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1 Introduction 
Stochastic quantum fields [1-17] and classical 
hydrodynamic fields [18-29] viewed as ensembles of 
weakly coupled oscillators resulted in the 
introduction of a scale-invariant model of statistical 
mechanics [30] and its application to the fields of 
thermodynamics [31], fluid mechanics [32-33], 
statistical mechanics [34], and quantum mechanics 
[35].  In the present study, some implications of the 
model to the physical foundation of classical and 
statistical thermodynamics and Boltzmann 
thermodynamic entropy versus Shannon information 
entropy as well as Nernst-Planck statement of the 
third law of thermodynamics are examined. 
 

2 A Scale-Invariant Model of 

Statistical Mechanics 
The scale-invariant model of statistical mechanics 
for equilibrium galacto-, planetary-, hydro-system-, 
fluid-element-, eddy-, cluster-, molecular-, atomic-, 
subatomic-, kromo-, and tachyon-dynamics 

corresponding to the scale g, p, h, f, e, c, m, a, s, 
k, and t is schematically shown in Fig. 1 [31].  Each 
statistical field is identified as the "system" and is 
composed of an ensemble of "elements" described by 

a distribution function f

(u


) = f


(r


, u


, t


) dr


du


.  

Each element is composed of an ensemble of small 
particles called the "atoms" of the field and are 
viewed as point-mass.  The most probable element 
(system) velocity of the smaller scale (j) becomes the 
velocity of the atom (element) of the larger scale 
(j+1). 
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Fig. 1 A scale invariant view of statistical mechanics 

from cosmic to tachyon scales.  

 

 Following the classical methods [36-41] the 

invariant definition of density , and velocity of 

element v

, atom u


, and system w


 at the scale  are 

[35, 42] 



ρ n m m f du          u

 = vmp (1) 



1m f d

     
  v u u   w

= vmp (2) 



Similarly, the invariant definition of the peculiar and 
diffusion velocities are introduced as  
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  
 V u - v  , 

  
V v - w  (3) 



such that   


1 
V V  (4) 

 

 When the model is applied to social structures 
one arrives at the cascade shown in Fig. 2. 
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Fig. 2 Hierarchy of social structures from cosmic to 

individual or atomic scales.  

 
Interestingly, as signs for capacity of number of 
people in elevators in Athens show, in Greek a 
person is referred to as “atom” that is the smallest 
unit of social structure shown in Fig. 2.  The 
correspondence between statistical fields in Figs. 1-2 
clearly show the physical and objective basis of 
information and its communication between “atoms” 
or individuals be it in the form of particle exchange 
or exchange of more complex symbols such as 
words or numbers.  In this sense, the information 
theory like all other branches of science must of 
course be a subset of the theory of everything TOE 
(Fig. 1). 

 

3 Stochastic Natures of Planck and 

Boltzmann Constants and De Pretto 

Number 8338 
Because at thermodynamic equilibrium the mean 
velocity of each particle, Heisenberg-Kramers 

virtual oscillator [43], vanishes <u> = 0 the 
translational kinetic energy of particle oscillating in 

two directions (x+, x) is expressed as  
 

2 2
x xm u / 2 m u / 2              

        2 2 1/2 2 1/2
xm u p                (5) 

 

where 
2 1/2

xp m u
   
   is the root-mean-square 

momentum of particle and <u2
x> =<u2

x> by 

Boltzmann equipartition principle.  At any scale , 
the result in Eq. (5) can be expressed in terms of 
either frequency or wavelength  
 

2 2 1/2 2 1/2m u p h                       (6a) 
 

2 2 1/2 2 1/2m u p k                       (6b) 
 

when the definition of stochastic Planck and 
Boltzmann factors are introduced as [33] 
 

2 1/2h p                 (7a) 
 

2 1/2k p               (7b) 
 

 At the important scale of EKD (Fig. 1) 
corresponding to Casimir [44] vacuum composed of 
photon gas, the universal constants of Planck [45, 
46] and Boltzmann [31] are identified from equations 
(6)-(7) as  
 

2 1/2 34
k k kh h m c 6.626 10       J-s (8a) 

 

2 1/2 23
k k kk k m c 1.381 10       J/K (8b) 

 

Next, following de Broglie hypothesis for the 
wavelength of matter waves [2]   
 

h / p    (9a) 
 

the frequency of matter waves is defined as [31] 
 

k / p               (9b) 
 

When matter and radiation are in the state of 
thermodynamic equilibrium equations (9a) and (9b) 
can be expressed as 
 

kh h h    ,    kk k k        (10) 
 

 The definitions in equations (8a) and (8b) result 
in the gravitational mass of photon [31] 
 

3 1/2 41
km (hk / c ) 1.84278 10    kg    (12) 

 

that is much larger than the reported [47] value of 
514 10

  kg.  The finite gravitational mass of 

photons was anticipated by Newton [48] and is in 
accordance with Einstein-de Broglie theory of light 
[49-53]. Avogardo-Loschmidt  number was predicted 
as [31]  
 

o 2 23
kN 1/(m c ) 6.0376 10                      (13) 

 

leading to the modified value of the universal gas 
constant  
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o oR N k 8.338    kJ/(kmol-K)     (14) 
 
 

Also, by Eq. (13) the atomic mass unit becomes 
 

2
kamu m c  

  
1/2 27(hkc) 1.6563 10    kg/kmol   (15) 

 

Since all baryonic matter is known to be composed 
of atoms, equations (12) and (15) suggest that all 
matter in the universe is composed of light [54].  
From Eqs. (8a)-(8b) the wavelength and frequency 

of photon in vacuum 
2 1/2 2 1/2
k k c      are  

 

2 1/2 o
k k 1/ R 0.119935       m    ,     

 

     
2 1/2 9

k k 2.49969 10        Hz        (16) 

 

 In a recent study [35] a modified definition of 

thermodynamic temperature T 2T   was introduced 
that resulted in the modified value of Joule-Mayer 
mechanical equivalent of heat J [35] 
 
 

cJ 2J 2 4.169 8338    Joule/kcal        (17) 

 

 

where the classical value cJ 4.169 4.17 [kJ/kcal] 

is the average of two values Jc = (4.15, 4.19) reported 
by Pauli [55].  The number in Eq. (17) is thus 
identified as the universal gas constant in Eq. (14) 
when expressed in appropriate MKS system of units  
 

o oR kN J 8338         Joule/(kmol-K)      (18) 
 
 

The modified value of the universal gas constant in 
Eq. (14) was recently identified [56] as De Pretto 
number 8338 that appeared in the mass–energy 
equivalence equation of De Pretto [57] 
 

2 2Joule E mc      = mc / 8338   kcal       (19) 
 

 Unfortunately, the name of Olinto De Pretto in 
the history of evolution of mass energy equivalence 

is little known.  Ironically, Einstein’s best friend 
Michele Besso was a relative and close friend of 
Olinto De Pretto’s brother Augusto De Pretto.  
The relativistic form of equation (19) was first 
introduced in 1900 by Poincaré [58] 
 

2
rE m c                (20) 

where 
2 2

r om m / 1 v / c  .  Since the expression 

(19) is the only equation in the paper by De Pretto 
[57], the exact method by which he arrived at the 
number 8338 is not known even though one possible 
method was recently suggested [56].  The important 

contributions by Hasenöhrl [59] and Einstein [60] 
as well as the equivalence principle, equivalence of 

the rest or gravitational mass and the inertial mass 
were discussed in a recent study [54]. 

According to Eq. (15) mass is simply associated 
with numbers in harmony with the perceptions of 
Sommerfeld [61] 




"Our spectral series, dominated as they are by 

integral quantum numbers, correspond, in a sense, to 

the ancient triad of the lyre, from which the 

Pythagoreans 2500 years ago inferred the harmony of 

the natural phenomena; and our quanta remind us of 

the role which the Pythagorean doctrine seems to have 

ascribed to the integers, not merely as attributes, but 

as the real essence of physical phenomena." 
 

as well as the ideas of Weyl [62]. 

4. Objective versus Subjective Nature 

of Thermodynamic Entropy 
Possible subjective versus objective nature of 
entropy has been subject of much debate ever since 
1948 when Shannon [63-64] used the name entropy 
in his information theory.  The objective nature of 
thermodynamic entropy is evident form its classical 
definition first introduced by Clausius 
 

revd d / TS Q            (21) 
 

In other words, direct connection between entropy S 
and heat Q clearly establishes the objective nature of 
the former.   
 The misunderstandings concerning possible 
subjective nature of entropy could be due to its 
statistical definition first introduced by Boltzmann 
 

k ln WS    ,  j jkln WS       (22) 
 

The total number of complexions for independent 
energy levels introduced by Boltzmann [65-67] and 
Planck [45] is 
 

j
j

W W                   (23) 

The number of complexions for distributing Nj 
indistinguishable particles among gj distinguishable 
clusters or “quantum states” for level (element) j is 
 

 

j j
j

j j

(N g 1)!
W

N ! (g 1)!
 




          (24) 

 

 According to the present model of statistical 
mechanics gj denotes number of distinguishable 
clusters (elements) in a particular energy level j of 
the system [35].  However, the smallest cluster 
contains only a single particle and is therefore 
considered to be full since no other particle can be 
added to this smallest cluster.  Because an empty 
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cluster has no physical significance, the total number 
of available clusters or quantum states will be 

j(g 1) .  Therefore, Planck-Boltzmann formula (24) 

is the exact probability of distribution of jN  

indistinguishable oscillators amongst j(g 1)  

distinguishable available clusters.  The invariant 
model of statistical mechanics (Fig. 1) provides new 
perspectives on the probabilistic nature of Eq. (24) 
and the problem of distinguishability discussed by 
Darrigol [68].   
 Under the realistic assumptions  
 

j jg N   ,  jN 1      (26) 
 

 

it is known that the number of complexions for 
Bose-Einstein statistics in Eq. (24) simplifies such 
that all three types namely Corrected Maxwell-
Boltzmann, Bose-Einstein, and Fermi-Dirac 
statistics will have [69] 
 

 

jN
j j jW N / N !    ,      

NW N / N!   (27) 
 

According to the classical methods the maximization 
of W in Eq. (23) will result in the Boltzmann 
distribution [42]  
 

j j j jˆ ˆ( ) ( )/kT
j j jN g e g e      
         (28) 

 

The coefficient multiplying chemical potential j̂  

was shown to be unity  = 1 [42] and the partition 
function for normalization is defined as 
 

j jˆ( )
jZ g e  




        (29) 
  

 According to the information theory of Shannon 
[67-68] the amount of information H also referred to 
as “entropy” is expressed by Shannon formula 

 

max j j
j

H K lnp p          (30) 

 

where K is a positive constant.  The above definition 
is based on conditional probability for occurrence of 
event j given a message A [69] 
 

j j
ˆ Kln[ (j / A) / ]i p p        (31) 

 

Only with maximum value of the conditional 
probability  
 

j( j / A) 1p            (32) 

equation (31) reduces to  
 

max j
ˆ Klni p                (33) 

thus leading to the mean value of information 
entropy [69] 
 

max max j j j
j j

ˆH K lni p p p          (34) 

 
 The thermodynamic “entropy” on the other 
hand is often derived on the basis of number of 
complexions for distribution of particles amongst 
various quantum states expressed as 
 

j
j

W N!/ N !              (35) 

 

The W in Eq. (35) along with the definition of 
probability  
 

j jN / Np            (36) 
 

when substituted in Boltzmann equation (22) lead to 
“entropy” [69]  
 

j j
j

Nk ln W Nk lnS p p           (37) 

 

Clearly, Eq. (37) does not represent the true 
thermodynamic entropy of Boltzmann and the 
discrepancy arises from the fact that W in Eq. (35) 
does not correspond to that in Eq. (23). 
 It is desirable to avoid the above mentioned 
discrepancy between Eq. (37) and the true 
thermodynamic entropy of Boltzmann. In other 
words, one wishes to establish the exact relationship 
between Shannon’s entropy of information in Eq. 
(30) and the true thermodynamic entropy that 
represents the degree of randomness of energy 
distributions of particles amongst particle clusters, 
de Broglie wave packets, in statistical fields as 
measured by the number of complexions according 
to Boltzmann equation (23). Therefore, rather than 
the conventional definition in Eq. (36) the 
thermodynamic probability pj is defined as 
 

j jW / Wp            (38) 
 

Next, since Boltzmann entropy represents a measure 
of uncertainty or randomness from Eq. (22) and in 
harmony with ideas of Brillouin [70] the difference 
between maximum entropy and entropy of state j is 
defined as a measure of information that by Eq. (38) 
gives   
 

jmax max j jI S k lnS p           (39) 
 

Since reduction of uncertainty from its maximum 
value to that of state j is equivalent to an increase of 
certainty it constitutes information as schematically 
shown in Fig. 3. 
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Fig. 3 Scale-invariant definition of thermodynamic 

information defined as reduction of absolute 

uncertainty or entropy Imax = Smax – Sj. 

 

Hence, parallel to Eq. (34) the mean value of 
thermodynamic information becomes 
 

max jmax j j j
j j

I I k lnp p p         (40) 

 

The equations (30) and (40) now only differ by the 
universal Boltzmann constant k.   
 The occurrence of the universal constant k has 
fundamental significance.  According to equations 
(7)-(8) Planck and Boltzmann constants are two 
fundamental constants of nature that relate to spatial 
and temporal aspect of Casimir [44] vacuum 
fluctuations. Because all conceivable information 
must be transmitted by some physical entity, such as 
electron, photon, or neutrino, etc. in space-time, it is 
reasonable to expect that both constants (h, k) will 
play a central role is transmission of information.  
Therefore, it is not advisable to modify 
thermodynamic entropy in Eq. (40) to achieve 
correspondence with Eq.  (30). Instead one can 
simply define dimensionless Boltzmann 
thermodynamic information entropy as   
 

max max j j
j

H I / k lnp p         (41) 

 

in exact correspondence with dimensionless 
Shannon information entropy in Eq. (30). 
 The classical definition of entropy by 
Boltzmann is based on the number of complexions 
according to equations (22)-(24).  However, it is 
possible to introduce a modified definition of 
thermodynamic entropy as 
 

j jklnS p            (42) 
 

that is exactly equivalent to thermodynamic entropy 
of Boltzmann described in an earlier study [42].  To 

arrive at the modified definition in Eq. (42) one first 
introduces the thermodynamic probability as 
 

j jN / Np            (43) 
 

that will be directly related to thermodynamic 
equilibrium distribution function of Boltzmann in 
Eq. (28) normalized as  
 

j j(E E)/kT /kT
jN Ne Ne H  
       (44) 

 

The simplification in Eq. (44) is due to the vanishing 

of chemical potential jˆ 0   of ideal gas at 

equilibrium by to the equilibrium conditions G = dG 

= 0 [42].  Next, one identifies the energy (Ej  E) in 

Eq. (44) as the transition energy or enthalpy jH  of 

energy level j that for an ideal gas is given by 
 
 

j j j j j jp 3N kT + N kT = 4N kTH U V =     (45)  

 

Because Boltzmann distribution in Eq. (28) is 
obtained from maximization of Wj one can relate 
entropy to the probability pj based on Boltzmann   
distribution obtained from equations (43) - (45) as 
 

 

j j/kT 4N
j jN / N e eH

p
 

        (46) 
 

Finally, by substitution from Eq. (46) into Eq. (42) 
one obtains  
 

j j= 4N kS            (47) 
 

in exact agreement with the result obtained based the 
number of complexions [42].  Therefore, the reason 
for the validity of equivalence of equations (22) and 
(42) is that equations (43) and (46) are connected to 
thermodynamic equilibrium through Boltzmann 
distribution in Eq. (44) that in turn was derived on 
the basis of maximization of Wj [42]. 
 The probability function in Eq. (46) and its 
origination from the Boltzmann distribution function 
in Eq. (44) helps to clarify the nature of the 
connection between thermodynamic entropy of 
Boltzmann and the information entropy of Shannon.  
To better reveal this connection, one first notes that 
the concept of entropy according to Boltzmann’s 
statistical definition in Eq. (22) concerns 
maximization of randomness by maximization of 
number of complexions W.  For example, when 
applied to photon gas representing equilibrium 
black-body radiation maximization of W will 
correspond to having a spectrum of photon cluster 
sizes, de Broglie molecules of light, with energy 
distribution given by Planck energy spectrum [35, 
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42].  It is noted that the entropy of equilibrium 
photon gas given by Eq. (47) involves number Nj of 
Planck or Heisenberg-Kramers virtual oscillators, as 
well as the universal constant of Boltzmann such that 
the total energy of the energy-level j may be 
expressed as [42] 

j
j j j j j tj j j

û 4T = 4N kT = 4N 4N
3 3

S U     (48) 

 

In Eq. (48) the mean energy of oscillator involving 

the product tj jkT  is divided into two parts the 

first part 4Njk is the definition of entropy by Eq. 
(47) and the second part Tj relates to the de Broglie 
wavelength of oscillator by Eq. (6b) as 
 

2 1/2 2 1/2
t p k kT                      (49) 

 

As a result the definitions of (k, T) lead to conjugate 
roles of thermodynamic properties (S, T) such that 
their product gives the oscillator energy in Eq. (48). 
 Now that the role of constant k in Boltzmann 
thermodynamic entropy has been identified, possible 
role of the universal constant k in Shannon 
information entropy will be examined.  First, it is 
noted that all communications and exchange of 
information must involve some kind of physical 
entity such as a particle like molecule, atom, 
electron, photon, neutrino, … involving molecular-
dynamics, … electro-dynamics, chromo-dynamics, 
…  statistical fields.  Such fundamental approach to 
communication theory can also address the problem 
of conveying information by ensembles of different 
types of symbols such as alphabets, A, B, C, … and 
alphabet clusters containing NA, NB, NC, …   
alphabets such as encountered in the information 
theory of Shannon [67, 68].  Hence, parallel to 
system of ideal gas, one seeks a spectrum of 
“alphabet cluster” or “word” sizes that will 
maximize the entropy i.e. total randomness of the 
system such that the number of complexions 
expressed by corresponding Boltzmann-Planck Eq. 
(24) is maximized.  Under “equilibrium” distribution 
alphabet-cluster sizes will correspond to maximum 
randomness and hence entropy and thus minimum 
information in accordance with Fig. 3.  It is now 
clear that in order to insure an exact correspondence 
between Boltzmann and Shannon entropy one must 
let K = k and write Shannon formula Eq. (33) as  
 

max j
ˆ k lni p              (50) 

 

Indeed, concerning the positive constant K in his 
formula in Eq. (33) Shannon writes [63- 64] 
 

“The choice of the coefficient K is a matter of 

convenience and amounts to the choice of a unit of 

measure” 
 

Equation (50) leads to modified Shannon formula 
 

max max j j j
j j

ˆH k lni p p p        (51) 

that is now in exact correspondence with Boltzmann 
formula in Eq. (40).  The information entropy in Eq. 
(51) insures that the conjugate thermodynamic 
properties (S, T) are such that their product TS will 
relate to the system energy as expressed in Eq. (48).  
The Boltzmann constant k = K in Eq. (51) does 
indeed relate to the choice of the “measure” as was 
anticipated by Shannon [63-64].  This is because 
according to the present theory thermodynamic 
temperature is identified as a length scale 

2 1/2T


   that is de Broglie wavelength according 

to equations (6) and (9).  Therefore, in exact 
agreement with the perceptions of Shannon as 
described in the above quotation, the constant K = k 

is related to the measure 
2 1/2T


   since the product 

kT gives the mean particle energy according to Eq. 
(49).  In other words, the introduction of k in Eq. 
(51) is necessary since it allows the entropy of 
information to be related to energy through de 
Broglie wavelength of the particles being used to 
transmit the information. 
 Recently, it was suggested by Ben-Naim [71] 
that to achieve exact correspondence between 
Boltzmann’s entropy in thermodynamics in Eq. (40) 
and Shannon’s entropy in information theory in Eq. 
(34) the dimension of thermodynamics absolute 
temperature be changed  
 

“One should redefine a new absolute 

temperature; denote it tentatively as T  to replace 

kT. The new temperature T  would have the units 

of energy and there would be no need for 

Boltzmann constant.  The equation for entropy 

will be simply S = lnW, 
21

 and entropy would be 

rendered dimensionless”; “This will automatically 

expunge the Boltzmann constant kB from the 

vocabulary of physics” 
 

 According to the definitions in equations (5)-
(10) of Section 3 Planck h and Boltzmann k 
constants are associated with the stochastically 
stationary aspects of Casimir [72] vacuum 
fluctuations with the dimensions 
 

2 1/2h h             [J-s].[Hz] = [J]   (52a) 

2 1/2k k           [J/m].[m]= [J]   (52b) 
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Therefore, just like Planck constant h what he 
named Boltzmann constant k cannot be expunged 
from the vocabulary of physics.  Also, according to 
Eq. (6b) Kelvin absolute temperature is identified as 
a length scale associated with mean wavelength of 
thermal oscillations.   
 

2 1/2k kT               (53) 

 

The identification of dimension of absolute 
thermodynamic temperature as [meter] rather than 
[degree K] is a step towards clarification of the exact 
physical nature of this intensive property.   
 Because temperature is a measured quantity 
ultimately it is the theory that must determine the 
significance of such a variable and its dimension 
according to Planck [73]. 
 

“Every measurement first acquires its meaning 

for physical science through the significance 

which a theory gives it” 
 

Therefore, following Planck’s suggestion, it is 
reasonable to change the dimension of absolute 
thermodynamic temperature T from [degree K] to 

[meter].  The exact correspondence between maxH  

and Imax could be achieved through the definition of 
dimensionless thermodynamic information entropy 

maxH  in Eq. (41).  

 Arguments have also been made that the very 
name entropy first coined by its discoverer Clausius 
should be changed [74] 
 

“It is also time to change not only the units of 

entropy to make it dimensionless, but the term 

“entropy” altogether. Entropy, as is now 

recognized, does not mean “transformation, or 

“change” or “turn”.  It does mean information.  

Why not replace the term that means “nothing” 

as Cooper noted, and does not even convey the 

meaning it was meant to convey when selected by 

Clausius?  Why not replace it with a simple, 

familiar, meaningful, and precisely defined term 

“information?” 
 

 It is emphasized however that contrary to the 
above quotation the name entropy has been chosen 
most appropriately by Clausius to represent 
precisely what it should namely “transformation”.  
According to the result in Eq. (47) for ideal gas, 
entropy relates to the number of Planck [45] or 
Heisenberg-Kramers oscillators [43].  Therefore, the 
second law of thermodynamics suggests that in all 
natural processes there is a tendency to transform 
energy and hence motion from ordered motions of a 
few large-scale oscillators to random motions of 
many small-scale oscillators thus increasing the 

entropy of the system.  In other words entropy 
according to its macroscopic definition by Clausius 
is directly related to heat  
 

revd d / TS Q           (54) 
 

Therefore, all types of energy dissipation induced by 
plastic deformation, friction, viscosity,… will lead to 
transformation of ordered (correlated) motions into 
disordered (uncorrelated) random motions that is 
heat thus leading to increased entropy by Eq. (54). It 
seems that if we follow the changes of dimensions 
and notations suggested by Ben–Naim [71, 74] the 
state of our scientific terminology may become void 
and hence approach what he calls “Tohu Vavohu” 
[71] meaning total chaos.  
                                                                                                                                                                                                                               

5. Impact on Nernst-Planck Third Law 

of Thermodynamics  
According to Nernst-Planck statement of the third 
law of thermodynamics, entropy must approach zero 
as absolute thermodynamic temperature approaches 
zero.  Another statement of the third law is [75] 
 

“It is impossible to reach absolute zero 

using a finite number of processes” 
 

or the absolute zero temperature cannot be reached 
with a finite number of steps.  Examination of Fig. 1 
clearly shows that the very definitions of space and 
time that is applicable across the hierarchies of 
embedded statistical fields become complicated [35] 
and demand careful investigations.   Recently, it was 
suggested [42] that the description of the hierarchy 
of statistical fields shown in Fig. 1 could be 
expressed in terms of a logarithmic coordinates 
schematically shown in Fig. 4. 
 

    

 + 1 1 + 1 0 + 1 1 +1

0 1    1 

  +1

 = 
2 

 = 
2 

 
 
 
 
 

Fig. 4 Hierarchy of normalized coordinates 

associated with embedded statistical fields [42]. 
 

Because according to Eq. (53) thermodynamic 
temperature is identified as a length scale in view of 
Fig. 4 one arrives at a hierarchy of absolute zero 
temperatures [42] 
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     . . .  
 

β β β 1 β 1T 0 T 1
 

    

              β-1 β-1 β-2 β-2T 0 T 1      

                               . . .   (55)  
 
 

Furthermore, entropy of an ideal gas is a measure of 
the number of oscillators by Eq. (47). Therefore, 
from Nernst-Planck statement of the third law and 
Eq. (55) one arrives at the hierarchy of “absolute 
zero” temperature and corresponding “absolute zero” 
entropy schematically shown in Fig. 5. 
 

 

       

S

T0 TV

S

G

G1

T1
TV1

01

02
T2

TV2

S1

S2

 
 

Fig. 5 Hierarchy of absolute “zeros” T = 0 and 

“vacuum” Tv temperatures and associated entropies 

approached at equilibrium corresponding to 

minimum Gibbs free energy G or maximum entropy 

S [42]. 

 
The hierarchy shown in Fig. 5 is associated with the 
hierarchy of vacua at equilibrium conditions and the 
associated entropy and enthalpy leading to the 
vanishing of invariant Gibbs free energy 
 

v v v vT 0G = H S =          (56) 
 
as discussed in Sec. 10 of an earlier study [42].  
 

 

 

6. Concluding Remarks 
A scale-invariant model of statistical mechanics was 
applied to describe the nature of the connection 
between Boltzmann thermodynamic entropy and 
Shannon information entropy.  Also, the application 
of the model to statistical fields associated with 
social structures was described.  It was shown that 
the equality of the positive constant K in Shannon’s 

formula for information entropy and the Boltzmann 
constant k in Boltzmann formula for thermodynamic 
entropy insure the consistency between the energy 
and de Broglie wavelengths of particles being used 
to transmit information.  Finally, the impact of the 
model on the Nernst-Planck statement of the third 
law of thermodynamics was briefly discussed. 
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