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Abstract: - This paper presents the implementation of PID controller tuning using two sets of evolutionary 

techniques which are differential evolution (DE) and genetic algorithm (GA). The optimal PID control 

parameters are applied for a high order system, system with time delay and non-minimum phase system. The 

performance of the two techniques is evaluated by setting its objective function with mean square error (MSE) 

and integral absolute error (IAE). Both techniques will compete to achieve the globally minimum value of its 

objective functions. Meanwhile, reliability between DE and GA in consistently maintaining minimum MSE is 

also been studied. This paper also compares the performance of the tuned PID controller using GA and DE 

methods with Ziegler-Nichols method. 
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1 Introduction 
PID is a remarkable control strategy, most widely 

used in processes industries such as oil and gas, 

chemical, petrochemical, pulp and paper, food and 

beverage, etc. PID controller has been proven in 

terms of reliability and robustness in controlling 

process variables ranging from temperature, level, 

pressure, flow, pH etc. Other factors that attracted 

industries to choose PID could be due to low cost, 

easy to maintain, as well as simplicity in control 

structure and easy to understand. However, 

improper PID parameters tuning could lead to cyclic 

and slow recovery, poor robustness and the worst 

case scenario would be the collapse of system 

operation [1]. This led researchers to explore the 

best method in searching optimum PID parameters. 

Since the introduction of PID controller, many 

strategies have been proposed to determine the 

optimum setting of PID parameters. Ziegler-Nichols 

[2] and Cohen-Coon [3] are amongst the pioneer in 

PID tuning methods.  They have proposed 

experimental PID tuning methods based on trial 

and error method, and process reaction curve 

methods. However, the difficulties may arise to 

tune the PID controller when the system is 

complex such as high order, time delay, non-

minimum phase and non-linear processes. For 

example, Ziegler Nichols method may gives 

high overshoots, highly oscillatory, and longer 

settling time for a high order system and Cohen-

Coon method only valid for the system having S-

shaped step response of the plant [4],[5]. To 

overcome these difficulties, various methods 

have been used to obtain optimum PID 

parameters ranging from conventional method 

such as Refined Ziegler Nichols [6] and pole 

placement [7] and the implementation of modern 

heuristic optimization techniques such as genetic 

algorithms, simulated annealing, population based 

incremental learning, and particle swarm 

optimization [8]. Heuristic optimization is a 

technique of searching good solutions at a 

reasonable computational cost without being able to 

guarantee either feasibility or optimality, or even in 

many cases to state how close to optimality a 

particular feasible solution is [9].  
Recently, GA has been extensively studied by 

many researchers in searching for optimal PID 

parameters due to its high potential of escaping 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mohd S. Saad, Hishamuddin Jamaluddin, Intan Z. M. Darus

E-ISSN: 2224-2856 139 Issue 4, Volume 7, October 2012

mailto:sazlisaad@unimap.edu.my
mailto:hishamj@fkm.utm.my
mailto:intan@fkm.utm.my
http://www.fkm.utm.my/~intan


being trapped a local minimum. Kim et al. [10] 

proposed an improved GA method to tune PID 

controller for optimal control of RO plant with 

minimum overshoot and fast settling time compared 

with conventional tuning method. Yin et al. [11] 

have successfully used GA to tune PID controller 

for low damping, and slow response plant. Md Zain 

et al. [12] applied GA for optimization of PID 

parameters used to control a single-link flexible 

manipulator in vertical motion.  Simulation results 

revealed that optimum PID parameters enable the 

system to perform well in reducing vibration at the 

end-point of the manipulator. Despite of excellence 

performance by GA is searching globally optimum 

solution in search space, some researchers have 

pointed out some deficiencies in GA performance. 

Those deficiencies are (i) poor premature 

convergence, (ii) loss of best solution found, (iii) no 

absolute assurance that a genetic algorithm will find 

a global optimum [13].  

DE has been found to be a promising algorithm 

in numeric optimization problems. It has been 

proposed by Storn and Price [14]. DE has been 

designed to fulfill the requirement for practical 

minimization technique such as consistent 

convergence to the global minimum in consecutive 

independent trials, fast convergence, easy to work 

with, as well as ability to cope with non-

differentiable, non-linear and multimodal cost 

functions [14]. Therefore, the algorithm has gained 

a great attention since it was proposed. Ruijun [15] 

studied the performance of DE and particle swarm 

optimization (PSO) in optimizing the PID controller 

for first order process has revealed that DE is 

generally more robust (with respect to reproducing 

constant results in different runs) than PSO. Youxin 

and Xiaoyi [16] has applied DE algorithm in tuning 

the PID controller for electric-hydraulic servo 

system of parallel platform. Simulation results show 

the controlled system has satisfactory response and 

the proposed parameter optimum method is an 

effective tuning strategy.  Bingul and Zafer [17] has 

demonstrated the successful of DE in tuning the PID 

controller for unstable and integrating processes 

time delay, where it produces smaller settling time 

with minimum overshoot. 

Even though the PID tuning method using GA 

and DE has been extensively studied by many 

researchers, the details on how the thing has been 

implemented still vague. Though, this paper is 

intended to provide a better understanding of how 

the PID controller is tune using two popular 

heuristic approaches by GA and DE.  The 

performance of GA and DE in searching globally 

optimal PID parameters and its reliability to 

maintain the optimum value for several independent 

trials has been investigated for a high order system, 

system with time delay and non-minimum phase 

system. This paper also compares the transient 

performance of the system using GA and DE tuning 

methods with Ziegler-Nichols method.   

 

 

2 PID Controller 
PID controller parameters consist of three separate 

parameters: proportionality, integral and derivative 

values are denoted by kp, ki, and kd. Appropriate 

setting of these parameters will improve the 

dynamic response of a system, reduce overshoot, 

eliminate steady state error and increase stability of 

the system [7]. The transfer function of a PID 

controller is: 

sk
s

k
k

sE

sU
sC d

i
p 

)(

)(
)(  (1) 

The fundamental structure of a PID control 

system is shown in Fig. 1. Once the set point has 

been changed, the error will be computed between 

the set point and the actual output. The error signal, 

E(s), is used to generate the proportional, integral, 

and derivative actions, with the resulting signals 

weighted and summed to form the control signal, 

U(s), applied to the plant model. The new output 

signal will be obtained. This new actual signal will 

be sent to the controller, and again the error signal 

will be computed. New control signal, U(s), will be 

sent to the plant. This process will run continuously 

until steady-state error.  
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Fig. 1. PID control structure 

 

 

3 Genetic Algorithm 
GA was first introduced by John Holland as 

reported in [18]. It is a heuristic optimization 

technique inspired by the mechanisms of natural 

selection. GA starts with an initial population 

containing a number of chromosomes where each 

one represents a solution of the problem in which its 

performance is evaluated based on a fitness 

function. Based on the fitness of each individual and 

defined probability, a group of chromosomes is 

selected to undergo three common stages: selection, 
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crossover and mutation. The application of these 

three basic operations allows the creation of new 

individuals to yield better solutions then the parents, 

leading to the optimal solution. The implementing 

of genetic algorithm in PID tuning is as follows: 

 

3.1 Initial setting of GA parameters  
GA is implemented with small population size. This 

requirement is important in practice in order to 

allow the controller to be optimized as fast as 

possible. In this study, the size of initial populations 

is set to be 20, crossover rate Pc = 0.9, mutation rate 

Pm = 0.01, and a number of generation G = 100.  
The initial population is set by encoding the PID 

parameter, kp, ki and kd into binary strings known as 

chromosome. The length of strings depends on the 

required precision which is about 4 significant 

figures. The required bits string is calculated based 

on the following equation: 

1210)(2 41


 jj m

jj

m
ab  (2) 

where mj is the number of bits, and bj and ai are an 

upper bound and lower bound of PID parameters. 

For example, if kp [0,2.0], ki [0,2.5], and kd 

[0,0.1], the required bits calculated based on Eq. 

(2) are equal to 15, 15 and 10 bits respectively. The 

total length chromosome is 40 bits which can be 

represented in Fig. 2. 

 1010010001100011001001001000110001010100iv

15 bits 15 bits 10 bits

kp kikd

Fig. 2 Chromosome of PID parameters 

In this study, the population in each generation is 

represented by 20 populations × 40 bits 

chromosome length. 

 

3.2 Evaluate their fitness of each 

chromosome 
The fitness of each chromosome is evaluated by 

converting its binary strings into real values which 

refer as PID parameter values and substitute into its 

objective function (some called as fitness function). 

The converting process of each chromosome is done 

by encoding into real number by using the following 

equation: 

12
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For example, the corresponding values for kp, ki and 

kd are given in Table 1. 

Table 1 

Binary to decimal value  
 Binary string  Decimal value 

 

kp 000101010001001           2697 

ki 000111000110010 3634 

kd 1010010001 657 

Therefore, the real number becomes: 

1600.0
12

)02(
26970

15





pk  

2700.0
12

)05.2(
36340

15





ik  

0600.0
12

)01.0(
6570

10





dk  

Each set of PID parameter is passed to the objective 

function in order to compute for an initial fitness 

value. In this study, the mean square error (MSE) 

and integral absolute error (IAE) are chosen as 

objective function which is obtained from PID 

control system (refer to Fig. 3). The goal of GA is to 

seek for minimum fitness value.  

 

3.3 Selection and reproduce using a 

probabilistic method (e.g., roulette wheel) 
Then, all the fitness values and its corresponding 

chromosome will go for selection process. The 

higher the fitness value, the more chance an 

individual in the population has to be selected. 

Tournament selection is chosen because of this 

method offered better selection strategy such that it 

is able to adjust it selective pressure and population 

diversity to improve GA searching performance. 

Unlike roulette selection which allows the weaker 

chromosomes to be selected many times and also 

cause noisy convergence profile. 

 

3.4 Implement crossover operation on the 

reproduced chromosomes  
After selection process was completed, the 

crossover will be preceded. For basic GA, single 

point crossover is chosen. The two mating 

chromosomes are randomly select one cut-point and 

exchange the right part of the two parents to 

generate offspring. 

 

3.5 Execute mutation operation with low 

probability 
Mutation prevents the algorithm to be trapped in 

local minima and maintain diversity in the 

population. Commonly, lower mutation rate should 

be chosen. Higher mutation rate may probably cause 
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the searching process will change into random 

search.   

 

3.6 Repeat step 2 until the stopping criterion 

is met 
After the selection, crossover and mutation process 

are done; again its binary strings in each 

chromosome in the population need to be decoded 

into real numbers in the next generation. A new set 

of PID parameter is send to the PID control system 

to compute for a new fitness value.  This process 

will go through steps 3, 4 and 5 sequentially and 

repeated until the end of generations where the best 

fitness is achieved. The flowchart of a GA algorithm 

is shown in Fig. 2. 

 

 

4 Differential evolution for PID 

tuning 
Differential Evolution (DE) algorithm is a heuristic 

optimization algorithm recently introduced. Unlike 

simple GA that uses binary coding for representing 

problem parameters, DE uses real coding of floating 

point numbers. The crucial idea behind DE is a 

scheme for generating trial parameter vectors. 

Basically, DE adds the weighted difference between 

two population vectors to a third vector.  
The key parameters of control are: NP - the 

population size, CR - the crossover constant, F - the 

weight applied to random differential (scaling 

factor). It is worth noting that DE’s control 

variables, NP, F and CR, are not difficult to choose 

in order to obtain promising results. Storn [19]  have 

come out with several rules in selecting the control 

parameters. The rules are listed follow: 
 The initialized population should be spread as 

much as possible over the objective function 

surface. 

 Frequently the crossover probability CR[0,1] 

must be considerably lower than one (e.g. 0.3). If 

no convergence can be achieved, CR[0.8, 1] 

often helps. 

 For many applications NP=10×D, where D is the 

number of problem dimension. F is usually 

chosen at [0.5, 1]. 

 The higher the population size, NP, the lower the 

weighting factor F should choose. 

These rules of thumb for DE’s control variables 

which is easy to work with is one of DE’s major 

contribution [14]. The detailed Differential 

Evolution algorithm used in tuning the PID 

controller is presented below: 

Start

Initial random population and encode to binary number

Generation = 0

Evaluate fitness value for each 

chromosome

Gen > max generation

Optimal 

solution

Stop

Genetic operator

Selection

Crossover

Mutation

Yes

No

Gen = Gen + 1

G

R(s) C(s)+

- Dynamic System
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Actual Output

Kd Ki  

sk
s

k
k d

i
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PID Controller

Decode to 

real number

Objective 

Function

PID Control 

System

Fitness value

Fig. 3. Flowchart of genetic algorithm for PID 

tuning 

 

4.1 Setting DE optimization parameters 
All the DE optimization parameter required for 

optimization process is listed below: 

 D – problem dimension 

 NP, CR, F – control parameters 

 G – Number of generation/stopping condition 

 L,H – boundary constraints 

In this study, population size, NP = 100, 

crossover constant, CR = 0.9, mutation constant, F = 

0.6, and a number of generation G = 100. The 

problem dimension, D is set based on the number of 

parameters used in the objective function. The 

problem dimension is refer to the number of PID 

parameters kp, ki and kd which is equal to 3. The 

boundary constraint is set based on the PID 

parameters range. For example, if kp [0, 2.0], it 

means that low boundary, L = 0 and high boundary, 

H = 2.0.  

 

4.2 Vector population initialization 
Initialize all the vector population randomly in the 

given upper & lower bound and evaluate the fitness 

of each vector. 

)1,0(rand).( ijij LHLPop   (4)  

 i = 1,...,D, j = 1,...,NP 

)( jPopfFit   (5) 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mohd S. Saad, Hishamuddin Jamaluddin, Intan Z. M. Darus

E-ISSN: 2224-2856 142 Issue 4, Volume 7, October 2012



Before the optimization is launched the 

population needs to be initialized and its fitness 

function needs to be evaluated. The population is 

initialized randomly within its boundary constraints 

is done using Eq. (4). Each of the individual in the 

population is used to compute the fitness value 

which referred as MSE/IAE. The fitness value is 

computed by the fitness function as in Eq. (5) which 

is referring to PID control system. Fig. 4 shows the 

block diagram of population and its corresponding 

fitness value. For example, if kp [0, 10], ki [0, 

13], and kd [0, 18], population and fitness values 

are calculated as: 

For kp [0, 10], 

pkPop

Pop

  11.1180

)1,0(rand).010(0

12

1212




 

For ki [0, 13],   

ikPop

Pop





8.5944

)1,0(rand).010(0

13

1313
 

For kd [0, 18], 

dkPop

Pop





10.4714

)1,0(rand).018(0

11

1111  

Then, the value of kp, ki, and kd are sent to the 

objective function which is the PID control system 

to compute for fitness value (refer to Fig. 4). 

 

4.3 Perform mutation & crossover 
Whenever initialization process is done, now come 

to optimization process. The optimization process 

will run iteratively until the end of generations. By 

referring to Fig. 8, the first individual fitness value 

from the current population is set to be the target 

vector. Then the trial vector is created by selecting 

three individuals randomly from the current 

population, mutate using Eq. (6) and crossover with 

the target vector. The fitness value (MSE/IAE) of 

the trial vector is computed by sending its 

individuals to the fitness function. 

 

4.3.1 Mutant vector 

For each vector xj,G (target vector), a mutant vector 

is generated by: 

).( ,2,1,31, GrGrGrGj xxFxv   (6) 

where the three distinct vectors xr1, xr2 and xr3 

randomly chosen from the current population other 

than target vector xj,G. The detail example how the 

mutant vector is determined is shown in Fig. 5. 

 

4.3.2 Crossover 

Perform crossover for each target vector with its 

mutant vector to create a trial vector uj,G+1. 

),...,,( 1,1,21,11,   GDjGjGjGj uuuu  

1,Giju




 

otherwise    

)Rnd()rand( if  

,

1,

Gij

iGij

x

iCRv
 

 i = 1,…, D 

Crossover is done in order to increase the diversity 

of the perturbed PID parameters for each individual 

in the population. The block diagram on how this 

process is done is shown in Fig. 6. 
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Fig. 4. The block diagram of population and its 

corresponding fitness value 
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Fig. 5. Mutation process 
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Fig. 6. Crossover process 

 

4.4 Verifying the boundary constraint 
If the bound (i.e. lower & upper limit of a variable) 

is violated then it can be brought in the bound range 

(i.e. between lower & upper limit) either by forcing 

it to lower/upper limit (forced bound) or by 

randomly assigning a value in the bound range 

(without forcing). 

)1,0(rand).(     ],,[ if iii LHLxHLx   (7) 
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Eq. (7) purposely used in order to make sure that all 

the parameter vectors (PID parameters) are within 

its boundary constraints. 

 

4.5 Selection 
Selection is performed for each target vector, xj,G by 

comparing its fitness value with that of the trial 

vector, uj,G. Vector with lower fitness value is 

selected for next generation. Fig. 7 shows how the 

selection process is performed. 

Process is repeated until a termination criterion is 

met.  
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Fig. 7. Selection process 

 

 

5. Implementation PID Controller 

Tuning  
In this study, the transfer function used to evaluate 

the performance between DE and GA are a high 

order system G1(s),  system with time delay G2(s), 

and non-minimum phase system G3(s).These system 

are:  

170.1118.1741.2558.16

32.212.25
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10
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)1(

)101(
)(
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  (10) 

The tuning performance of PID controller is 

evaluated using mean squared error (MSE) and 

integral absolute error (IAE) which then becomes 

the objective function that is used to evaluate fitness 

of each chromosome/individual in GA and DE. GA 

and DE will heuristically find the optimum value of 

controller parameters where the smaller the value of 

objective function the fitter is the 

chromosome/individual. Finally the transient 

performance of the system tuned by DE and GA is 

compared with Ziegler-Nichols method. 

 

5.1 PID Tuning with Ziegler-Nichols method 
PID tuning using Ziegler Nichols method is based 

on the frequency response of the closed-loop system 

by determining the point of marginal stability under 

pure proportional control. The proportional gain is 

increased until the system become marginally 

stable. At this point, the value of proportional gain 

known as the ultimate gain, ku, together with its 

period of oscillation frequency so called the ultimate 

period, tc, are recorded. Based on these values 

Ziegler and Nichols calculated the tuning 

parameters shown in Table 2.  

Table 2 

Ziegler-Nichols PID Tuning Parameter 

Controller kp ki kd 

PID 0.6ku tu/2 tu/8 

 

For mathematical model system, the ultimate 

gain, ku, and its ultimate period, tu, can be 

determined using root locus technique. When the 

root locus of the system has been plotted, rlocfind 

command in Matlab can be used to find the crossing 

point and gain of the system at real part equal to 

zero.  

In this study, root locus plot for the system given 

by Eqs. (8)-(10) is shown in Figs. 8(a) - 8(c). The 

ultimate gain, ku, ultimate period, tu, and PID tuning 

parameters are calculated based on these figures.  

The details data are listed in Table 3.  

Table 3 

Ziegler-Nichols PID Tuning Values 

 High 

Order 

System 

System with 

Time Delay 

Non-

minimum 

Phase 

System 

ku 6.650 1.110 0.258 

tu 1.893 8.344 9.726 

kp 3.990 0.666 0.155 

ki 0.946 4.172 4.863 

kd 0.237 1.043 1.216 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mohd S. Saad, Hishamuddin Jamaluddin, Intan Z. M. Darus

E-ISSN: 2224-2856 144 Issue 4, Volume 7, October 2012



Root Locus

Real Axis

Im
a
g
in

a
ry

 A
x
is

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

-6

-4

-2

0

2

4

6

8

System: sysrl

Gain: 6.65

Pole: 0.000106 + 3.32i

Damping: -3.2e-005

Overshoot (%): 100

Frequency (rad/sec): 3.32

 
(a) 

Root Locus

Real Axis

Im
a
g
in

a
ry

 A
x
is

-4 -3 -2 -1 0 1 2 3 4

-1.5

-1

-0.5

0

0.5

1

1.5 System: oltfa

Gain: 1.11

Pole: 0.000943 + 0.753i

Damping: -0.00125

Overshoot (%): 100

Frequency (rad/sec): 0.753

 
(b) 

Root Locus

Real Axis

Im
a
g
in

a
ry

 A
x
is

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6 System: sysrl

Gain: 0.258

Pole: 6.41e-005 + 0.646i

Damping: -9.92e-005

Overshoot (%): 100

Frequency (rad/sec): 0.646

 

(c) 

 

Fig. 8. Root locus plot, (a) high order system, (b) 

system with delay, and (c) non-minimum phase 

system 

 

 

 

6. Simulation Result 

Simulation is carried out in order to study the 

performance between DE and GA to optimally tune 

the PID controller for the systems given by Eqs. (3)-

(5). The parameter values of DE and GA 

optimization shown in Table 4 are chosen based on 

[20]. The parameters range for kp, ki and kd as shown 

in Table 5 are set based on the previous studies [21], 

[22], [23]. The performance of both tuning methods 

is observed in terms of rise time, settling time, 

maximum overshoot of the response, MSE and IAE. 

Finally, the convergence rate in achieving the global 

optimum value of the objective function is 

investigated.  

Table 4 

Parameter Setting For DE and GA 

DE GA 

Population size = 20 Population size = 20 

Crossover Rate = 0.9 Crossover Rate = 0.9 

Differentiation constant 

= 0.6 

Mutation rate = 0.01 

Gen. number = 100 Gen. number = 100 

Table 5 

PID Parameter Range 

 High Order 

System 

System 

with Time 

Delay 

Non-

minimum 

Phase 

Parameter 

Range 

min max min max min max 

kp 0 10 0 2.0 0 0.5 

ki 0 13 0 0.5 0 0.5 

kd 0 18 0 2.5 0 0.25 

 

 

The results for closed-loop step response for DE 

and GA PID tuning method are shown in Figs. 9(a) - 

9(c) respectively. For Fig. 9(a), it is clear that the 

responses from DE and GA tuning methods are 

almost indistinguishable.  The details of these 

results are shown in Table 6. The values of rise 

time, settling time, maximum overshoot, MSE and 

IAE between DE and GA are almost the same. Both 

tuning methods give better performance compared 

to Ziegler-Nichols method. As seen from the Table 

6, Ziegler-Nichols gives poor rise-time, settling time 

and highest overshoot. In the case of system with 

time delay, DE and GA optimized by MSE and IAE 

give almost the same response as shown in Fig 9(b). 

DE and GA optimized by MSE offered better rise 

time compared with DE and GA optimized by IAE. 

However, DE and GA optimized by IAE give 

better settling time and overshoot which is about 12 
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seconds faster and 14% reduction with respect to 

DE and GA optimized by MSE (refer to Table 7). 

Even though DE and GA optimized by IAE offered 

better settling time and overshoot compared with 

DE and GA optimized by IAE, both method give 

superior performance than Ziegler-Nichols method.  

For the case of non-minimum phase system, 

instead of evaluating in the aspects of rise time, 

settling time and peak overshoot,  the improper 

undershoot effect should also need to be reduced. 

All the tuning method gives different responses as 

shown in Fig. 9(c). DE optimized by IAE give the 

best values of rise time and settling time followed 

by DE optimized by MSE, GA optimized by MSE, 

GA optimized by IAE, and Ziegler-Nichols tuning 

method. However in terms of overshoot, no 

overshoot are produced by GA optimized by IAE, 

MSE and Ziegler-Nichols except DE optimized by 

IAE and MSE which give small overshoot about 3% 

and 7% respectively (refer to Table 8). But, in terms 

of undershoot, Ziegler-Nichols give the lowest 

undershoot than followed by DE optimized by MSE, 

GA optimized by MSE, GA optimized by IAE, and 

DE optimized by IAE. In order to get better results 

with minimum overshoot and undershoot, 

modification needs to be done in the objective 

function [24]. With standard performance criteria, 

there should be a trade-off between minimum 

overshoot/undershoot and settling time.  In this 

study, only MSE and IAE used as objective function 

for tuning the system. 

For overall performance, it can be concluded that 

DE optimized by MSE give better transient 

response. The evolution of PID parameter for non-

minimum phase system can be seen in Figs. 10(a) – 

10(d). Figs. 10(a) and 10(b) show the convergence 

profile of the PID parameter, kp, ki and kd with 100 

generations for DE and GA optimized by IAE 

respectively. From the observation, PID parameter 

for both techniques almost settles at the same 

generation. However, for DE and GA optimized by 

MSE, it shows that PID parameter convergence for 

DE is faster than GA (refer Figs. 10(c) and 10(d). 

Parameter kd seen not very consistent. Its 

convergence profile fluctuated at the beginning and 

settled after 50 generation.  From these 

observations, for non-minimum phase system, DE 

performed better than GA with IAE as a fitness 

function.  

Convergence test is done 5 times for each of the 

systems in order to investigate the convergence rate 

and its consistency in searching the globally optimal 

solution of PID parameters. The lower the value of 

fitness function the better the closed-loop system 

response will be.Comparison for the convergence 

rate of fitness function performance between DE 

and GA can be seen from Figs. 11, 12 and 13. From 

these figures, it is observed that DE is significantly 

consistent than GA in searching for minimum 

fitness function. Convergence test done in DE and 

GA settled almost at the same generation. From the 

overall results we can say that, DE algorithm 

outperforms GA in terms of its consistency in 

constantly achieving the globally minimum fitness 

value. 

 

Table 6 

Comparison Performance for High Order System 

 High Order System 

 ZN DE 

(MSE) 

GA 

(MSE) 

DE 

(IAE) 

GA 

(IAE) 

MSE - 0.001 0.001   

IAE - - - 11.43 11.45 

Rise 

time (s) 

0.39 0.07 0.07 0.062 0.067 

 

Settling 

time (s) 

9.18 0.40 0.40 0.40 0.48 

Over 

shoot 

(%) 

57.5

6 

27.19 27.26 28.42 28.54 

kp 3.99 3.56 3.75 7.16 7.50 

ki 4.22 10.96 10.99 11.16 11.17 

kd 0.94 18.00 18.00 18.00 18.00 

 

Table 7 

Comparison Performance for System with delay 

 System with Time Delay 

 ZN DE 

(MSE) 

GA 

(MSE) 

DE 

(IAE) 

GA 

(IAE) 

MSE - 0.02 0.0198 - - 

IAE - - - 18.70 18.70 

Rise 

time (s) 

1.62

7 

0.66 0.66 

 

1.13 1.13 

Settling 

time (s) 

17.8

8 

19.21 18.44 6.76 6.78 

Over 

shoot 

(%) 

44.3

3 

25.54 25.26 11.42 10.85 

kp 0.66 0.61 0.63 0.68 0.67 

ki 0.16 0.10 0.09 0.07 0.07 

kd 0.69 2.15 2.13 1.34 1.35 

 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mohd S. Saad, Hishamuddin Jamaluddin, Intan Z. M. Darus

E-ISSN: 2224-2856 146 Issue 4, Volume 7, October 2012



Table 8 

Comparison Performance for Non minimum phase 

system 
 Non-minimum Phase System 

 ZN DE 

(MSE) 

GA 

(MSE) 

DE 

(IAE) 

GA 

(IAE) 

MSE - 0.02 0.02 - - 

IAE - - - 1333.5 1601.9 

Rise 

time (s) 

57.55 2.45 2.72 1.858 14.95 

Settling 

time (s) 

79.21 20.55 22.68 11.75 23.56 

Over 

shoot 

(%) 

- 7.01 - 2.94 - 

Unders

hoot 

(%) 

131.80 146.80 157.40 205.70 167.30 

kp 0.16 0.19 0.19 0.21 0.19 

ki 0.03 0.07 0.06 0.08 0.06 

kd 0.19 0.11 0.06 0.17 0.19 

 

 

7. Conclusion 
PID controller has been tuned using Ziegler-Nichols 

method and modern heuristic algorithms, DE and 

GA for a high order system, system with time delay 

and non-minimum phase system. For the same 

population, crossover rate and number of 

generation, both tuning methods demonstrated the 

same performance in searching the best value of 

MSE and IAE. It is worth noting that for high order 

system and system with delay, DE and GA give 

almost the same transient performance for the 

objective function MSE and IAE. DE optimized by 

MSE gives better performance with the regards to 

the trade-off between settling time, maximum 

overshoot and undershoot for non-minimum phase 

system. In terms of reliability, DE offer consistency 

in achieving its globally minimum of fitness value. 

However the convergence rate for all the trials for 

higher order system, system with time delays and 

non-minimum phase system are almost the same.  
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(a) Higher order system 
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(b) System with time delay 
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(c) Non-minimum phase system 

Fig. 9. Step response of PID control system 
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Fig. 10. Convergence profile of PID parameter 

 

 
 

Fig. 11. Convergence test for a high order system 

 

 

Fig. 12. Convergence test for system with delay 

 

 

Fig. 13. Convergence test for non-minimum phase 

system 
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