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Abstract: - Dynamic programming is a mathematical optimization method and a computer programming method
as well. In this paper, the notion of sheaf programming in topological spaces is introduced and it is demonstrated
that it relates very well to the concept of dynamic programming.
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1 Introduction
Dynamic programming is a mathematical optimiza-
tion method and a computer programming method as
well. The method was introduced by Richard Bell-
man [1] in the 1950s and has applications in several
fields. In each case, problem is broken down into
simpler sub-problems in a recursive way. The two
major properties of dynamic programming are over-
lapping sub-problems and optimal substructure. Sub-
problems that need to be solved in a recursion again
and again are solved only once and for all and stored
for future use. Optimal substructure refers to solving
the sub-problems optimally.

This paper introduces the notion of sheaf compu-
tation which amounts to dynamic programming based
on sheaves. The paper is organized as follows. Sec-
tion 2 contains the background on presheaves and
sheaves. Section 3 introduces the notion of sheaf
computation. Section 4 provides some known (and
unusual) examples.

2 Sheaves
In mathematics, sheafs provide a tool for tracking sys-
tematically locally defined data associated to the open
sets of a topological space [2, 4]. This kind of data
can be restricted to smaller open sets, and the data as-
signed to an open set corresponds to all collections
of compatible data assigned to collections of smaller
open sets covering the given one. Sheaves are quite
abstract objects and their definition is rather subtle.
They come as sheaves of rings or sheaves of modules
depending on the type of assigned data.

Let X be a topological space and let R be a com-
mutative ring with unity. A presheaf F of rings on
X consists of the following data:

• For each open subsetU ofX , there is a ringF(U)
given as the ring of R-valued functions on U .

• For each inclusion of open sets V ⊆ U of X ,
there is a ring homomorphism ρV,U : F(U) →
F(V ).

The elements of F(U) are called sections of F over
U . A section over X is called a global section. The
morphisms ρV,U are called restriction maps. Wewrite
σ|V instead of ρV,U (σ) and think of it as restricting the
mapping σ ∈ F(U) to the subset V . The restriction
maps fulfill the following properties:

• F(∅) = 0.

• For each open set U of X , the restriction map
ρU,U = idU is the identity.

• For each inclusion of open setsW ⊆ V ⊆ U , we
have ρW,U = ρW,V ◦ ρV,U

A presheaf can be viewed as a contravariant func-
tor from the category C(X), whose objects are the
open sets in X and whose morphisms are the inclu-
sion mappings, to the category of rings.

A presheafF of rings onX is a sheaf if it satisfies
the following two conditions:

• (Uniqueness) For any open subset U of X , any
open covering U =

∪
i∈I Ui, and any sections

σ, τ ∈ F(U), if σ|Ui
= τ|Ui

for all i ∈ I , then
σ = τ on U .

• (Gluing) For any open subset U of X , any open
covering U =

∪
i∈I Ui, and any family of sec-

tions σi ∈ F(Ui) for i ∈ I such that σi|Ui∩Uj
=

σj|Uj∩Ui
for all index pairs (i, j), there exists a

section σ ∈ F(U) such that σ|Ui
= σi for all

i ∈ I .

These conditions state that sections which are com-
patible in the sense of the gluing property can be
uniquely glued together.
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Sheaves are defined on open sets but the under-
lying topological space X consists of points. Fix a
point x ∈ X and take pairs (U, σ) where U is an
open subset of X with x ∈ U and σ is a section over
U . Two such pairs (U, σ) and (V, τ) are equivalent
if there is an open subset W with x ∈ W ⊆ U ∩ V
and σ|W = τ|W ; this defines an equivalence relation.
The set of all such pairs modulo this equivalence is
the stalk Fx of F at x, which inherits a ring struc-
ture from the rings F(U). The elements (equivalence
classes) of Fx are the germs of F at x.

Let F and G be a sheaves on X . A morphism
ϕ : F → G of sheaves is a collection of homomor-
phisms ϕ(U) : F(U) → G(U), where U ⊂ X is
open, such that for each inclusion U ⊂ V of open
sets, the following diagram commutes:

F(V )

ρV,U

��

ϕ(V ) // G(V )

ρV,U

��
F(U)

ϕ(U) // G(U)

2.1 Sheaf Computations
We describe the notion of sheaf computation in topo-
logical spaces. For this, letX be a topological space,
F be a sheaf of rings on X , and R be a commutative
ring with unity.

For each open subset U ofX , let F(U) denote the
ring of R-valued functions on U . The following pro-
cedure defines inductively sections over X:

1. Base step: Put U = ∅ and take the zero function
σ ∈ F(U).

2. Inductive step: Consider the collection (Ui)i∈I of
open subsets of X for which sections σi, i ∈ I ,
have already been defined. Take the open cover-
ing U ′ =

∪
i∈I Ui and pick a minimal open sub-

set U of X which contains U ′ and for which a
section overU has not yet been defined. By glue-
ing and uniqueness, there is a unique section σ′

over U ′ such that σ′
|Ui

= σi for all i ∈ I . Now
extend the section σ′ to a section σ over U such
that σ|U ′ = σ′.

When a global section σ over X is inductively
reached, we speak of a sheaf computation overX and
R and the global section σ is called the result of the
computation.

Proposition 1. Sheaf computations are well-defined.

Proof. Suppose U ′ is the open subset ofX for which
a section σ′ has already been defined. LetU ′ ⊂ U and

U ′ ⊂ V , where U and V are minimal open sets con-
tainingU ′. To show that sheaf computations are well-
defined, it would be enough to prove that the extended
sections agree on the intersection. To see this, take the
open covering U ∩ V = U ′ ∪ U ′′ with U ′′ ⊂ U, V .
Then U ′ ⊂ U ′ ∪ U ′′ ⊂ U, V , which contradicts the
minimality of U, V . Hence, U ∩ V = U ′ on the sec-
tions coincide.

Intuitively, function-like objects form a presheaf;
they give rise to a sheaf if the functions exhibit a local
behaviour [2].

Sheaf computations are deterministic when a total
ordering on the minimal open subsets U of X con-
taining U ′ is given.

Sheaf computations are finite if the underlying
topological space X is Noetherian. A Noetherian
topological space is a topological space X in which
the closed subsets fulfill the descending chain con-
dition. Equivalently, the open subsets of X satisfy
the ascending chain condition, since each open sub-
set is the complement of a closed subset. Equiva-
lently, each open subset U ofX is compact, i.e., each
open cover of U has a finite open subcover. For in-
stance, each affine variety is a Noetherian topological
space [2].

Proposition 2. If X is a Noetherian topological
space, the procedure of sheaf computation provides
a global section over X .

A topology on X indudes a subspace topology on
any subset Y of X . For this, the open subsets of Y
are of the form Y ∩ U where U is an open subset
of X . Note that if Y is open, the open subsets of Y
in the subspace topology are exactly the open subsets
of X contained in Y . From this perspective, a sheaf
computation of a global section σ overX follows the
paradigm of dynamic programming.

3 Examples
In the following examples, the topological spaces are
built up from bases. The base B for a topological
space X is a collection of open sets in X such that
each open set in X can be written as a union of el-
ements of B. Bases have two important properties:
(1) The base elements coverX . (2) Let U1 and U2 be
base elements and let U be their intersection. Then
for each element x ∈ U , there is a base element U3

with U3 ⊆ U and x ∈ U3. In particular, if the base
B is closed under intersection, then U is also a base
element.

Example 1. Let n ≥ 0 be an integer. The set X =
[n] = {i | 0 ≤ i ≤ n} forms a topological space
in which (except U−1 = ∅ and X) the subsets Ui =
{0, . . . , i} for 0 ≤ i ≤ n are open. For each integer
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i ≥ 0, the open subset Ui of X has Ui−1 as unique
maximal open subset. Thus an already defined section
σi−1 over Ui−1 can only be extended to a section σi
over Ui, where σi(u) = σi−1(u) for each u ∈ Ui−1.

♢
Example 2. Let m,n ≥ 0 be integers. Consider the
cartesian product set X = [m] × [n] = {(i, j) | 0 ≤
i, j ≤ n}. For each pair (i, j) ∈ [m]× [n], define the
rectangular set

Ui,j = {(k, l) ∈ X | 0 ≤ k ≤ i, 0 ≤ l ≤ j}.
Take the sets Ui,j as basis of the topological spaceX .
Put Ui,−1 = ∅ and U−1,j = ∅ for all i ∈ [m] and
j ∈ [n]. Each open subset U of X has the shape of
an irregular staircase (Fig. 1).

0

Figure 1: Open subset as staircase.

Given an open subset U ′ of X , a minimal open
subset U containing U ′ has the form U = U ′∪Ui,j =
U ′ ∪ {(i, j)}, where (i, j) ∈ X is the only point not
contained in U ′. In this way, the section σ′ on U ′ can
be extended to a section σ on U by assigning (i, j) a
value σ(i, j).

For instance, consider the dynamic programming
algorithm of Needleman-Wunsch [3] for the align-
ment of two sequences of length m and n. This al-
gorithm defines a function σ : X → R by setting
σ(0, 0) = 0 and for all (i, j) ∈ X ,

σ(i, j) = min

{
σ(i− 1, j) + c(i− 1, j),
σ(i, j − 1) + c(i, j − 1),
σ(i− 1, j − 1) + c(i− 1, j − 1)

}
,

where c : X → R is a function depending on the two
sequences to be aligned. This is a sheaf algorithm
defining a global section σ overX . Here a section σ′

over U ′ = Ui−1,j ∪ Ui,j−1 is extended to a section σ
over Ui,j by defining the value σ(i, j) in dependence
of σ′ and c (Fig. 2).

♢

0

j − 1

j

i − 1 i

Figure 2: Staircase U ′ = Ui−1,j ∪ Ui,j−1.

Example 3. Let An denote the affine n-space over a
field K. Consider the zero set X ⊆ A4 given by the
equation x1x4 = x2x3 [2]. The underlying topology
is the Zariski topology and the distinguished open sets
form a basis of the Zariski topology on X .

Let U ⊂ X denote the open subset of all points in
X where x2 ̸= 0 or x4 ̸= 0. The quotient x1

x2
is defined

on the set U2 of all points ofX where x2 ̸= 0, and the
quotient x3

x4
is defined on the set U4 of all points ofX

where x4 ̸= 0. The sets U2 and U4 are distinguished
open sets, but U = U2 ∪ U4 is not a distinguished
open set. Both quotients are the same when they are
both defined, since then

x1
x2

=
x3
x4

.

Consider a monadic function f : K → K. Define
the sections σ2 : U2 → K and σ4 : U4 → K as
σ2(x1, x2, x3, x4) = f(x1

x2
) and σ4(x1, x2, x3, x4) =

f(x3

x4
), respectively. It is clear that both functions are

equal on the intersectionU2∩U4. SinceU = U2∪U4,
we have a section σ′ : U → K where σ′

|U2
= σ2 and

σ′
|U4

= σ4. A global section σ : X → K can be
defined say by defining σ(x1, x2, x3, x4) = 1 for all
points in X which are not in the union U2 ∪ U4 and
σ|U = σ′.

♢
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