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Abstract: - Sliding mode control algorithms with classical and modified discontinuous reaching laws for purely 

magnetic attitude control of small satellites are proposed and compared with each other in this work. They are 

designed by following the steps characteristic to the variable structure control method and the magnetic attitude 

control problem. The asymptotical stability of the control laws is proven by using theoretical and intuitive 

approaches together. The stability of the controllers is verified by converging simulation results of the states. 

The aim is to obtain a controller superior to the sliding mode magnetic controller with continuous reaching law 

in terms of steady state error under environmental disturbance effects. The time responses of Euler angles and 

angular velocities indicate that the aim is reached. The necessity of modifying the classical discontinuous 

reaching law is made clear by comparing states’ responses obtained by using the classical and the modified 

sliding mode algorithms. 
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1 Introduction 
Since the beginning of the eighties, small satellites 

have been increasingly preferred for space missions. 

These platforms are restricted in terms of size, mass 

and power, so they require attitude control actuators 

that are smaller in size, weigh less and consume less 

energy than the conventional ones. Consequently, 

the attitude control problem of small satellites has 

become a topic of interest on which many solutions 

have been proposed so far in literature. One of them 

is the “purely magnetic attitude control” method, 

which enables controlling the attitude in three axes 

by using only electromagnetic actuation. 

The magnetic actuators are highly suitable for 

small satellites employed in missions with relatively 

low pointing accuracy requirements because they 

are low mass electromagnetic coils or rods fitting 

small volumes easily and require less energy during 

the nominal operation mode. They are free of 

degradation thanks to their non-mechanical 

structure. In addition, they are driven by controlled 

currents, which makes them much more suitable 

than mechanical momentum exchange devices for 

use with switching control algorithms such as 

sliding mode control. 

It has been worked on benefiting from magnetic 

torquers as auxiliary actuators since 1961. One of 

the first important papers that deal with purely 

magnetic attitude control is published in 1989 [1]. In 

that work, a finite-time horizon linear quadratic 

regulator is proposed, and it is claimed that the 

application of the proposed method is possible due 

to the increasing processing capability of the 

spacecraft onboard computers. In a Ph.D. thesis 

dated to 1996, many linear and nonlinear control 

laws, one of which is based on sliding mode control 

method, are designed to control a small satellite in 

low Earth orbit by using only three mutually 

perpendicular magnetic actuators [2]. In there, it is 

claimed that the attitude cannot be stabilized 

asymptotically if a discontinuous reaching law is 

used. Therefore, the controller is designed based on 

a continuous reaching law, which eventually leads 

to the loss of disturbance rejection capability of the 

sliding mode controller [3,4]. Based on [1] and 

depending on the fact that the variation of the 

geomagnetic field in nearly polar orbits is periodic, 

infinite- and finite-time horizon periodic controllers 

and a constant gain controller are also designed in 

[2] benefiting from the linear periodic systems 

theory [5,6]. Moreover, energy based nonlinear 

controllers are proposed to control the nonlinear 

periodic system with a better performance [7,8]. 

Two more of the fewer nonlinear solutions to purely 

magnetic attitude control problem are given in [9] 

and [10], where nearly global asymptotic stability is 
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achieved by designed nonlinear controllers. In a 

similar work [11], uniformly global stability result is 

obtained for the nonlinear problem. In [12], time-

optimal controllers are proposed for the case with 

constrained inputs. In the first literature survey [13] 

of the purely magnetic attitude control problem, new 

results by the model-based predictive control 

approach are presented. In another study [14], a 

nearly globally stable solution is obtained by using 

an adaptive, PD-like controller. The problem is also 

solved by an intuitive magnetic control law in a 

globally asymptotic manner for any nearly polar 

orbits in [15]. In [16], fuzzy logic is applied to the 

nonlinear magnetic attitude control problem subject 

to environmental disturbances. Two examples of 

application of sliding mode control method to 

purely magnetic attitude control problem can be 

found in [17] and [18]. The problem is also solved 

by a nonlinear passivity-based sliding mode 

controller, which is integrated with an algorithm that 

makes the direct implementation of the controller to 

the system possible [19]. In a recent attempt to solve 

the problem, a nonlinear sliding manifold and a 

second-order sliding mode controller are used [20]. 

In a previous study by the authors of this paper, it is 

shown that the nonlinear attitude dynamics can be 

stabilized asymptotically by using the classical 

discontinuous reaching law on the contrary to the 

result in [2], and a new modified discontinuous 

sliding mode controller is designed, which is shown 

to be superior to the classical one [21]. In a most 

recent paper [22], by using neural network 

approach, the stabilization is achieved for the 

nonlinear system with parameter uncertainties and 

under disturbance effects. The presented literature 

summary on the purely magnetic attitude control 

problem depicts the need for robust, moreover 

insensitive control solutions. Variable structure 

controllers have the potential to provide the problem 

with solutions insensitive to external disturbances 

and model parameter uncertainties. 

Motivated by [2] and based on [21], the three 

axis attitude control problem of a small satellite is 

considered in this paper regarding the attitude 

acquisition phase of its mission. In the acquisition 

phase, the initial attitude is far from the equilibrium, 

therefore the highly nonlinear attitude dynamics 

have to be handled without linearization. It is aimed 

to carry the states in the closest possible vicinity of 

the equilibrium under the effect of environmental 

disturbances. These two properties of the problem 

lead to the preference of sliding mode control 

method to solve the problem. As previously cited, 

the same problem is solved in the literature by the 

sliding mode control method by using a continuous 

reaching law. Two sliding mode controllers are 

proposed in this work to control the nonlinear 

attitude dynamics in three axes by using only three 

magnetic torquers. The first one composes of the 

equivalent control term and the classical 

discontinuous reaching law, which is the signum 

function of the sliding vector multiplied by a 

constant gain. The second controller has a 

discontinuous reaching law that is a modified 

version of the classical law. It is shown for the 

second controller theoretically that the attitude can 

be stabilized asymptotically even if beginning from 

an angular state that is far from the zero equilibrium 

state and under the effect of environmental 

disturbance torques. That analysis also indicates the 

stability of the classical controller. The performance 

of the designed modified controller is compared to 

the continuous controller proposed in [2] to indicate 

its superiority in terms of steady state error. It is also 

compared with the classical controller to present the 

necessity of the modification of the classical 

reaching law for the magnetic attitude control 

problem. 

The paper is organized as follows: In Section 2, 

the nonlinear spacecraft attitude dynamics are 

presented, and the mathematical model for the 

environmental disturbance torques is given. In the 

3rd section, both the classical and the modified 

control algorithms are introduced, and it is shown 

how the magnetic control torque is derived by 

modifying the control signal following the necessary 

steps instructed in [2], which are characteristic to 

the magnetic attitude control problem. To make the 

comparison possible, the continuous control 

algorithm from [2] is also given in that section. 

Then the reachability of the used sliding manifold 

by the proposed controller is proven. The section is 

concluded with the theoretical analysis of the 

designed controller with modified reaching law to 

show its asymptotically stable character. The 

simulation results obtained with three given 

controllers are presented in Section 4 after giving 

the used satellite model and the initial conditions. 

Responses of Euler angles, angular velocities, 

quaternions, magnetic control moment components, 

and sliding vector’s magnitude obtained in the same 

simulation environment and for the same conditions 

are given comparatively. In conclusion, the steady 

state performances of the continuous and modified 

discontinuous control laws are evaluated, and it is 

concluded that the sliding mode magnetic control 

algorithm with modified reaching law may be 

preferable due to the lower steady state error margin 

it achieves thanks to its partial disturbance rejection 

capability. 
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2 Satellite Attitude Dynamics 
 

 

2.1 Equations of Motion 
For a rigid spacecraft in a circular orbit, the 

rotational motion is described by three dynamic (1) 

and four kinematic equations (2) in terms of Euler 

parameters, which define the orientation of the 

principal body reference system B of the satellite 

with respect to the orbit reference system A (see 

Fig.1) [23]. 

 
B N B N B NI I T                                         (1) 

 

   4 4

1 1
  and  

2 2
q q q q q               (2) 

 

where q  is the 3x1 quaternion vector, q4 is the 

scalar quaternion component,   and B N
 are 3x1 

angular velocity vectors of the satellite’s body axis 

system with respect to the orbit reference system 

and Earth-centered, inertial reference system N, 

respectively (see Fig.1). I consists of nonzero 

diagonal elements, I1, I2, I3, which are the principal 

moments of inertia [23]. T  is the total torque acting 

on the satellite, which is the addition of the 

environmental disturbance torque components and 

the control torque. Finally, “” and “ ” are the 

cross and dot product signs, respectively. 

 

 
Fig.1 Reference systems A, B, and N (adapted from   

         [23]) 

 

 

2.2 Environmental Disturbances 
The gravity-gradient torque is calculated on each 

iteration step using its analytical formula given in 

[23] as 

 

 2
3 33ggT n a Ia                                             (3) 

 

where 

 

 
 

 
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2 2
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2
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a q q q q

q q

 
 
 
 
 
 



 

 

                                           (4) 

 

and n is the angular velocity of the satellite around 

the Earth. 

The environmental disturbance torques emerging 

from aerodynamic drag and solar radiation pressure 

are inputted to the simulation environment by 

employing the following simple harmonic model 

[24]. 

 

 

   

 

3cos 1

1.5sin 3cos

3sin

d

d d

d

A nt

T A nt nt

A nt

  
  

  
  

  
  



 
                      (5) 

 

Here, the amplitude of the harmonic function, Ad, 

corresponding to both disturbance components at 

the altitude of satellite’s orbit is estimated from a 

graph in [25]. 

 

 

3 Sliding Mode Controller 
 

 

3.1 Controller Design 
The proposed sliding mode controller with the 

modified discontinuous reaching law is going to be 

introduced in this subsection. Firstly, the sliding 

manifold will be defined. Then the equivalent 

control term and the designed discontinuous 

reaching law will be presented. Finally, the 

necessary manipulation steps will be accomplished 

to derive the actual magnetic control torque, mcT , 

from the ideal (desired) control signal. 

The following sliding manifold 

 

qs K q                                                            (6) 

 

which is optimal as shown in [26] by referring to 

[27], is going to be used. It is theoretically shown in 

[2] that the sliding mode on the manifold (6) is 

stable in an asymptotic manner to the equilibrium, 

which is the origin of the state space. Here, Kq is the 

sliding manifold design parameter matrix and is 

defined as 
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1 0 0

0 1 0

0 0 1
q qK k

 
 
 
 
 

                                               (7) 

 

where kq is a positive constant, so Kq is positive 

definite. 

The control signal, 
mcT , is equal to the 

“equivalent control vector”, eqT , in sliding mode, in 

which (8) holds according to the Filippov approach 

[27] 

 

0  and  0s s                                                     (8) 

 

That forcing vector keeps the state vector on the 

manifold when ideal sliding occurs. By 

manipulating and then substituting (1) properly into 

the second equation in (8), the equivalent control 

term can be derived as 

 

 

   2
3 3 2

1

2

3

B N B N
eq qu I I q q

n a Ia nI a

   



     

   

             (9) 

 

Here, 

 

 
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2 2
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3 2 1 4
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1 2
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q q q q

a q q

q q q q
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

                                         (10) 

 

and 

 

2
B N na                                                       (11) 

 

The detailed derivation of equ  can be found in [2] or 

[28]. 

The reaching law corresponds to the term that 

carries the states onto the manifold making the 

system reach the sliding mode. In the reaching 

mode, 

 

0  and  0s s                                                   (12) 

 

hold. The discontinuous reaching law proposed in 

[27] is as follows 

 

 signeq scontrolIs T u K s                             (13) 

 

Regarding the differences emerging from the nature 

of the magnetic attitude control problem, 

 

 signeq su u K s                                          (14) 

 

can be written. The positive definite reaching law 

design parameter matrix Ks is defined as follows 

with the positive constant ks 

 

1 0 0

0 1 0

0 0 1
s sK k

 
 
 
 
 

                                              (15) 

 

The classical sliding mode control law (16) can be 

written from (14) as [29] 

 

 signeq su u K s                                            (16) 

 

It is a direct result of the stability analysis of the 

proposed modified controller, which will be given in 

the next subsection, that (16) is asymptotically 

stable. Thus that is a solution for the magnetic 

attitude control problem. Time responses obtained 

using (16) oscillate with constant amplitude for the 

cases without and with disturbance effect acting on 

the system. The sameness of responses indicates the 

expected insensitivity of the switching control law 

to disturbances. However, the performance of the 

controller (16) is unsatisfactory due to the 

unacceptable steady state error margin. The time 

responses of Euler angles obtained by (16) will be 

presented in the next section. Therefore a tuning has 

been carried out between (16) and the continuous 

control law (17) 

 

eq ssu u K                                                       (17) 

 

which is shown to be asymptotically stable in [2], to 

come up with a controller that has not complete, but 

partial disturbance rejection capability and therefore 

a lower steady state error margin under disturbance 

effect compared to (17). The resulting control 

algorithm is given in (18) 

 

   signqdes eq s k qu u u K s         (18) 

 

where kqw is a positive constant. As seen from (18), 

the designed control signal is defined as the desired 

one. Because only the component of (18) that is 

parallel to the sliding vector, s , leads the states to 

the sliding manifold, only that component should be 

produced by the control law. So, 
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 
_ 2

des

des ps

u s
s

s
u                                             (19) 

 

has to be evaluated by the attitude control computer 

before the signal is fed to the actuators. In addition, 

(19) should be manipulated so that the resultant 

magnetic control moment vector, M , produced by 

three magnetic torquers is equal to its maximum 

value when s  is perpendicular to the local 

geomagnetic field vector, B , and equal to zero when 

s  is parallel to B . This final manipulation can be 

realized by 

 

_

2

des psB u
M

B


                                                 (20) 

 

which prevents the actuators from producing 

unnecessary excessive control outputs in cases when 

s  approaches B . That is related with the fact that a 

magnetic attitude control system can produce a 

resultant control torque vector, mcT , only in the 

plane perpendicular to B  according to the following 

relation 

 

mcT M B                                                          (21) 

 

As a result, 
m

T  can be written as 

 

 
2

2

des

mc

u s
B s

s
T B

B

  
  

   
 
 
 
 



 
                              (22) 

 

which will take its final form if (18) is substituted 

into (22). The detailed explanation of the logic in 

manipulations (19) and (20) is available in [2] or 

[28]. 

 

 

3.2 Reachability Analysis 
In [2], the asymptotical stability of the motion on 

the sliding manifold is proven by using the 

kinematic relations (2). This means that the 

trajectory in the state space remains on the manifold 

and tends to the equilibrium (zero) state once the 

manifold is reached by the states. In the same 

reference, it is also theoretically shown that the 

trajectory in the state space converges to the sliding 

manifold, s , in an asymptotical manner while s  

converges to the zero vector if the reaching law is 

asymptotically stable or the following inequality 

(reachability condition) holds [27,30,31]. 

 

0s s                                                                (23) 

 

Therefore, a stability analysis is required to learn if 

(23) is satisfied or not. 

The positive definite Lyapunov function 

candidate (24) is suggested as 

 

 
1

2
V s Is 

 
                                                    (24) 

 

The inertia matrix I is positive definite by definition. 

The time derivative of V is 

 

 sV Is                                                           (25) 

 

Since equ  is derived for the sliding mode conditions 

(8), and because (12) is valid instead of (8) in the 

reaching mode, the equivalent control torque can be 

assumed to be zero. Then, by using (13) and (22) 

together with the vector algebra property, 

 

     B C C A B B C AA                        (26) 

 

the following equation can be obtained 

 

 

   

2

2

2 2

1

des

des

u s
B s

s
V s B

B

B u s s B s
B s

   
   

    
  
  
  
 
  

   
  



 
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               (27) 

 

Substituting (18) for equ  = 0 into (27) gives 

 

 

    
 

 

 

2 2

2 2

sign

sign

q

q

s

s

k q

k q

k
V

B s

B s s s B s

k s s

B s

B s B s











   
    

 
   

   
   

  

 

 

 

                (28) 
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Since 

 

 sign 0   s s                                                  (29) 

 

and 

 

  0  qk q                                                (30) 

 

V  is negative semidefinite due to the fact that it 

becomes zero also when B  and s  are parallel. It is 

obvious from (19) and (20) that M  becomes zero in 

this case. As mentioned in [2], it can be concluded 

that in any case other than this case, the total 

rotational energy of the satellite will decrease to 

zero by referring to the Krasovskii-LaSalle theorem, 

and this case is not permanent because B  rotates in 

the reference systems A and B whatever the angular 

state of the satellite in space is. Based on this 

intuitive conclusion, it has been shown that the 

reachability condition is satisfied. 

 

 

3.3 Stability Analysis 
It can be shown by using the Lyapunov’s direct 

method adopted to satellite attitude dynamics that 

the attitude motion on or nearby the sliding 

manifold is asymptotically stable to the equilibrium 

at the origin of the state space [2]. First, a positive 

definite Lyapunov candidate function is selected as 

follows 

 

 
2

41  q q qV                                             (31) 

 

By using the kinematic equations (2) and the sliding 

manifold equation (6), its time derivative is derived 

as 

 

   qs K qq qV                                         (32) 

 

It can be concluded that V  is bounded from above 

as 

 
2

 qsq qV                                                (33) 

 

where q  is the minimum singular value of the 

matrix qK . If both sides of (33) are integrated, 

 

   
0 0

2

0
    

t t

q

t t

t V t dt s dtq qV             (34) 

is obtained, which can be manipulated as 

 

 
0 0

2

0
0    

t t

q

t t

dt s dt tq q V                (35) 

 

by regarding the positive definitiveness of V. The 

following inequality can be derived by using 

Hölder’s inequality and the definition of L2-norm 

[2] 

 

 
2

02 2 2
0  

q
s tq q V                           (36) 

 

According to the quadratic formula, 

 

 
2

02 2

2

4

2

 


q

q

s s t
q

V


                       (37) 

 

can be written. Since the reachability condition is 

satisfied as shown in the previous subsection, it is 

guaranteed that s  converges to zero. According to 

(37), q  also converges to zero. Thus the attitude 

motion on or nearby the sliding manifold is 

asymptotically stable to the origin. 

 

 

4 Simulation and Comparison Results 
The equations of motion (1) and (2) are simulated 

for the control laws (16), (17), and (18) in 

Matlab/Simulink (see Fig.A1 and Fig.A2) by using 

the principal moments of inertia given in (38) 

 
2 2 2

1 2 31.1 kgm ; 1.0 kgm ; 1.2 kgmII I      (38) 

 

which indicates that the satellite model is gravity-

gradiently unstable. The satellite’s circular orbit has 

an altitude of 740 km, for which 

 
31.05141 10 rad s

  2 5976 s 99.6 min

n

T n

 

   
           (39) 

 

where T is the orbital period, and 

 
93.5 10 NmdA                                               (40) 

 

The initial conditions are input to the simulation 

environment as Euler angles and their rates 

           

 

0 0 0 0 0 0

160 0 /s 80 0 /s 160 0 /s

T

T

      
 

      

  (41) 
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Through simulation trials, the best value of the 

sliding manifold design parameter is determined as 

 

0.00125 rad sqk                                               (42) 

 

The reaching law design parameter is taken as 

 

.
0.003 Nms rads cont

k                                      (43) 

 

for the controller (17) with continuous reaching law 

and 

 
7

.
3 10 Nms discont

k                                       (44) 

 

for the controller (16) with classical discontinuous 

reaching law for the best performance. The value of 

.s discont
k  given in (44) satisfies the necessary 

condition for disturbance rejection [26], which is 

 

 .
max 4   ;  1,2,3  d is ddiscont

Tk A i         (45) 

 

Finally, the two constants of the designed controller 

(18) with modified discontinuous reaching law have 

the following values 

 
0.003 Nms rad

0.00175 rad s

s

qw

k

k




                                        (46) 

 

The values of the design parameters sk  and qwk  

seen in (46) have to satisfy the following necessary 

condition for disturbance rejection 

 

  4 s q dk k q A                                     (47) 

 

which leads to the condition 

 

  64.67 10 rad s  qk q                  (48) 

 

To make the comparison possible, time 

responses of Euler angles and angular velocities 

obtained by (16), (17), and (18) are presented in 

Fig.2-4 and Fig.5-7, respectively. 

 

 
Fig.2 Time responses of Euler angles by the control   

         law (16) 

 

 
Fig.3 Time responses of Euler angles by the control   

         law (17) 

 

 
Fig.4 Time responses of Euler angles by the   

         proposed control law (18) 
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Fig.5 Time responses of angular velocities by the   

         control law (16) 

 

 
Fig.6 Time responses of angular velocities by the    

         control law (17) 

 

 
Fig.7 Time responses of angular velocities by the   

         proposed control law (18) 

 

The superiority of the designed controller in terms 

of steady regime performance can be clearly seen if 

Fig.4 and Fig.7 are compared with Fig.3 and Fig.6, 

respectively. In the following six figures, time 

responses of quaternions and magnetic control 

moment components are compared. 

 

 
Fig.8 Time responses of quaternions by the control   

         law (16) 

 

 
Fig.9 Time responses of quaternions by the control   

         law (17) 

 

 
Fig.10 Time responses of quaternions by the   

           proposed control law (18) 
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Fig.11 Time responses of magnetic control moment   

           components by the control law (16) 

 

 
Fig.12 Time responses of magnetic control moment   

           components by the control law (17) 

 

 
Fig.13 Time responses of magnetic control moment   

           components by the proposed control law (18) 

 

A saturation value of 1 Am² is accepted for the 

magnetic torquers that are suitable for small 

satellites. None of the magnetic control moment 

components produced by the proposed controller 

exceeds that threshold according to Fig.13 even if 

they are higher than the moment outputs by the laws 

(16) and (17). The overall control effort can be 

minimized by using approaches similar to the one 

proposed in [32]. Variations of sliding vector’s 

magnitude, which converges to a steady state value 

different than zero, by three controllers are depicted 

in Fig.14-16. 

 

 
Fig.14 Time response of sliding vector’s magnitude    

           by the control law (16) 

 

 
Fig.15 Time response of sliding vector’s magnitude   

           by the control law (17) 

 

 
Fig.16 Time response of sliding vector’s magnitude     

           by the proposed control law (18) 
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Finally, time responses of Euler angles by (17) 

and (18) under five times higher disturbance effect, 

which is 

 
9 85 5 3.5 10 Nm 1.75 10 NmdA             (49) 

 

are shown in the following two figures, respectively. 

 

 
Fig.17 Time responses of Euler angles in degrees by   

            the control law (17) subject to 5 dA  along   

           15 orbits 

 

 
Fig.18 Time responses of Euler angles in degrees by   

           the proposed control law (18) subject to 

           5 dA  along 15 orbits 

 

The condition (48) should be rewritten for this case 

as 

 

  52.33 10 rad s  qk q                   (50) 

 

When compared to Fig.3, the attitude angles’ 

responses obtained by the proposed controller 

indicate a weaker transient regime performance. 

However, if the simulation is started with initial 

conditions that are closer to the equilibrium than the 

conditions (41) such as 

 

           

 

0 0 0 0 0 0

60 0 /s 40 0 /s 30 0 /s

T

T

      
 

     

     (51) 

 

then the controller (18) seems to perform superior to 

the controller (17) in both steady state and transient 

regime, which can be observed by comparing Fig.20 

with Fig.19. 

 

 
Fig.19 Time responses of Euler angles by the   

            control law (17) for lower initial conditions 

 

 
Fig.20 Time responses of Euler angles by the   

           proposed control law (18) for lower initial   

           conditions 

 

 

5 Conclusion 
The simulation results verify the theoretical result 

that the designed classical (16) and modified (18) 

sliding mode control algorithms stabilize the attitude 

asymptotically. The implementation of the classical 

sliding controller by simply amplifying the signum 
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function of the sliding vector leads to unacceptable 

steady state errors that are about twice the errors 

that the continuous sliding controller (17) gives (see 

Fig.2 and Fig.3). That is why the modification of the 

classical discontinuous reaching law given in (13) is 

necessary. According to the comparison of Fig.4 

with Fig.3, the aim seems to be reached by the 

proposed controller (18) because the steady state 

error margin is made narrower as between -1 and 

+1.5 degrees whereas the margin achieved by the 

continuous controller (17) is between -1.5 and +2 

degrees. 

If the amplitude of the harmonic disturbance 

function increases at a different altitude, the steady 

state performance of the proposed controller 

becomes significantly superior. Under disturbance 

torque components with a five times higher 

amplitude, Euler angle responses by (18) remain 

between -5 and +8 degrees while (17) can keep the 

responses only between -8 and +11 degrees. 

The oscillating character of state responses 

emerges from the necessary manipulation of 
des

u  

according to (19) and (20). Currently, different 

manipulation approaches that will eliminate the 

oscillations are tried to be found. A different sliding 

manifold design may also help to remove the 

residual oscillations in system responses. If such 

approaches work, the complete rejection of 

disturbance effect can be accomplished, and as a 

result, the sliding vector’s magnitude will converge 

to zero. 

Responses of magnetic control moment 

components indicate that the modified control law 

(18) requires more control effort especially in the 

beginning of the simulation interval where the states 

are far from zero. 

The drawback of the designed modified sliding 

mode controller (18) seems to be its low transient 

regime performance according to the comparison of 

Fig.4 with Fig.3. The same weakness is valid for the 

classical sliding mode controller (16). However, if 

initial conditions that are less far from the 

equilibrium state are used, the simulation results 

depict that the proposed controller performs better 

than the controller (17) in both steady state and 

transient regime. Moreover, to obtain a response at 

least as fast as the continuous one for any initial 

conditions, the time derivative of the sliding vector 

can be positively fed back to the control system, 

which is already accomplished in [33] by the 

authors of this paper. 
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Appendix: 
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Fig.A1 Matlab/Simulink Model of the Magnetic Attitude Control System 

 

 

 

1

Mag_Control_Torque

s_mags

MCT

m

u_ipsu_i

u_eq

wAB_B

q_v ector

s

s_mag

Kqw

Sliding_Manifold Sign

u
2

u
2

K*u

LAMBDAs

K*u

LAMBDAq

I* u

I* u

I* u

I* u

n

0.5

A

B
C

Vec_Product

A

B
C

Vec_Product

Cq a3

Selecter

A

B
C

Vec_Product

Cq a2

Selecter2

A

B
C

Vec_Product

A

B
C

Vec_Product

A

B
C

Vec_Product

B_B B_B_boy ut

mag

Dot Product

Divide

-K-

3*n^2

5

Cq

4

wNB_B

3

q

2

wAB_B

1

B_B

u_eq
u_i u_ips

B_B

mm

 
 

Fig.A2 Matlab/Simulink Block for the Proposed Sliding Mode Magnetic Attitude Controller 
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