒(0) . For the servo 
actuator with non-smooth disturbance (the friction), 
this set is a limit cycle lies inside the positively 
invariant set Δ𝛿𝛿  (the fact in section 2). Indeed, the 
state will reach the 𝜔𝜔 limit set if it is started at any 
point in Δ𝛿𝛿 . This behavior is confirmed by the 
simulation results presented below. 

The approximate sliding mode controller in this 
case is (the details of the calculations is found in 
Appendix (A)) 

      �
𝑢𝑢𝑚𝑚𝑝𝑝𝑝𝑝𝑎𝑎𝑜𝑜𝑥𝑥 . = −(84 𝜋𝜋⁄ ) ∗ 𝑡𝑡𝑚𝑚𝑘𝑘−1(141∗ 𝑠𝑠)
𝑠𝑠 = (�̇�𝑥 − �̇�𝑥𝑑𝑑 ) + 25 ∗ (𝑥𝑥 − 𝑥𝑥𝑑𝑑 )                

�      (31) 

This controller will be able to maintain the state in 
the following invariant set: 

   Δ𝛿𝛿 = �𝑥𝑥 ∈ ℛ2: |𝑥𝑥 − 𝑥𝑥𝑑𝑑 | < 𝜋𝜋
3600

, |𝑠𝑠| ≤ 𝜋𝜋
144

�     (32) 

The response of the servo actuator system when 
started at the origin is shown in Fig. 2. In this figure 
the position response is plotted with time and it 
appears very close to the desired position. This 
result is verified when plotting the error and the 
maximum error shown in the plot, where it does not 
exceed 1.5 × 10−4 radian. For the velocity, Fig. 3 
plot the time response and again the maximum 
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error, which it does not exceed  6.5 × 10−3 radian 
per second. This shows the closeness between the 
velocity response and the desired velocity. The error 
phase plot is found in Fig. 4  where the state reaches 
the 𝜔𝜔 limit set of the origin point. The 𝜔𝜔 limit set 
forms here a non-smooth limit cycle and 
accordingly, the error state will oscillate for all 
future time within certain amplitude. The oscillation 
amplitude has an upper bound according to the 
earlier choice of the permissible error.   

The positively invariant set formed by the sliding 
mode controller, as it is given by (32), enables the 
same controller to regulate the state when it is 
started within this set. This situation is verified in 
Fig. 5 for two starting points where the state reaches 
the 𝜔𝜔limit set corresponding to each point. 

 
 

 
                                           (a) 

 
                                             (b) 
Fig. 2: a) Position and the desired position vs. time 
(equation (29)). b) The position error for 5 second. 

 
                                          (a) 
 

 
                                           (b) 

Fig. 3: a) Velocity and the desired velocity vs. time 
(Eq. (29)). b) The velocity error for 5 second. 

 

 

Fig. 4: The phase plane plot when the error started 
at the origin. 
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  (a) 

 

 
       (b) 

Fig. 5: The phase plane plot a) when the error 
started at �𝑒𝑒, 𝑑𝑑𝑒𝑒

𝑑𝑑𝑡𝑡
� = � 𝜋𝜋

3600
, 0� b) when the error 

started at�𝑒𝑒, 𝑑𝑑𝑒𝑒
𝑑𝑑𝑡𝑡
� = �− 𝜋𝜋

3600
, 2 𝜋𝜋

144
�. 

For the second case the sliding mode controller, 
as calculated in appendix (B), is 

           �𝑢𝑢 = −45 ∗ sgn(s)                       
𝑠𝑠 = (�̇�𝑥 − �̇�𝑥𝑑𝑑 ) + 25 ∗ (𝑥𝑥 − 𝑥𝑥𝑑𝑑 )�               (33) 

The controller will be able to regulate the error to 
the origin if it initiated in the following positively 
invariant set: 

Ω = {𝑥𝑥 ∈ ℛ2: |𝑠𝑠(𝑡𝑡)| < 0.875 , |𝑥𝑥 − 𝑥𝑥𝑑𝑑 | ≤ 0.035}                                         
(34) 

The simulations   result  for  the   position  and   the  

velocity when the state starting at (𝑥𝑥, �̇�𝑥) =
(0.035,0) are shown in Fig. 6. In this figure the 
position and the velocity track the desired response 
after a period of time not exceeding 0.12 second. 

 

 
        (a) 

 

 
     (b) 

 
Fig. 6: Servo actuator response for the initial 

condition �𝑒𝑒, 𝑑𝑑𝑒𝑒
𝑑𝑑𝑡𝑡
� = (0.035,0) a) The position vs. 

time b) velocity vs. time. 

 

As for the sliding mode controller in Eq. (31), the 
sliding mode controller in Eq. (33) will create a 
positively invariant region (34) such that if the state 
initiated inside this set, it will be regulated to the 
origin. This situation is confirmed in Fig. 7 for three 
different starting points including the case of Fig. 6. 
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    (a) 

 

 
    (b) 

 

 
                                        (c) 

Fig. 7: Error phase plot for different initial 
conditions a)�𝑒𝑒, 𝑑𝑑𝑒𝑒

𝑑𝑑𝑡𝑡
�= (0.035,0) b) �𝑒𝑒, 𝑑𝑑𝑒𝑒

𝑑𝑑𝑡𝑡
� =

(−0.035,1.75) c) �𝑒𝑒, 𝑑𝑑𝑒𝑒
𝑑𝑑𝑡𝑡
� = (0,−0.875). 

 

If it is required to remove the chattering that 
exists in the system response for the second case, we 
again replace the signum function by the arc tan 
function. In this case we replace the gain 𝑘𝑘 = 45 by 
the following quantity: 

𝑘𝑘 = 45 ∗ 1.25 = 57,    𝛽𝛽 = 1.25 

Then, we get  

               𝑢𝑢 = −�114
𝜋𝜋
�𝑡𝑡𝑚𝑚𝑘𝑘−1(141∗ 𝑠𝑠)                (35) 

 

The sliding mode controller in Eq. (35) creates a 
positively invariant set equal to the set given in (34), 
but in this case the controller will not regulate the 
error to the origin. Indeed, the controller will 
regulate the error to the positively invariant set 
given in (32). Mathematically, the sets in (34) and 
(32) are two positively invariant sets created by the 
sliding mode controller in Eq. (35), but with a 
different set level (see reference [12] for the 
definition of set level), namely Δ𝛿𝛿 ⊂ Ω. 

As in Fig. 7, the phase plane plot for the initial 
condition �𝑒𝑒, 𝑑𝑑𝑒𝑒

𝑑𝑑𝑡𝑡
� = (0.035,0) is plotted in Fig. 8  

but without chattering around the switching 
manifold due to replacing the signum function in 
Eq. (33) by the approximate form in Eq. (35). 
Accordingly, the state will be regulated to a smaller 
positively invariant set and then reach the 𝜔𝜔 limit 
set as in case one.  

 

 
                                          (a) 
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 (b) 

Fig. 2: the phase plane plot when using the 
controller in Eq. (35) a) full phase plot, b) small plot 
around the origin showing the oscillation behavior. 

Finally, the chattering behavior is removed due 
to a continuous control action, where the continuity 
is shown in Fig. 9 with a magnitude lies between 
±42 𝑁𝑁.𝑚𝑚 after a period of time not exceeds 0.05 
second. 

 
 (a) 

 
                                              (b) 

Fig. 9: The control action vs. time a) plot for 1 
second b) plot for 0.05 second. 

7 Conclusions 
A solution to the mismatched perturbation and the 
chattering problems in sliding mode control is 
suggested in this work. The solution is based on 
deriving the invariant set created by the sliding 
mode controller. Thus, the invariant sets for a 
second order affine system that uses a sliding mode 
controller are derived in this work. The size of the 
invariant sets is found functions to the initial 
condition, the controller gain and design parameters. 
The derived sets were used to calculate the sliding 
mode controller gain for the servo actuator and to 
attenuate the effects of the discontinuous 
perturbation by adjusting the controller parameters 
to control the size of the second positively invariant 
set. The simulation results prove the invariant 
property of the derived set and the effectiveness of 
using them in the sliding mode control design. The 
ability of the approximate sliding mode controller (a 
continuously and differentiable controller) has been 
verified when it used to attenuate the effect of a 
nonsmooth disturbances (the friction) that acts on 
the servo actuator system. The controller maintains 
the maximum error (the difference between the 
actual and the desired state) very close to zero and 
according to the permissible error value specified 
previously. 
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Appendix (A) 
To design the approximate sliding mode controller 
we need first to calculate ℎ as it is given in Eq. (6): 

ℎ = max �
𝑓𝑓(𝑒𝑒) + 𝜆𝜆𝑒𝑒2

𝑔𝑔(𝑒𝑒) �        

= �
max ��−𝐹𝐹 − 𝑇𝑇𝐿𝐿

𝐽𝐽 � − �̈�𝑥𝑑𝑑 + 𝜆𝜆𝑒𝑒2 �

min �1
𝐽𝐽�

� 

= max|𝐹𝐹| + max|𝑇𝑇𝐿𝐿| + (max 𝐽𝐽) ∗ max|�̈�𝑥𝑑𝑑 | +
              𝜆𝜆 ∗ (max 𝐽𝐽) ∗ max|𝑒𝑒2|                           (A-1) 

From the set Δ𝛿𝛿 , the following bounds are 
estimated: 

max|𝑒𝑒2 | = 2𝛿𝛿 

and, 

max|�̇�𝑥| = max|𝑒𝑒2| +  max|�̇�𝑥𝑑𝑑 | = 2𝛿𝛿 + 1 

The term max|�̇�𝑥| enables the estimation of max|𝐹𝐹| 
as follows: 

max|𝐹𝐹| = 1.2 �𝐹𝐹𝑠𝑠𝑜𝑜𝑒𝑒
−�2𝛿𝛿+1

�̇�𝑥𝑠𝑠
�

2

� �+𝐹𝐹𝑐𝑐𝑜𝑜 �1 − 𝑒𝑒−�
2𝛿𝛿+1
�̇�𝑥 𝑠𝑠

�
2

�

+ 𝜎𝜎𝑜𝑜 (2𝛿𝛿 + 1)�

≤ 1.2�𝐹𝐹𝑐𝑐𝑜𝑜 + 𝜎𝜎𝑜𝑜 (2𝛿𝛿 + 1)�    

where 𝐹𝐹𝑠𝑠𝑜𝑜 ,𝐹𝐹𝑐𝑐𝑜𝑜 , and 𝜎𝜎𝑜𝑜  are the nominal friction 
parameter values  and we multiply by 1.2 to take 
into account the uncertainty in system parameters as 
assumed previously. In addition, we have 

max|𝐽𝐽| = 1.2 ∗ 𝐽𝐽𝑜𝑜 ,   and   min|𝐽𝐽| = 0.8 ∗ 𝐽𝐽𝑜𝑜  

where  𝐽𝐽𝑜𝑜  is the nominal moment of inertia value 
and finally the load torque is bounded by 
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|𝑇𝑇𝐿𝐿| ≤ 𝑇𝑇𝐿𝐿𝑚𝑚𝑚𝑚𝑥𝑥 = 1.2𝑇𝑇𝐿𝐿0 

Therefore, ℎ in Eq. (A-1) is function to the slope of 
the switching manifold 𝜆𝜆 and the boundary layer 𝛿𝛿. 

In sliding mode controller design, we mainly 
concern in calculating suitable value for the gain 𝑘𝑘 
after a proper selection to the switching function 
𝑠𝑠(𝑥𝑥)  (by proper we mean that the origin is an 
asymptotically stable after the state reaches the 
switching manifold 𝑠𝑠(𝑥𝑥) = 0). Now, if we set the 
permissible error and 𝜆𝜆 as in the following 

𝑒𝑒𝑝𝑝𝑒𝑒𝑎𝑎 . = 0.05 deg.  =
𝜋𝜋

3600  𝑎𝑎𝑚𝑚𝑑𝑑, 𝜆𝜆 = 25 
 

then from (24), we have 

𝛿𝛿 = 𝜆𝜆 ∗ 𝑒𝑒𝑝𝑝𝑒𝑒𝑎𝑎 . =
𝜋𝜋

144 ⇒
|𝑒𝑒1 | ≤ 𝑒𝑒𝑝𝑝𝑒𝑒𝑎𝑎 . 

 
Accordingly, to find the gain 𝑘𝑘, we first compute ℎ 
as follows: 
 

max|𝐹𝐹| ≤ 1.2�𝐹𝐹𝑐𝑐𝑜𝑜 + 𝜎𝜎𝑜𝑜 (2𝛿𝛿 + 1)� = 20.84 
 
⇒ ℎ = 20.84 + 2.4 + 0.24 ∗ 12𝜋𝜋+ 0.24 ∗ 25

∗ 2
𝜋𝜋

144 = 32.55 
 
and then for 𝛽𝛽 = 1.25 , we get 
 

𝑘𝑘 = 𝛼𝛼 ∗ 1.25 ∗ 32.55 = 42 ,   𝛼𝛼 > 1 
 
Also, from Eq. (20),  𝛾𝛾 equal to 
 

𝛾𝛾 =
144
𝜋𝜋 𝑡𝑡𝑚𝑚𝑘𝑘

𝜋𝜋
2.5 = 141 

Finally, the sliding mode controller to the servo 
actuator is  

          �𝑢𝑢𝑚𝑚𝑝𝑝𝑝𝑝𝑎𝑎𝑜𝑜𝑥𝑥 . = − 84
𝜋𝜋
𝑡𝑡𝑚𝑚𝑘𝑘−1(141∗ 𝑠𝑠)

𝑠𝑠 =  (�̇�𝑥 − �̇�𝑥𝑑𝑑 ) + 25 ∗ (𝑥𝑥 − 𝑥𝑥𝑑𝑑 )
�           (A-2) 

 
The sliding mode controller will be able to prevent 
the  state  leaves  the   positively  invariant   set   Δ𝛿𝛿 , 

 

 

 

 

 

which means that the error (𝑥𝑥 − 𝑥𝑥𝑑𝑑 ) is less than the 
permissible limit that was specified earlier. 

Appendix (B) 
In this case we consider the same desired 

position and velocity as in Eq. (29) with the 
following initial condition  

𝑥𝑥 = 0.035 𝑎𝑎𝑚𝑚𝑑𝑑, �̇�𝑥 = 0 𝑎𝑎𝑚𝑚𝑑𝑑 𝑠𝑠𝑒𝑒𝑐𝑐.⁄  

⇒ 𝑒𝑒(0) = (𝑒𝑒1 ,𝑒𝑒2) = (0.035,0) 

Also, consider the same switching function as in 
case one (𝑠𝑠 = 𝑒𝑒2 + 25𝑒𝑒1 ). Then, the invariant set is 
given by 

Θ = {𝑥𝑥 ∈ ℛ2: 0 ≤ 𝑠𝑠(𝑡𝑡) < 0.875 , |𝑒𝑒1(𝑡𝑡)| ≤ 0.035}                                               
(B-1) 

In addition we have 

|𝑒𝑒2 (𝑡𝑡)| ≤ 1.75  

⇒ max|�̇�𝑥| = max|𝑒𝑒2| + max|�̇�𝑥𝑑𝑑 | = 2.75𝑎𝑎𝑚𝑚𝑑𝑑 𝑠𝑠𝑒𝑒𝑐𝑐.⁄  

Then max|𝐹𝐹| can be estimated as  

max|𝐹𝐹| ≤ 1.2(𝐹𝐹𝑐𝑐𝑜𝑜 + 2.75 ∗ 𝜎𝜎𝑜𝑜 ) = 22.2 

As in the first case, ℎ is equal to 

ℎ = 22.2 + 2.4 + 0.24 ∗ 12𝜋𝜋 + 0.24 ∗ 25 ∗ 1.75 
      = 44.15 

The sliding mode controller gain 𝑘𝑘 from Eq. (6) is 
taken equal to 

𝑘𝑘 = 45 > ℎ 

Finally, the sliding mode controller for the second 
case is given by 

           �𝑢𝑢 = −45 ∗ sgn(𝑠𝑠)                      
𝑠𝑠 = (�̇�𝑥 − �̇�𝑥𝑑𝑑 ) + 25 ∗ (𝑥𝑥 − 𝑥𝑥𝑑𝑑 )�              (B-2) 

If the state initiated inside the positively invariant 
set as given in (B-1), the sliding mode controller 
will regulate the error state to the origin irrespective 
to the uncertainty and the non-smooth components 
in the servo actuator model. 
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