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Abstract: - Support Vector Machines (SVM) can be constructed with the selection of an appropriate
kernel function to solve an optimization problem. Algorithmic approaches can be taken to solve
problems related to SVM which are used for regression analysis and data classi�cation of a data
set. The (inhomogeneous) polynomial kernel k (x; y) =

�
1 + xT � y

�d
is useful for non-linear data set

classi�cation. In this work, the SVM QP problem with (inhomogeneous) polynomial kernel k (x; y)
is expressed as a mixed convex optimization problem with respect to the real variables � 2 Rl and
b 2 R; and the integer variable d 2 Z. Several examples of mixed convexity and computational
results are given. In addition, we introduce the de�nitions of unimodal and semi-unimodal mixed
variable functions with the corresponding minimization results.

Key-Words: - SVM, Inhomogeneous Polynomial Kernel Map, Unimodal Function, Mixed Convex
Function, Minimization.

1. Introduction

Support Vector Machines have important appli-
cations in practical optimization problems in sev-
eral di¤erent research areas. Some of these areas
include fault detection of motor failure in indus-
trial motors within the technological improve-
ment of arti�cial neural networks ([3]), the mod-
elling of the multi-variable systems on the re-
production of the kernel Hilbert Space ([7]), and
the control aspects of man-machine systems with
brain machine interface where a kernel based ap-
proach is taken for the appropriate non-linear
SVM ([4]).
A data set (xi; li) ; i = 1; 2; :::; l; with li = �1

is given with xi 2 Rn in the input space. This
can be mapped to the feature space by a map �
to obtain a separating hyperplane for two sub-

sets of the given data set (positive and neg-
ative subsets.) The classi�cation of the data
sets is possible through the maximum-margin
hyperplane in the feature space by using a map
k : Rn � Rn ! R

k (x; y) = h� (x) ;� (y)i ;

called the kernel map ([11]). In particular, non-
linear classi�cation of the given data sets can be
obtained by using the map

k (x; y) =
�
1 + xT � y

�d
(1)

called the (inhomogeneous) polynomial kernel
map where x; y 2 Rn are the input data vectors
([11]). Note that the hyperplane in the feature
space has the form

wT� (x) + b = 0:
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The SVM optimization problem can be ex-
pressed as

min
w2Rl;b2R

kwk2

2
(2)

subject to

wT � � (xi) + b � 0 for xi with li = +1,(3)

wT � � (xi) + b � 0 for xi with li = �1:(4)

Note that w can be written as

w =
lX
i=1

�i� (xi) ;

indicating

kwk2 = hw;wi

=

*
lX
i=1

�i� (xi) ;

lX
j=1

�j� (xj)

+
= �TK�;

where � = (�1; �2; :::; �l) 2 Rl and

k (xi; xj) = kij = h� (xi) ;� (xj)i

forms the matrix Kd: Hence the SVM quadratic
programming problem proposed in (2)�(4) takes
the form

min
�;d;b

1

2
�TKd�

subject to�
k+i
�T � � � �b; 1 � i � m;

�
�
k�i
�T � � � b; m+ 1 � i � l (5)

where k+i denotes the column of Kd referring to
the points that lie above the hyperplane and k�i
denotes the column of Kd referring to the points
that lie below the hyperplane. This SVM QP
problem is a well known minimization problem
in the literature when d is considered to be a con-
stant ([11]). By including d 2 Z to this SVM QP

problem as an integer variable our goal is to ex-
press (5) as a mixed convex minimization prob-
lem. We �rst change the constrained minimiza-
tion problem given in (5) to the unconstrained
minimization problem

f : Rl � R� Z! R

(�; b; d) ! f (�; b; d) = min
�;d;b

1

2
�TKd�

+
lX
i=1

�
(ki (d))

T
�+ b

�2
; (6)

where � = (�1; �2; :::; �l) 2 Rl and b 2 R are the
real variables, and d 2 Z is the integer variable
of the proposed problem in (6). We consider K
as a function of d and express it as Kd.

2. Mixed Convexity

The convexity conditions of functions with in-
teger and real (mixed) variables have been ob-
tained by many researchers by either �xing the
integer or the real variable. Examples of such
results can be found in [4] for the Erlang de-
lay and loss formulas in telecommunication net-
work queueing systems and in [2] for an inventory
model with time limit on backorders. The mixed
convexity results obtained in [9] are obtained
without �xing the integer or the real variable
where a mixed function, a function with integer
and real variables, 	 : Zn�Rm ! R is de�ned to
be 2-smooth strict mixed convex if it is obtained
from a C2 real variable strictly convex function
	 : Rn+m ! R satisfying 	(d; h) = 	 (d; h) for
8 (d; h) 2 Zn� Rm. The mixed Hessian matrix
corresponding to a 2-smooth strict mixed convex
function 	 is de�ned by

H	 =

24 �
rij	(d; h)

�
n�n

h
ri(@	(d;h)@hk

i
n�m�

@
@hk
(rj	(d; h)

�
m�n

h
@2	(d;h)
@hk@ht

i
m�m

35 ;
(7)

where d 2 Zn; h 2 Rm; 1 � i; j � n and 1 � k;
t � m: In H	,

ri(	(d; h)) = 	 (d+ ei; h)�	(d; h)
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denotes the �rst di¤erence and

rij(	(d; h)) = 	 (d+ ei + ej ; h)�	(d+ ej ; h)
�	(d+ ei; h) + 	 (d; h) (8)

denotes the second di¤erence of 	 with respect
to the discrete variable d where ei is the unit
integer vector at the ith position while @

@h and
@2

@h2 denote the �rst and second partial deriva-
tives of 	 with respect to the real variable h;
respectively. In addition, by applying the follow-
ing theorem obtained in [9], the 2-smooth strict
mixed convexity of a mixed function can be ob-
tained.

Theorem 2.1: A function 	 : Zn � Rm ! R
is 2-smooth strict mixed convex if and only if
the mixed Hessian matrix corresponding to 	 is
positive de�nite.

An example of a 2-smooth strict mixed con-
vex function is given in [9] as follows: Consider
an automated machine that can perform up to
s operations in series where each step takes the
same mean time, with the times distributed ex-
ponentially. If the arrival process is Poisson, we
have an M=Ek=1 queueing system. Let A1 be a
linear cost associated with each operation, A2 be
a linear cost associated with each unit of service,
and A3 a linear cost associated with the length
of the queue, Lq. Then the design problem is to
minimize f : Z� R! R such that

f(k; �) = A1s+A2�+A3(
�

�
)2

(s+ 1)

2s(1� �

�
)

subject to s 2 Z+ and � =
�

�
on the neigh-

borhood U = f� j � > � > 0g : The function f
is shown to be a 2-smooth strict mixed convex
function by using theorem 2.1 in [9] : Note that
the determinant of the mixed Hessian matrix cor-
responding to f;

det (Hf ) =
(C3)

2�4((2 + k(7 + 4k))�2

4k2(k + 1)2(k + 2)(�� �)4�4

+
4(1 + k(5 + 3k))�2

4k2(k + 1)2(k + 2)(�� �)4�4

� 4(1 + k(5 + 3k))��)

4k2(k + 1)2(k + 2)(�� �)4�4 ;

is strictly positive with respect to the speci�ed
constraints.
When d 2 Z+ is assumed to be a con-

stant, the solution to the minimization problem
min 12 kwk

2 is unique with respect to the real
variables � 2 Rl and b 2 R if the Hessian ma-
trix K is positive de�nite where kwk2 is a C2
strict real convex function. In this paper we ob-
tain theoretical mixed convexity and minimiza-
tion results to solve the minimization problems
(5) and (6) by considering the real and the inte-
ger variables simultaneously. The convexity and
optimization results obtained in this paper are of
closed form and the mixed convexity regions ob-
tained are obtained with respect to both integer
and real variables. We suggest an algorithmic
approach to determine the mixed convexity con-
ditions of a mixed function because of the com-
plex nature of the calculations that arise while
�nding the positive de�niteness conditions of the
corresponding mixed Hessian matrix.
We �rst obtain theoretical mixed convexity

results to solve the problems stated in (5) and
(6).
Let

qij = xTi � xj (9)

k (d) = [ki (d)] (10)

kij (d) = (1 + qij)
d (11)

kTij (d) =
�
1 + qTij

�d
(12)

p (d; �) =
1

2
�TKd� (13)

h (�; b; d) =
lX
i=1

�
(ki (d))

T � �+ b
�2
(14)

The �rst di¤erence of p (d; �) given in (13)
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with respect to the integer variable d is

r1p (d; �) =
1

2
�T [Kd+1 �Kd]� =

1

2
�TA�;

where A is an l � l matrix with the elements of
the form

Aij (d) = (1 + qij)
d
qij = kijqij : (15)

Let

ATij (d) =
�
1 + qTij

�d
qTij = k

T
ijq

T
ij : (16)

The �rst di¤erence of h (�; b; d) is

r1h (�; b; d) = r1

 
lX
i=1

�
kTi (d)�+ b

�2!

=
lX
i=1

[(kTi (d+ 1)�+ b)
2

�(kTi (d)�+ b)2]
= B (�; b; d) ; (17)

where

B (�; b; d) =

lX
i;j=1

ATij (d)�j(
�
2kTij (d) +A

T
ij (d)

�
�i+2b):

(18)

The second di¤erence of p (�; b; d) with re-
spect to the integer variable d is

r11p (�; d) =
1

2
�T [k (d+ 2)� 2k (d+ 1) + k (d)]�

=
1

2
�TC�; (19)

where C is an l � l matrix with the components

Cij (d) =
h
(1 + qij)

d
(qij)

2
i
: (20)

The second di¤erence of h with respect to d

is the �rst di¤erence of B (�; b; d). Therefore

r11h (�; b; d) = r1B (�; b; d)

=
lX

i;j=1

r1(C2ij (d)

+2�jCij (d) k
T
ij (d)

+2Cij (d) b)

=
lX

i;j=1

f(ATij (d+ 1)�j) �

([2kTij(d+ 1)

+ATij (d+ 1)]�i + 2b)

�(ATij (d)�j)([2kTij (d)
+ATij (d)]�i + 2b)g:

Let @� :=
�

@
@�1

; @
@�2

; :::; @
@�l

�
denotes the gradi-

ent operator with respect to � 2 Rl. By taking
the gradient of r1f with respect to � we have
the vector

@�r1f (�; b; d) = A�+ @�f
lX
i=1

[(kTi (d+ 1)

�kTi (d))�]((kTi (d+ 1)
+kTi (d))�+ 2b)g

= A�+
lX
i=1

f(kTi (d+ 1)

�kTi (d))T [(kTi (d+ 1)
+kTi (d))�+ 2b]g

+
lX
i=1

[(kTi (d+ 1)� kTi (d))] �

�(kTi (d+ 1) + k
T
i (d))

T

+kTi (d))
T :

= A�+
lX
i=1

0@ lX
j=1

ATij (d)�j

1A �
[(kTi (d+ 1) + k

T
i (d))�+ 2b]

+
lX
i=1

0@ lX
j=1

ATij (d)�j

1A (kTi (d+ 1) :
4
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Rewriting f (�; b; d) we have

f (�; b; d) =
1

2
�T k (d)�+

lX
i=1

(ki (d)�+ b)
2

=
1

2
�T k (d)�+

lX
i=1

[�T kTi (d) ki (d)�

+2bki (d)�+ b
2]:

Hence

@�f (�; b; d) = k (d)�+ 2
lX
i=1

[
�
kTi (d) ki (d)

�
�

+2bkTi (d)]

@�@�f (�; b; d) = kT (d) + 2
lX
i=1

kTi (d) ki (d) :

The elements of the mixed Hessian matrixHf
with respect to the real variable b are

@

@b
r1f (�; b; d) = 2

lX
i;j=1

�
ATij (d)�j

�
(21)

@2f (�; b; d)

@b2
= 2 (22)

@

@b
@�f (�; b; d) = 2kTi (d) : (23)

By using (7) ; the mixed Hessian matrix
Hf (�; b; d) corresponding to f (�; b; d) is

Hf (�; b; d) =

24 r11f @
@br1f [@�r1f ]

r1 @@bf
@2f
@b2

�
@�

@
@bf
�

[r1@�f ]
�
@
@b@�

�
[@�@�f ]

35
by the symmetry property of the mixed Hessian
matrix. By theorem 2.1, f (�; b; d) is strict mixed
convex if and only if the mixed Hessian matrix
Hf is positive de�nite. However it is a compli-
cated task to compute the positive de�niteness of
Hf for large values of the dimension l: Therefore
we provide the following algorithm for symbolic
calculations.

2.1 An Algorithm

The next algorithm can be useful to observe the
strict mixed convexity conditions of f (�; b; d)

with respect to b; d; and � for large values of
l and n. The proposed algorithm can be used to
�nd the region where Hf is positive de�nite by
symbolic programming.

An Algorithm:

Introduce dimensions l and n
De�ne the numerical input data x; and y
Introduce the symbols �; d; and b
Calculate the upper triangular elements of

the matrix Hf (l + 2; l + 2) :
Use symmetry property of the mixed Hessian

matrix to de�ne the lower triangular portion of
Hf
// Checking the positive de�niteness of the

mixed Hessian Matrix.
Calculate the principal minor matrix deter-

minants of Hf : Call them hf :

for all hf
Calculate symbolically det (hf )
If det (hf ) > 0
{ Call this region D1

f in the domain,
print "f is strict mixed convex in D1

f"}
else if det (hf ) < 0
{ Call this region D2

f in the domain,
print "f is not strict mixed convex in D2

f"}
else if det (hf ) = 0
{ Call this region D3

f in the domain,
print "f is not strict mixed convex in D3

f"}
end

3. Optimization Results

In this section we introduce new theoretical
global optimization results for a set of un-
constrained nonlinear mixed optimization prob-
lems after introducing increasing and decreasing
mixed function concepts. The theoretical results
obtained in this section are for unconstrained
nonlinear mixed optimization problems.
Let

Zn[a;1) =
nY
i=1

[ai;1) � Zn
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and

Rm[b;1] =
mY
j=1

[bj ;1) � Rm

where a = (ai)
n
i=1 2 Zn and b = (bj)

m
j=1 2 Rm:

We assume all the functions considered in this
section are C1 unless stated otherwise.

De�nition 3.1: A mixed function f : D !
R is strictly increasing on D � Zn � Rm if
rif (x; y) > 0 and @f(x;y)

@yj
> 0 hold for all

1 � i � n; 1 � j � m and (x; y) 2 D: A mixed
function g : D ! R is strictly decreasing in D if
�g is strictly increasing in D.

Let
D1 = Zn[a;1) � Rm[b;1)

and
D2 = Zn(�1;c] � Rm(�1:d]:

Theorem 3.1: If f : D1 ! R is a strictly
increasing mixed convex function in D1 then
the unconstrained mixed optimization problem
min

(x;y)2D1

f (x; y) has a unique solution attained at

(a; b) :

Proof: Let f : D1 ! R be a strictly increas-
ing mixed convex function in D1: Therefore, by
de�nition 3.1 f satis�es the inequalities

rif (x; y) > 0) f (x+ ei; y) > f (x; y) ;

for all 1 � i � n and all (x; y) 2 D1; and

@f (x; y)

@yj
> 0;

for all 1 � j � m and all (x; y) 2 D1. Suppose on
the contrary to the assumption that there does
not exist a unique global minimum point of f .
Hence assume the existence of the global mini-
mum points (x1; y1) 2 D1 and (x2; y2) 2 D1 of
f (x; y) in the domain D1: Therefore the point
(x1; y1) 2 D1 satis�es

f (x+ ei; y) > f (x1; y1) ; (24)

for all 1 � i � n and all (x; y) 2 D1: Considering
the point (x2; y2) 2 D1;

f (x+ ek; y) > f (x2; y2) (25)

holds for all k = 1; :::; n and all (x; y) 2 D1.
By (24) and (25) ; the inequalities f (x1; y1) >
f (x2; y2) and f (x2; y2) > f (x1; y1) hold. This
gives a contradiction to the strictly increasing
mixed convexity of f . This indicates that the
minimal value is attained when (x; y) = (a; b)
since it is the boundary value of a strictly in-
creasing mixed convex function.

Corollary 3.1: If g : D2 ! R is a strictly
decreasing mixed convex function in D2 then
the unconstrained mixed optimization problem
max g (x; y) for (x; y) 2 D2 has a unique solu-
tion attained at (c; d) :

Proof: The proof follows from theorem 3.1
where we have f = �g in D2:

Corollary 3.2: If f : D1 ! R is a 2-
smooth mixed function with positive de�nite
mixed Hessian matrix for all (x; y) 2 D1, and
f is a strictly increasing mixed function in D1
then f has a unique global minimum point in
D1 which is attained when (x; y) = (a; b) :

Proof: We have f : D1 ! R; D1 � Zn �Rm;
as a 2-smooth mixed function with positive def-
inite mixed Hessian matrix for all (x; y) 2 D1
therefore it is a strict mixed convex function by
theorem 2.1. By the assumption f is a strictly
increasing mixed convex function. Therefore,
by theorem 3.1 f has a unique global minimum
point.

The proof of the following corollary follows
similar to the proof of corollary 3.2.

Corollary 3.3: If g : D2 ! R is a 2-
smooth mixed function with negative de�nite
mixed Hessian matrix for all (x; y) 2 D2, and
g is a strictly decreasing mixed function in D2
then g has a unique global maximum point in
D2 which is attained when (x; y) = (c; d) :
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3.1 Mixed Convexity Examples

We �rst consider the minimization problem given
in (5) without constraints. Considering equation
(13), our goal is to solve min

�;d
p (d; �). As a func-

tion of � 2 Rl when d 2 Z+ is a �xed constant,
it is well known that p (�) is a strict real convex
function when the corresponding mixed Hessian

matrix H =
h�
1 + xTi � xj

�di
l�l

is positive def-

inite. Therefore p (�) has a unique minimum
when Hp is positive de�nite in Rl. When d 2 Z+
is a variable we have

p : Rl � Z+ ! R

(�; d) 7! 1

2
�T
h
(1 + qij)

d
i
�

with the �rst di¤erence

r1p (�; d) = r1
�
1

2
�T
h
(1 + qij)

d
i
�

�
=

1

2
�TA�:

r1p > 0 holds in particular when qij > 0 and
(�; d) 2 (R+)l�Z+ where A has elements of the
form (15). The gradient vector of p is @�p =�
1 + xT � y

�d
� > 0 for all (�; d) 2 (R+)l � Z+:

Therefore by de�nition 3.1, p (�; d) is an increas-
ing function in particular in D = (R+)l � Z+
if qij > 0. Now we consider the mixed Hessian
matrix of p,

Hp =

264 1
2�

TC�
h
(1 + qij)

d
qij

iT
�h

(1 + qij)
d
qij

iT
� [k (d)]

375 ;
where the components of Hp are calculated in
the previous section. Note that Hp is positive
de�nite when 1

2�
TC� > 0 and det (hp) > 0 for

all hp. We let D � (R+)l�Z+ to be the region of
strict mixed convexity of p which is obtained by
positive de�nite mixed Hessian matrix Hp. Not-
ing that p (�; d) is a 2-smooth mixed function,
corollary 3.2 indicates the existence of a unique
minimum value of p in the region D when C is

positive de�nite and all the determinants of the
principal minor matrices (i.e. det (hp) stated in
the algorithm above) are positive de�nite. In the
case when 1

2�
TC� > 0 and det (hp) are positive

de�nite for all (�; d) 2 (R+)l � Z+, the mini-
mum value of p (�; d) is obtained for d = 2 in
the nonlinear case.
Now we consider min

�;b;d
f (�; b; d) given in (6)

with constraints. We �rst observe whether the
�rst di¤erence and the gradient vector of f are
positive or not. It is easy to see from the previous
section that the �rst di¤erence of f is

r1f (�; b; d) = B (�; b; d) +
1

2
�TA�

for all (�; b; d) 2 Rl+1 � Z: The gradient of f is

@�f (�; b; d) = k (d)�+ 2
lX
i=1

[
�
kTi (d) ki (d)

�
�

+2bkTi (d)]

@f

@b
=

lX
i=1

�
2kTi (d) � �+ 2b

�
for all (�; b; d) 2 Rl+1 � Z+: Considering r1f;
@�f and

@f
@b stated above, it is not an easy task

to determine whether f is a strictly increasing
mixed function or not. If we consider (�; b; d) 2
(R+)l � R+ � Z+, it is easy to see that f is a
strictly increasing mixed function when qij > 0.
If the mixed Hessian matrix Hf corresponding
to f is positive de�nite in D = (R+)l�R+�Z+
and since f is an increasing 2-smooth mixed
function in D, corollary 3.2 indicates the exis-
tence of a unique solution of min

�;b;d
f (�; b; d) in

(R+)l�R+�Z+: In this case the minimal value
is obtained when d = 2 for the nonlinear case.

4. Computational Results

The problem of identifying an optimal kernel for
a speci�c class of data with respect to the real
variables is an active research area in the ma-

7
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chine learning community ([10]). The polyno-
mial kernel optimization with respect to the inte-
ger variable (dimension d) is not obtained by any
other researcher to our knowledge. The objective
of this section is to obtain computational results
for some of the matrices used in [10] where SVM
with inhomogeneous polynomial kernel map is
used. Our main goal in this section is to �nd the
dimension d where the obtained kernel matrix is
satis�ed by using the theoretical results obtained
previously in this work.

The determinants of the principle minor
matrices of an n � n matrix H will be de-
noted by Hk�k for all 1 � k � n, and the
corresponding set will be denoted by H =
fH1�1;H2�2; :::;Hn�ng:

A kernel matrix can be constructed as a com-
bination of several kernel maps. In [10] ; the ker-
nel matrix K is generated by using quadratic,
radial-basis, and linear kernel maps with their
corresponding kernel matrices K1; K2; and K3;
respectively. The regression kernel matrix is
computed by using semide�nite programming in
[10] : In this paper we �rst consider the kernel
matrix

K1 =

266664
25 9 1 1 9
9 4 1 0 1
1 1 1 1 1
1 0 1 4 9
9 1 1 9 25

377775

constructed in [10]. Since the set of the determi-
nants of the minor matrices corresponding to K
is H = f25; 19; 8; 0; 0g; K1 is a positive semi def-
inite matrix. Therefore, in the non-linear case d
can be chosen as 2 which indicates con�rms the
choice of the dimension in [10].

Suppose we consider the following matrix K
obtained in [10] as a combination of the radial-
basis, linear and quadratic kernels, and the test

set given by26666664
0:3773 0:111 0:0222 0:111 0:3773 0:2219
0:111 0:0444 0:0222 0:0444 0:111 0:0721
0:0222 0:0222 0:0222 0:0222 0:0222 0:0222
0:111 0:0444 0:0222 0:0444 0:111 0:0721
0:3773 0:111 0:0222 0:111 0:3773 0:2219
0:2219 0:0721 0:0222 0:0721 0:2219 0:1345

37777775 :

Using this matrix we can test whether the
combination of all the kernels can be replaced
with a polynomial kernel for a certain dimen-
sion or not. The set of the determinants of the
minor matrices of K is H = f0:3773; 0:0044;
�4:9284 � 10�8; 0; 0g: This indicates that the
determinant of the 3 � 3 minor matrix is not
positive de�nite therefore the polynomial kernel
for any dimension is not a good method to use.

5. Mixed Variable Unimodal
Functions

The classical de�nition of a real variable uni-
modal function indicates h (t) to be unimodal if
for some value s, h is monotonically increasing
for t � s and f is monotonically decreasing for
t � s. In that case, the minimum value of h is
h(s) and there are no other local minima.
A function h (t) is a weakly unimodal func-

tion if for some value s, it satis�es h (t) � h (s)
for t � s and h (t) � h (s) for t � s. In that case,
the minimum value h (s) can be reached for a
continuous range of values of t ([8]).
Quadratic programming problems with inho-

mogeneous polynomial kernel can have a natural
unimodal structure for both integer and real vari-
ables; therefore, a natural question arises: What
is the unimodality of mixed variable functions?
In this section, we introduce the mixed vari-
able unimodal and semi-unimodal function de�-
nitions where increasing and decreasing function
de�nitions follow from de�nition 3.1. In addi-
tion, we obtain mixed convexity and optimiza-
tion results for mixed variable unimodal func-
tions.
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De�nition 5.1: A mixed variable function
' (z) is unimodal for some value q if it is strictly
decreasing for all z � q and it is strictly increas-
ing for all z � q.
De�nition 5.2: A mixed variable function

' (z) is semi-unimodal for some value q if it is
decreasing for z � q and it is increasing for z � q:
The following result holds similar to the cor-

responding real variable optimization result in
real convex analysis.

Theorem 5.1: A mixed variable unimodal
function ' has a unique minimum point.

Proof: Suppose ' is a mixed variable uni-
modal function. By the de�nition of unimodal
function there exists a vector q0 such that ' is
strictly decreasing for all z � q0 indicating

ri' (x; y) < 0) ' (x+ ei; y) < ' (x; y) ;

for all 1 � i � n , and

@' (x; y)

@yj
< 0;

for all 1 � j � m. Therefore, since ' is strictly
decreasing, there exists a particular value of ei
such that q0 = (x+ ei; y) and z = (x; y) satisfy-
ing

' (z) > ' (q)

Let q0 = (x0; y0). By the de�nition of the
unimodal function, ' is strictly increasing for all
z � q0; therefore we have

ri' (x; y) > 0) ' (x+ ei; y) > ' (x0; y0) ;

for all 1 � i � n , and

@' (x; y)

@yj
> 0;

for all 1 � j � m. Since ' is strictly decreasing
for all z � q0 we have

' (z) > ' (q) :

This indicates that the only possible minimum
point of ' is ' (q) since the existence of any other

minimum point would cause a contradiction with
the de�nition of the unimodal function.

Theorem 5.2: A mixed variable semi-
unimodal function ' has a unique minimum
value however it does not necessarily have a
unique minimum point.

Proof: Suppose ' is a mixed variable semi-
unimodal function. The proof follows similar to
the proof of theorem 5.1 where we replace strict
inequalities with inequalities. This indicates that
there exists a unique minimum value with possi-
ble minimum points of ' where

' (zn) = ' (q)

for some n with zn in the domain of '.

5.1 Examples of Mixed Variable
Unimodal Functions

In this section we give simple examples of uni-
modal and semi-unimodal functions that are con-
dense mixed convex functions.
We will consider 'i : Z2 � R2 ! R for i = 1

and i = 2. Letting

'1 (x1; x2; y1; y2) = (x1 � 0:5)2 + (x2 + 0:4)2

+(y1 � 1)2 + (y2 + 2)2 ;

it is easy to see that '1 is a semi-unimodal func-
tion. There are two points which give the same
minimum value of '1 which is 0:41:
Letting

'2 (x1; x2; y1; y2) = (x1 � 0:6)2 + (x2 + 0:3)2

+(y1 � 0:34)2 + (y2 + 1:7)2 ;

'2 is a unimodal function therefore it has a
unique minimum point (1; 0; 0:34;�1:7).
In the case when the mixed Hessian matrix

corresponding to the SVM QP problem with in-
homogeneous polynomial kernel is positive def-
inite, it is evident that the model given in (5)
without constraints is a mixed unimodal func-
tion.
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6. Conclusion

In this work we �rst considered the SVM QP
problem (5) with the (inhomogeneous) polyno-
mial kernel

k (x; y) =
�
xT � y + 1

�d
which is expressed as a mixed convex optimiza-
tion problem with respect to the real variables
� 2 Rl and b 2 R; and the integer variable d 2 Z.
We derived several theoretical mixed convexity
and optimization results to determine the con-
ditions to �nd the minimal dimension d which
is considered as an integer variable. Through-
out this work several examples of mixed convex
functions are given. Several computational re-
sults are obtained to determine whether there is
an appropriate dimension of the kernel map for
the given kernel matrix or not. In the future we
plan to use this formulation for large scale data
sets.
In addition, we introduced the unimodal

and semi-unimodal de�nitions of mixed variable
functions. The minimization results for uni-
modal and semi-unimodal mixed variable func-
tions are also proven.
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