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Abstract: -In this paper, a nonlinear decoupling technique is used to design an aerodynamic coupled 
missile flight control system. The decoupling are get from multiplications of two measurable accelerations 
and three controllable output commands of the autopilot. They give exact sign and magnitude of 
aerodynamic coupling directly in missile manoeuvre. From frequency responses of coupling terms, 
decoupling terms and inner open-loop Bode diagram of the rolling channel, it will be seen that the 
decoupling and robustness for aerodynamic couplings can be obtained simultaneously. The time responses give 
same conclusions. 
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1 Introduction 
For high performance missile, simple rate feedback 
decoupling is not good enough to stabilize the 
considered system, especially for large angle of 
attacks. It is well known that large single-axis 
manoeuvre will result in serious unstable 
aerodynamic cross coupling for cruciform missile [l-
12]. It will destabilize or degrade the performance of 
the system. Higher gain crossover frequency in the 
rolling channel and lower gain crossover frequencies 
in pitch/yaw channels are usually expected for against 
coupling from yawing/pitching channels. The concept 
of high gain of the rolling channel can viewed as a 
disturbance rejection design. However, it is limited by 
hardware, noisy environment, and system 
requirements; e.g., specifications of bandwidths of 
pitch/yaw channels for target engage. Another 
possible way is to use cross-decoupling controllers. In 
general, inverting the transfer function of plant is 
impossible for the considered system have large 
modeled, un-modeled uncertainties and large 
variations of cross-coupling terms. Proper reducing 
coupling effects is rather than exact eliminating. In this 
literature, multiplications of two measurable 
accelerations feedback signals of plant and three 
outputs of the autopilot are used to reduce coupling 
effects. They give exact sign and magnitude of 
aerodynamic coupling directly in missile 
manoeuvre. The decoupling behaviours are nonlinear. 
It will be linearized by small perturbation theorem for 
analyses and designs. The magnitudes of decoupling 
terms will be found by diagonalizing the state 
transition matrix of simplified roll-yaw coupled 
systems. 

In the following sections, effects of aerodynamic 
couplings and feedback decoupling are discussed and 
evaluated by a simplified roll-yaw coupled system 
to find decoupling gains. From frequency responses 
of coupling terms, decoupling terms and inner 
open-loop Bode diagram of rolling channel, it will be 
seen that the decoupling and robustness against 
aerodynamic couplings can be obtained 
simultaneously. The time responses give same 
conclusions. 
 
 
2  The Coupling Effects 
The translational and rotational dynamics of the 
missile shown in Fig.1 are described by the 
following six nonlinear differential equations [1-3]: 
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In above equations, U, V and W are velocity 
components measured on the missile body axes; P, Q 
and R are the components of the body angular rate: 

zgygxg FFF ,,  are the gravitational forces acting 

along the body axes: and zyx III ,,  are the moments 
of inertia. The variable s is the reference area, q  is 
the dynamic pressure 
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l  is the reference length. The aerodynamic lifting 
forces ( zyx CCC ,, ) and moments ( nml CCC ,, ) are 

function of Mach number, angle of attack ( *α ), 
angle of sideslip ( *β ); the angles of attack and 
sideslip are defined as 
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The small signal perturbation model from a specified 
trim conditions(or operating point) ,,,( *** RQP  

),,, ** βαYOZO AA  of the considered system is 
described by following differential equations: 
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where p, q, r are body angular rate deviations from 
trims ),,( *** RQP ; zacca , yacca  are body acceleration 

deviations from trims ),( **
yz AA ; and α and β are the 

angles of attack and sideslip deviations from 
trims ),( ** βα , Sl  is the distance between sensor 
position and Central of 
Gravity(CG). )()()( ,, ••• NML , )(•Y  and )(•Z represent 
derivatives of moments ( nml CCC ,, )/ forces (

zy CC , ) 

with respect to p, q, r, βα , , rqp δδδ ,, . 
For skid-to-turn missile, only yawing/pitching 

channels to rolling channel will be considered for 
the rolling command pδ  is always zero. For large 
angle of attack( *α ) and small sideslip angle( *β ), 
the magnitude of terms *tan β  and αL  are much 

less than those of *tanα  and βL , thus the 
original 3×3 system can be decomposed into a 
2×2 roll-yaw coupled system and pitching system. 
Similar to the case of large *β  and small *α , it can 
be decomposed into a 2×2 roll-pitch coupled 
system and a yawing system. For simplicity and 
illustration, only the 2×2 roll-yaw coupled system 
will be discussed in this literature. The state space 
model of the rolling/yawing coupled system is 
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where ycga  is the acceleration at central gravity of 

mass, and yacca  is the measured acceleration at the 
location of sensor. It is most desired to reduce the 
effect of βL  shown in Equation (17) or 
diagonalizing upper triangular of the state transition 
matrix of the state-space model given in Equation 
(17). Now, consider the major coupling effects from 
yawing channel to rolling channel to be decoupled, 
the transfer function of rp δ/  becomes: 
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The denominator of Equation (19) can be 
approximated by  
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Since the value of rN  is negative for stable static 
margin, the positive value of βα L*  is called the 
unstable aerodynamic coupling for it will destabilize 
or degrade performance of the system; negative 
value of βα L*  is called the stable aerodynamic 
coupling. Similar to rp δ/ , one find that the positive 
value of αβ L*  from qp δ/  is called the stable 

aerodynamic coupling; negative of αβ L*  is called 
the unstable aerodynamic coupling. Thus the 
characteristic of the system is largely affected by the 
coupling term αβ L* (or βα L* ). βα L* ( or αβ L*  ) . 
Note that one may pay more attention for unstable 
aerodynamic coupling while leaving stable 
aerodynamic coupling alone. Large value of *α  
/small value of *β  are corresponding to large value 
of ZOA / small value of YOA . Those imply that 
coupling terms to rolling channel are function of 
longitudinal/ lateral maneuvers ( ZOA , YOA ). In the 
following section, a special decoupling block will be 
applied to introduce decoupling term including 

βα L*  and αβ L* .  

 
 
3. The Decoupling Algorithm 
The major coupling terms stated above are βα L*  

and αβ L* . The problem of decoupling algorithm is 
to find measurable/controllable datum proportional 
to those of βα L*  and αβ L* . There are five 
measurable datum (

fffZFYF RQPAA ,,,, ) and three 

controllable variables ( rcqcpc δδδ ,, ) shown in Fig.2 
can be used for decoupling[12-13]. Consider a 
nonlinear decoupling configuration shown in Fig.2. 
The mathematical representation of decoupling block 
is 

qYFrZFpp AKAK Δ×+Δ×+Δ=Δ 21
'        (21) 

pYFqq AK Δ×+Δ=Δ 3
'                            (22) 

pZFrr AK Δ×+Δ=Δ 4
'                           (23) 

where )(•Δ terms are output commands of autopilot 

without decoupling , )(' •Δ  terms are output 

commands with decoupling, and 321 ,, KKK , and 4K  
are gains of decoupling loop to be applied. Similar 
derivations of Equations (10) to (16), the small signal 
linear perturbation equations of Equations (21) to (23) 
from trim conditions ( roqoAA YOZO δδ ,,, ) are  
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pAKqq YOδδδ 3' +=                                      (25) 

pAKrr ZOδδδ 4' +=                                      (26) 

with ;;; rroqqoppo rqp δδδδδδ +=Δ+=Δ+=Δ  

zaccZOZFyaccYOYF aAAaAA +=+= ;  and 0≡poδ  
for skid to turn missile. Signal flows with 
Equations(24) to (26) are given in Fig.3. Note 
that ( rqp δδδ ,, ) are replacing( rcqcpc δδδ ,, ), 
those are outputs of de-mixer of four actuators 
cascaded to( cccc 4321 ,,, δδδδ ) shown in Fig.3. It 
shows the linearized control configuration for 
analysis and design. Equation (24) includes rAZOδ   
and qAYOδ . It implies that proper values of 1K  and 

2K  will decouple the coupling terms βα L*  and 

αβ L* . Equations (24) to (26) can be further 
simplified as given below:  

qoaKrAKpp yaccZO δδδδ 21' ++=         (27) 

pAKrr ZOδδδ 4' +=                                (28) 

for large angle of attack( *α ) with small angle of 
sideslip( *β ). For simplicity and illustration, 
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hardware and compensations are first neglected to 
derive close form solutions of 1K , 2K , 4K . Since the 
gain crossover frequencies of inner loops are 
usually greater than those of outer loops, outer loop 
shown in Fig.3 can be neglected for decoupling 
analyses. Frequency and time responses will verify 
this simplification. The inputs of plant of inner 
loops closed-loop system can be written as follows: 

qoaKrAKpKp yaccZOip δδδ 21' ++−=           (29) 

pAKrKr ZOir δδ 4' +=                             (30) 

and after ),( rp δδ given in Equation (17) replace by 
)','( rp δδ given in Equations (29) and (30), the state-

space model of this closed-loop system with 
decoupling becomes 
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The decoupling can easily be achieved by setting 
off-diagonal elements of Equation (31) to be zeros. 
Since the considered system is a skid-to-turn missile, 
the major terms of Equation(31) for decoupling are 
from yawing channel to rolling channel are 1213,aa  
and from rolling channel to yaw channel are 21a . 
Three elements ( 1213,aa , 21a ) are selected for three 
gains ( 1K , 2K , 4K ) are needed. They are in the form 
of 
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where 1
2 )](1[ −+−= pSp NlYqoKH δδδ . Let 13a , 12a  

and 21a  be zeros for aerodynamic coupling and 
find solutions of 1K , 2K , 4K . They are in the form 
of 
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Equations (35) to (37) give 1K , 2K , 4K  are function 
of irK  only. Since there are modeled and un-
modeled uncertainties for aerodynamic coefficients 
given in Equations (10) to (16), the values of 

1K , 2K , 4K  selected for reducing the coupling effects 
rather than exact cancellation. Naturally, the effects of 
decoupling will be degraded with hardware added. 
Thus the effects of hardware may need to be 
considered to choice proper gains of decoupling loop 
or to compensate the system which distorted by 
hardware. Since the responses of rp δδ ,  are 
dependent on the gain crossover frequencies of 
rolling/yawing inner loop, thus if gain crossover 
frequencies were unaffected by introducing 
hardware, the found decoupling are unaffected. 
 
 
4. The Analyses Results 
The small perturbation aerodynamic coefficients of 
the considered system are given in Appendix 
A[15,16] for variable angle of attacks( *α ) and 
sideslip ( *β ). It gives that performance and 
robustness of the considered system will be 
affected by βL  for maximal value of coupling 

coefficient βL  is two third of pLδ . In general, 
three SISO systems; i.e., rolling/pitching/yawing 
channels, are designed first, and then connected 
them with aerodynamic / kinematical coupling 
term; i.e., MIMO system for verification the 
suitability of SISO designs. Several iterations 
are usually needed. Table 1 gives SISO design 
and MIMO analyzed results. The gains( opK , 

ipK , oqK , iqW , orK , irW , irK  ) are give in 

Appendix A with a gain adjusting logic for ipK  

and opK : 

ipoipZO KSckipKASckip ×=+= ;4.1||025.0 ;  
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opoopZO KSckopKASckop ×=+= ;4.1||030.0 ;  

The used of Sckip and Sckop is to against 
aerodynamic couplings for large angle of attacks. 
They are functions of ZOA . The compensations 
and hardware dynamics are given in Appendix B 
also. From Table 1, one can see that it is a good 
designs for good robustness (GM ≧ 6dBs, 
PM≧60degs ); and low-frequency gain margins 
( LFGM ) are reduced incrementally for larger 
coupling term added. The effects of coupling 
terms for ( *α , *β ) = (12°, 1°) are shown in Fig.4 
for only rolling inner loop open. The solid-lines 
are frequency responses of the rolling channel 
SISO system. The doted-lines are frequency 
responses MIMO system; i.e.; 2×2 roll-yaw 
coupled system. Fig.4 shows that loop gain are 
largely reduced by introducing coupling terms. 
The corresponding LFGM, High-frequency-
Gain-Margin ( HFGM) and Phase Margin (PM) 
are given in Table 1. Table 1 gives that LFGMs 
are unacceptable for *α >6°. The system is nearly 
unstable for °≥12*α . 

Table 2 gives the analyzed results with 
decoupling terms added. 1K , 2K , 4K  are found by 
Equations (35) to (37). It gives LFGMs become 
acceptable ( LFGM ≦ 0.53), and PMs approach 
60degs. The effective of decoupling is shown in 
Fig.4(dashed-line). It recovers the magnitude form 
coupled system (doted-line). Note that the effective for 
decoupling of two-axis maneuvering ( *α , *β ) = (10°, 
8°) are given in Tables 1 and 2 also. Note also that 

1K , 2K , 4K  are found from simplified system 
without compensation and hardware added. The 
effects of compensation and hardware must be 
analyzed for suitability of the proposed decoupling 
block and 1K , 2K , 4K . Fig.5 shows the variation for 
four combination conditions with/without decoupling 
and with/without compensation and hardware. Fig.5 
shows the responses of coupling responses YCAp /  

for ( *α , *β ) = (12°, 1°). The doted-line shows the 
responses without decoupling/ without hardware and 
compensations; the dash-doted-line shows responses 
with decoupling/without hardware and compensations; 
the solid-line shows responses without decoupling/ 
with hardware and compensation; the dashed-line 
shows responses with decoupling/with hardware and 
compensation. From Fig.4. it can be seen that the 
decoupling almost not affected by hardware and 
compensation added or not. It implies also that the 

evaluation for 1K , 2K , 4K  with diagonalizing the 
state transition matrix of the simplified give effective 
way for finding decoupling. Fig. 6 shows frequency 
responses YCAp /  for *α varying from 1° to 12°. It 
gives the maximal value of rolling rate is less than 5 
deg/sec for *β =1°. All analyzed results stated above 
will be verified by time responses with the control 
configuration shown in Fig.3. 
 
 

5. Simulation Verifications 
Figs.7 shows the 5-DOF simulating results for 
( YCZC AA , ) = (-22.3G, -1.42G) without decoupling 
loops. The control configuration shown by Fig.3 
excluding the proposed decoupling block is used in 5-
DOF simulation. Output limitations for ( cδpc,δqc,δr ) 
are (±5°,±20°,±20°). This operating condition is 
corresponding to trim condition ( *α , *β ) = (12°, 1°). 
Fig.7 shows the compensated system is nearly 
unstable for sustaining oscillating of FZF PA , , 

β  andRF . The oscillating frequency is 2.75Hz. 
Fig.6 gives same conclusion in frequency domain. 

Fig.8 shows simulating results with decoupling 
described by Equation (21) to (23). It can be seen that 
the performance and stability of the system are 
improved significantly. The maximal value of rolling 
angular rate is equal to -15.6 deg/s. Note that constant 
decoupling gains given in Table 2 for ( *α , *β ) = (12°, 
1°) are used in whole simulation. ± 5G varying testing 
for ZCA  are applied after 2 seconds. It is 

corresponding to angle of attack ( *α ) varying from 
10° to 14°. These testing give decoupled behavior 
keeps almost unchanged for plant variations 
(emulating system uncertainties). Fig.9 shows 
simulation results for ( *α , *β ) = (1°, 1°) with 
decoupling gains found for ( *α , *β ) = (12°, 1°). It 
can be seen that over decoupling is avoided for small 
values of ( YFZF AA , ) are used in decoupling loops. 
 
 
6. Conclusions 
In this paper, decoupling gains are found by 
diagonalizing state transition matrix and effects of 
decoupling loop are discussed in frequency domain. 
The gains of decoupling loop can be found easily by 
simplified system and verified by adding hardware. 
The decoupling loop gives possible way to against 
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aerodynamic coupling for high performance missile 
and can be formulated easily as functions of velocity, 
altitude, and angle of attack for digital flight control 
system.  
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Appendix A: Aerodynamic Coefficients and Loop Gains 
Seven sets of aerodynamic coefficients and trim values ,, YOZO AA  roqo δδ , of an air-to-air missile (AAM) at 
VM=676.8m/s are given below: 
 

 
qLδ  =780.45, pLδ =14609.0, rLδ  =780.45, pL = -4.798, qM =-3.232, 

 
rN  =-3.232, βN =274.03, rNδ =-599.7, pNδ =-29.99, qZδ =-30.61, 

 
βY  =-95.85, qM δ =-599.7, pM δ =-29.99, rYδ =30.611, pYδ = 0.000, 

 
opoK =15.58 ipoK =0.0031 oqK =0.0744 iqW =15.98 iqK =0.0409 

 
Sl  =0.147 BM =0.0145 orK =0.0744 irW =15.98 irK =0.0409 

  
A1. *α  =12.00°, *β =1.00°, αL =684.45, βL = 8951.6, αZ =-176.65, 

 
αM =-739.53, roδ =0.46°, qoδ =-11.33°, YOA =-1.42G, ZOA =-22.3G, 

      
A2. *α  =10.00°, *β =1.00°, αL =809.8, βL =7324.1, αZ =-171.4 

 
αM =-714.14 roδ =0.46°, qoδ =-8.86°, YOA =-1.42G ZOA =-17.53 

      
A3. *α  =8.00°, *β =1.00°, αL =623.76, βL = 5787.7, αZ =-161.45, 

 
αM =-635.83, *

rδ =0.46°, qoδ =-6.17°, YOA =-1.42G, ZOA =-13.1G, 
      

A4. *α  =6.00°, *β  =1.00°, αL =518.8, βL = 4446.8, αZ =-136.9, 

 
αM =-490.96, roδ  = 0.46°, qoδ =-3.83°, YOA = -1.42G, ZOA =-9.11G, 

      
A5. *α =4.00°, *β =1.00°, αL =606.29, βL = 2835.8 αZ =-109.16, 

 
αM =-351.55, roδ = 0.46°, qoδ =-2.12°, YOA = -1.42G, ZOA =-5.77G, 

      
A6. *α  =4.00°, *β =1.00°, αL =1510.1, βL =-528.8, αZ =-97.29 

 
αM =-286.1 roδ =0.46°, qoδ =-2.13°, YOA =-1.42G ZOA =-2.83G 

      
A7. *α  =1.00°, *β  =1.00°, αL =2789.6 βL = -2789.6  αZ =-95.85, 

 
αM =-274.03, roδ = 0.46°, qoδ =-0.46°, YOA = -1.42G, ZOA =-1.42G, 
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Appendix B: Compensators and 
Hardware Models 

1. Rolling outer/inner loop compensators 
cascaded to opK / ipK  

  
7600.0
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−

−
=

Z
ZZPOC  
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9980.0
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23

23

−+−
−+−

×

−
−

=

ZZZ
ZZZ

Z
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2. Yawing outer/inner loop compensator 
cascaded to orK / irW / irK  
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−
−

=
Z

ZOC  

1
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−
+

=
Z
ZZSC  

Z
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3. Actuator models 

    
986965.188

98696)( 2 ++
=

SS
SCAS  

4. Rate gyro/accelerometer models 

1934449.263
193444)( 2 ++

=
SS

SRG  

5. Inner loop low-pass filter body angular rate 

2.314
2.314)(

+
=

S
SLPFI  

6. Outer loop low-pass filter for acceleration 

5.188
5.188)(

+
=

S
SLPFO  

 

 

 

Table 1. SISO System and MIMO System without 
Decouple 

 
SISO System MIMO without Decouple 

*α / *β HFGM PM LFGM HFGM PM 

12°/1° 1.85 60.3° 0.97 1.89 8.39°

10°/1° 1.97 62.3° 0.76 2.00 64.7°

8°/1° 2.10 64.2° 0.57 2.12 65.8°

6°/1° 2.23 65.8° 0.39 2.24 66.9°

4°/1° 2.35 67.2° 0.21 2.35 67.8°

2°/1° 2.47 68.3° ---- 2.46 68.6°

1°/1° 2.53 68.9° ---- 2.52 69.2°

10°/8° 1.97 61.7° 0.50 1.99 64.0°

 
 Table 2. MIMO System with Decouple Loops 

 
MIMO with Decouple Loops 

*α / *β LFGM HFGM PM 
1K  2K  4K  

12°/1° 0.53 1.68 53.8° -0.0522 -0.0731 0.0035

10°/1° 0.46 1.81 58.1° -0.0519 -0.0746 0.0046

8°/1° 0.39 1.94 61.6° -0.0521 -0.0827 0.0063

6°/1° 0.30 2.08 64.5° -0.0540 -0.1006 0.0093

4°/1° 0.19 2.24 66.8° -0.0473 -0.1129 0.0150

2°/1° ---- 2.54 68.2° 0.0543 +0.0454 0.0321

1°/1° ---- 2.68 68.2° 0.2958 +0.4807 0.0664

10°/8° 0.37 1.85 59.5° -0.0353 -0.0528 0.0048
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Fig.1. Coordinated System Definitions. 

 
 
 

 
Fig.2. Digital Autopilot with Nonlinear Feedback 

Decoupling Block. 
 
 
 

 
Fig.3. Linearized Control Configuration for 

Analyses. 
 
 

 
Fig.4. Open-loop Bode Diagrams of Rolling 

Channel. 
 

 
Fig.5. Frequency Responses of p/Ayc for 

( *α , *β )=(12°,1°). 
 

 
Fig.6. Frequency Responses of p/Ayc for *α  

varying . 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Tain-Sou Tsay

E-ISSN: 2224-2856 116 Issue 3, Volume 7, July 2012



 

 
Fig.7. Time Responses for ( *α , *β )=(12°,1°) 

without Decoupling Loop. 
 
 

 
Fig.8. Time Responses for ( *α , *β )=(12°,1°). 

with Decoupling Loop. 
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