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Abstract: This work aims to expand the knowledge of the area of data analysis through both persistence 
homology, as well as representations of directed graphs. To be specific, we looked for how we can analyze 
homology cluster groups using agglomerative Hierarchical Clustering algorithms and methods. Additionally, the 
Wine data, which is offered in R studio, was analyzed using various cluster algorithms such as Hierarchical 
Clustering, K-Means Clustering, and PAM Clustering. The goal of the analysis was to find out which cluster's 
method is proper for a given numerical data set. By testing the data, we tried to find the agglomerative 
hierarchical clustering method that will be the optimal clustering algorithm among these three; K-Means, PAM, 
and Random Forest methods. 

By comparing each model's accuracy value with cultivar coefficients, we came with a conclusion that K-Means 
methods are the most helpful when working with numerical variables. On the other hand, PAM clustering and 
Gower with random forest are the most beneficial approaches when working with categorical variables. All these 
tests can determine the optimal number of clustering groups, given the data set, and by doing the proper analysis. 

 
Using those the project, we can apply our method to several industrial areas such that clinical, business, and 
others. For example, people can make different groups based on each patient who has a common disease, 
required therapy, and other things in the clinical society. Additionally, for the business area, people can expect to 
get several clustered groups based on the marginal profit, marginal cost, or other economic indicators. 
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1. Introduction 

As society continues to become more 
technologically advanced, the collection of data has 
become significantly easier and is done in almost 
every facet of life. We can collect data on nearly 
anything, from the performance of our favorite 
sports team to the propagation of specific strains of 
the flu. Data collection, in most instances, isn't as 
much of a barrier as knowing how to interpret that 
data and finding what is relevant in each data set. 

This is where data science and analysis come into 
the picture. Many researchers are working on varied 
techniques that will help to analyze massive data 

sets and squeeze out whatever relevant data they can 
muster. Fundamental statistical analysis has been 
done for years. Still, in many cases, the tests that 
have been around for decades can't keep up with the 
sheer volume and magnitude of the data sets we 
have available. 

One approach that can be used for much larger data 
sets is to look for clusters within the data. We search 
for occurrences that are similar to one another and 
look for large sets of data points that can be 
grouped. However, with this method, many 
questions need to be answered. What scale should 
be used when searching for clusters? How close 

WSEAS TRANSACTIONS on COMPUTERS 
DOI: 10.37394/23205.2020.19.38 Suboh Alkhushayni, Taeyoung Choi, Du’a Alzaleq

E-ISSN: 2224-2872 310 Volume 19, 2020

mailto:Suboh.alkhushayni@mnsu.edu
mailto:Taeyoung.choi@mnsu.edu
mailto:dua-al-zaleq@mnsu.edu


should the points be together to be considered 
related? What happens if there is a large cluster of 
data with a gaping hole right in the middle of it? 

As an example sourced from Figure 1, consider the 
collection of symbols found in figure 1 of appendix 
A. What would your response be if someone asked 
you, "What information can be gathered from that 
data set?" There are three natural answers; a single 
letter A, eleven B's, or 176 points. But which one of 
these answers, if any, is relevant to the person who 
asked the question? 

In different data sets, the same thing can happen. If 
you are looking at a small scale, the clusters 
appearing are different than those performing at a 
larger size. It is difficult to know what extent to use 
to get any data, and even more challenging to decide 
which scale gives relevant data. This is where a field 
of study within mathematics called persistence 
homology comes into play. 

 

 

Figure 1. Sample data set. 

 
Without diving into too much jargon and detail, 
persistence homology allows us to look at all scales 
at once. We form a continuum of increasing sizes, 
and at each scale, we look for the clusters that exist. 
Additionally, as we "zoom out," some groups will 
combine with others to form larger clusters of data, 
like how the 176 points in our example cluster into 
11 B's and eventually into a single large A. 
Persistence Homology shows us which groups 
"persist" as they absorb other clusters, and it gives a 
good idea of what scales cause a change in the 
clusters in the data [1]. 

Another thing is that persistence homology does 
exceptionally well is handling holes in the clusters 
within the data set. For example, in the 11 B's in 
figure 1, the two holes that help to make up the 
letters are large gaps with no data points in them. 
Some approaches used for finding clusters would 
have issues with these holes and may struggle to 
cluster the points in each B together.  

Another strength of these methods is that they are 
quite stable under small perturbations in the data set. 
If the points move slightly, the information that can 
be garnered from the Persistence Homology will 
stay the same, so this allows for some variance in 
the data set to occur without skewing the results. 

2. Methodology 

When studying clusters of data using persistence 
homology, we look at varying scales and view how 
clusters of data combine into larger clusters or 
vanish as we increase our scale. This information 
can be encoded into what is referred to as a directed 
graph.  

A directed graph is just a collection of points 
connected by arrows. In persistence homology, the 
directed graph initially used is a very well behaved 
one that consists of dots all equally spaced apart and 
lying on a single horizontal line. The only arrows 
are the ones that connect adjacent dots from left to 
right. 

An example of this can be seen in figure 2. To 
connect this to the idea of varying scales, imagine 
that as we move from dot to dot, from left to right, 
our scale of the data set is increasing, and the arrows 
are assigned maps that tell us how the clusters 
merge and disappear as we move up in size. 

 

Figure 2. Directed graph traditionally used for persistence 

homology. 

The encoding of data in this manner creates a 
mathematical object called a representation of a 
directed graph. From there, we break this object into 
the indecomposable representations, or smallest 
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pieces. In this case, where the graph is just a line, as 
in figure 2, there is a finite number of these the most 
minor parts that we need to work. 
 
We analyze a data set by forming several clustered 
groups, noticing that the degree of error might 
increase or decrease. In Figure 3, we can see the 
determination of the clustering groups based on the 
size of epsilon (ϵ) which represents the error 
parameter [2].  
 
 

 

Figure 3. Method of clustering using Persistence Homology. 

Each point through 1 to 5 represents a group of data 
set. Points 3, and 6 are combined as one cluster 
(cluster Ⅰ) because the epsilon parameter (ϵ) equals 
to 0.1. Points 2 and 5 also forms another cluster 
(cluster Ⅱ) with has an epsilon that equals to 0.13. 
Then, we can see that the cluster Ⅰ merged with 
point 4 as one big cluster (cluster Ⅲ) with an 
epsilon value of 0.22. Additionally, cluster Ⅱ 
merged to point 1 as another big cluster (cluster Ⅳ) 
with epsilon value of 0.33. Finally, the two clusters 
Ⅲ and Ⅳ are combined as the most prominent 
cluster Ⅴ with the epsilon value of 0.4. 
 
Using the above Hierarchical Clustering method, we 
can get an insight into how to analyze different 
clustered groups based on the degree of epsilon 
values. But, for using this algorithm, we need to 
consider the distance of several data points to 
determine the value of the error parameter (ϵ). There 
are three different types of methods; single cluster, 
complete cluster, and average cluster that helps us 
performing that.  
 
In the Single Hierarchical Clustering, the distance 
between two clusters is the shortest distance 
between two different points in each cluster. In 
Figure 3, the shortest distance is between points 2 
and 3 [3]. 
  
In a Complete Cluster, the distance between two 
clusters defined as the longest distance between two 
random points among the clustered group. For 

example, we can see that there are two different 
complete clusters, points 1 and 4, and points 5 and 
6.  
  
Last, is the Average Cluster, which defines the 
distance between two clusters as the average 
distance between each point in one cluster to every 
point in another cluster. For example, the distance 
between clusters Ⅲ and Ⅳ is calculated as the 
average of distances from points 1, 2, and 5 to the 
points 3, 4, and 6.  
  
Then, we focused on the agglomerative method, 
which builds clusters starting from the smallest to 
the largest. After that, we obtained the value of the 
error parameter from the biggest to the smallest 
cluster to analyze the data set using the method of 
K-means. It is one of the simplest and popular 
unsupervised machine learning algorithms [7]. First, 
we randomly initialize k points, called means. 
Second, we classified each item to its closest mean, 
and we updated the mean's coordinates, which are 
equal to the average of the distances between the 
points that were categorized in the current mean. 
Last, we repeat the process for a given number of 
iterations, and at the end, we got our desired cluster.  
 
In general, the K-means approach is performing 
faster and more precisely than Hierarchical 
Clustering if values of K are large enough. Also, the 
K-means approach produces tighter clusters than 
Hierarchical Clustering approach, especially if the 
clusters are enormous [7]. However, it is difficult to 
predict the K value. Moreover, if there is a global 
cluster, it does not work well [7].  
  
Based on the above pros and cons of the K-means 
approach, we decided to use the Agglomerative 
Hierarchical Clustering algorithm to analyze data 
and develop how we can get insight from this 
method [9]. As in Figure 4, we notice that as the 
degree of single cluster incremented (from top to 
bottom), the individual data sets clustered as one 
(Letter A shape). 
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Figure 4. Directed graph traditionally used for persistence 

homology epsilon =0, 6.2, 14.3, 16 from top to bottom 

2.1 Hierarchical Clustering  
 
The Hierarchical Clustering method builds a 
grouping data set based on the dissimilarity measure 
concept. There are five different types of 
Hierarchical Clustering methods as described in 
Table 1 below. 
 

Method Description 
 

Ward Clustering 
Minimize their sum of 
squared error with total 
within-cluster variance 

 
 

Complete Clustering 

Maximize the distance 
between one of the groups 
with a point and the other 
group with another point 

 
 

Single Clustering 

Minimize the distance 
between one of the groups 
with a point and the other 
group with another point 

 
 

Average Clustering 

Average the distance 
between one of the groups 
with a point and the other 
group with another point 

 
Centroid Clustering 

The distance between two 
points which are in each 
cluster 

Table 1. Methods of Hierarchical Clustering [17] 
 
 

2.2 K-means Clustering 
 
To build a K-means clustering, we need to define 
the number of clustering groups first. Then, the 
algorithm will run until one data set is grouped in K 
number of clusters. The optimal results of this 
algorithm minimize the sum of squares of Euclidian 
variance. The steps of K- Means Clustering as the 
below [14],  

1. Define the number of K clusters,  
2. Reset the amount of K clusters with the 

starting average, 
3. Repeat the above steps, 

               a. Build a number of K clusters using each 
of the data set to make them closer. 
b. Each of the middle points is the new 

average  
                c. Works until each of the central points of 

the K clusters will not be changed anymore. 
 

2.3 PAM (Partition Around Medoids) 
Clustering with Gower Dissimilarity 
Coefficient 
 
This method is specialized in the complicated data 
set, which contains all the unstructured data 
variables properly and well-organized. To be 
specific, the data set is in a nominal form, ordered, 
partitioned, and fractional.  
This method is similar to the K-means Clustering 
approach, but we first need to clarify its pros and 
cons. The advantages of using this method are,  
 

1. It was easily inputting the complex data set 
using the dissimilarity matrix.  

2. The Euclidean distance method uses the 
summation of dissimilarity to find more 
specialty and dissimilarity coefficient [18]. 
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Gower Dissimilarity Coefficient compares each of 
the clusters' contributions to calculate the 
dissimilarity coefficient. If I and J are data sets, then 
their Gower Dissimilarity Coefficient is 𝑆𝑆𝑖𝑖𝑖𝑖 =
𝑠𝑠𝑠𝑠𝑠𝑠�𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖∗𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖�
𝑆𝑆𝑠𝑠𝑠𝑠�𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖�

. 

For this case, 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 represents the number of k 
contributions.  
𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖 takes the number of the binary value of 1 if the 
number of k is valid; otherwise, it is a binary of 0. In 
regard to the ordered and consecutive variables, 
when 𝑟𝑟𝑖𝑖 has the kth value in a given interval, then 

𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 = 1 − �𝑥𝑥𝑖𝑖𝑖𝑖�−𝑥𝑥𝑖𝑖𝑖𝑖
𝑟𝑟𝑖𝑖

 can be defined.   
If the data set is nominal, then 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 =
1, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑜𝑜 𝑒𝑒𝑒𝑒 0. If the data set is binomial, then 
𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 represents + and – regardless each property 
exists or not.  
We summarized the above information in Table 2. 
 
Variables  Value of 

Attribute 
K 

Case i + + - - 
Case j + - + - 
𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 1 0 0 0 
𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖 1 1 1 0 

Table 2. Value of the Attribute K [6] 
 
3. Case Study and Results 
 
 Italian Sommelier data will be analyzed using the 
above clustering method. The test of becoming 
Sommelier is hard and has a high failure rate. One 
person would like to be a Sommelier and investigate 
the knowledge of Italian's Wine structure using the 
'wine' data set with R studio. 
 
We used the following library packages from R 
studio: ‘cluster’, ‘compareGroups’, ‘HDclassif’, 
‘NbClust’, and ‘sparcl’.  
library(cluster)    
library(compareGroups) 
library(HDclassif)  
library(NbClust)  
library(sparcl)  
 
Then, we make a 'build a wine' data set from the 
above library.  
 

 
Figure 5. Structure of the variables 

 
 
Original data variable Renamed variable 

V1 Alcohol 
V2 Malic Acid 
V3 Ash 
V4 Alkali of Ash 
V5 Magnesium 
V6 Total of Phenol 
V7 Flavonoid 
V8 Bioflavonoid Phenol 
V9 Pro-Anthocyanin 

V10 Degree of Color 
V11 Degree of light 
V12 OD280/OD315 
V13 Proline 

Table 3. List of the variables 
 

3.1 Hierarchical Clustering 
 
Next, we can see the distribution of class of clusters 
as in table 4,  
 

Cluster # 1 2 3 
Number of Data set 59 71 48 

Table 4. Number of clusters and data sets 
 

Cluster1 has 59, cluster2 has 71, and cluster3 has 48 
data sets. 
Then, we will discuss the Hierarchical Clustering 
analysis. We have decided using 'NbClust' function 
and trees by using a minimum of 2 clusters, and a 
maximum of 6 clusters using all the coefficients 
with the Complete Clustering method.  
 

 
Figure 6. Hubert Index Plot with the complete method 
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Figure 7. Optimal Number of Clustering using Complete 

 
From Figure 6 and 7, 'Hubert Index Plot', we notice 
that if the number of clusters is equal to 3, a big 
change has occurred. It means that the optimal 
number of clusters should be classified into three 
clusters using the original data set.  
By using the 'Best.nc' function, we were able to 
calculate the number of clusters for each coefficient 
as in Table 5. 
KL, CH, Hartingan, CCC, Scott, Marriot, TrCovW 
TraceW, and Friedman represent the coefficients 
that return the optimal number of clusters to 
determine the distance. 
 
 KL CH Hartig

an 
CCC Scott 

Number 
of 
Clusters 

5.00 3.00 3.00 5.00 3.00 

Value_I
ndex  

14.2
227 

48.98
98 

27.89
71 

1.148 340.9
634 

 Marr
iot 

TrCo
vW 

Trace
W 

Fried
man 

Number 
of 
Clusters 

3.00 3.00 3.00 3.00 

Value_I
ndex 

6.87
2 

22389
.83 

256.4
861 

10.69
41 

Table 5. Number of Clusters and Value Index of each variable 
using complete method  

 
We notice that the first coefficient with 'KL' returns 
5 clusters, but the 'CH' returns 3 clusters only, and 
so on. By these results, we created a representation 
graph as in the below dendrogram for the clustering. 
 

 
Figure 8. Complete cluster dendrogram 

 
In Figure 8, the plots that used the complete cluster 
are separated into three significant clusters. Each of 
the data point with the same height represents the 
data sets that are connected regardless of the 
distance between them.  
 

 
Figure 9. Clustering with Complete using Wine Data 

For Table 6, the data are classified into three 
different clusters using the Ward Cluster method.  
 

1 2 3 
69 58 51 

Table 6. Number of clusters and data sets using the Complete 
Cluster method 

 
Next, we have found out the number of data sets 
that each cluster contains, as in Table 7. 
 
Complete 1 2 3 

1 51 18 0 
2 8 50 0 
3 0 3 48 

Table 7. Number of data sets each cluster contains using the 
Complete Cluster Method 

 
In table 7, each row represents the number of 
clusters, and each column represents the coefficients 
of the 'cultivar', where cultivar represents the 
identification of the actual data set. We computed 
the difference between the Complete Cluster method 
results and the cultivar above. The Complete 
Clustering' accuracy is 84% which is calculated 
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using the mathematical formula51+50+48
69+58+51

∗ 100%, 
where the denominator represents the total number 
of clusters that the data set contains.  
In Figures 8 and 9, we concluded that 3 is the 
optimal number for making different clusters. 
Besides that, we attach the dendrogram as below, 
 

 
Figure 10. Hubert Index Plot ward clustering method 

 
 
 

 
Figure 11. Optimal Number of Clustering using Ward Method 

 
Figure 12. Ward cluster dendrogram  

 
For Figures 10 and 11, we calculated the size of the 
clusters and cultivar's coefficients, where cultivar 
represents the identification of the actual data set. 
We want now to compute the difference between the 
Ward Cluster method results and the cultivar. 
  

Ward  1 2 3 
1 59 5 0 
2 0 58 0 
3 0 8 48 

Table 8. Number of data sets each cluster contains using the 
Ward cluster method 

 

The accuracy value of the model in the above table 
is 93%, which was calculated using the 
mathematical formula59+58+48

64+58+56
∗ 100%. It gave a 

higher accuracy value than using the complete 
clustering method. 
It also produced a higher accuracy value compared 
to the Ward Clustering method. 
 

 
Figure 13. Clustering with Ward using Wine Data 

 
3.2 K-means clustering 
 
By using the same 'NbClust' function to build the K-
means method, we set the maximum number of 
clusters to 15. For Figure 14 and 15, we can see that 
the optimal number of clusters is 3, the same as we 
did with the Hierarchical Clustering method since 
there exists the extreme increasing and decreasing 
Hubert statistics value.  

 
Figure 14. Optimal Number of Clustering using K-Means 
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Figure 15. Hubert Index Plot using K means cluster method 

 
 

Vari
able  

Alcoh
ol 

Malic
Acid 

Ash Alk_as
h 

Magn
esium 

 

1 0.832
886 

0.302
9551 

0.363
6801 

0.608
4749 

0.575
96208 

 

2 0.923
4669 

0.392
9331 

0.493
1257 

0.170
1220 

0.490
2869 

 

3 0.164
4436 

0.869
0964 

0.186
3726 

0.522
824 

0.075
2647 

 

varia
bles 

T_phe
nols 

Flavan
oids 

Non_f
lav 

Proan
tho 

C_Inte
nsity 

 

1 0.882
74724 

0.975
069 

0.560
5853 

0.578
65427 

0.170
5823 

 

2 0.075
7691 

0.020
75402 

0.034
3924 

0.899
3770 

0.899
377 

 

3 0.976
5548 

1.218
2921 

0.724
02116 

0.460
5046 

0.938
8902 

 

varia
bles 

Hue 0D280
_315 

Prolin
e 

 

1 0.472
6504 

0.777
0551 

1.122
0202 

 

2 0.460
5046 

0.270
0025 

0.751
7257 

 

3 1.161
5122 

1.288
7761 

0.405
9428 

 

Table 9. K-means value of the total variables. The rows 
represent the cluster groups, and columns represent the variable 

of data set. 
As in Table 9, the variable 'Alcohol' has the higher 
K-means average value among the variables in this 
set. Therefore, we test this data set and compare 
each cluster's 'Alcohol' value using the K-means 
method. 
 

 
Figure 16. Box plot of the K-means and Ward Cluster method 

 

Referring to Figure 16, when comparing the K-
means method to Ward's Cluster method. Each of 
the clusters yields similar distribution. Thus, we 
conclude that using three different clusters is the 
best latent structure with this data set. Then, we 
calculate the cultivar data's coefficient value where 
cultivar represents the identification of the actual 
data set. Below, we measured the difference 
between the K-Means Cluster method results and 
the cultivar. 
 
K-Means 1 2 3 

1 59 3 0 
2 0 65 0 
3 0 3 48 

Table 10. Number of clusters and data set using K-Means 
Cluster method 

 
The accuracy value of the model in table 10 is 97% 
which is calculated using the mathematical 
formula59+65+48

62+65+51
∗ 100%. As in Table 10, the result 

is close to the previous Hierarchical Clustering 
method. It concludes that by using either 
hierarchical or K-means clustering it produces a 
similar output. 
 

 
Figure 17. Clustering with K -Means using Wine Data 

 
3.3 PAM (Partition Around Medoids) 
Clustering with Gower Dissimilarity 
Coefficient 
 
To work on PAM method, we need to represent the 
data set as binary variables. We looked at the 
variable 'Alcohol' which is a categorical variable 
containing 'High' or 'Low' values.  
Since we changed it into the categorical variable, we 
have to determine the dissimilarity matrix using 
'daisy' function.  
For figure 18, we used three different clusters 
previously; therefore, we need to also use 3 clusters 
for this method as well. 
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1 2 3 
63 67 48 

Table 11. Number of clusters using PAM cluster method 
 

 
Figure 18. Optimal Number of Clustering using PAM 

 

We calculated the coefficients of cultivar, where 
cultivar represents the identification of the original 
data set. For Table 12, we measured the difference 
between the PAM method results and the cultivar as 
below. The accuracy of the model in table 12 is 94% 
which is calculated using the mathematical formula 
57+64+47
63+67+48

∗ 100%.  
 

 1 2 3 
1 57 6 0 
2 2 64 1 
3 0 1 47 

Table 12. Number of data sets each cluster contains using PAM 
cluster method 

 

As in Table 12, we obtained the result with 
descriptive statistics. In the first step, we used 
'compareGroups' function to build the descriptive 
statistics table for the clusters.  
 

 
Figure 19. Summary of a descriptive table with 3 Clusters using 

PAM cluster method 
 

Figure 19 lists that factor distribution, coefficient of 
average, and variance. 
  
3.4 Random Forest and PAM Clustering 
 
To test the random forest with the PAM clustering 
method, we used 2,000 different trees for the same 
data set. 
 

 
 

 
Figure 20 Variable impotence matrix using 2,000 random forest 

with PAM 
 
Figure 20 shows a small snippet of the variable 
importance matrix (2000 x 2000). The value of 
matrix elements is the probability of going from a 
corresponding row to a column of which data set 
comes together. As in Table 13, the variable 
'Alcohol' can be deleted from the given data set, 
since it has the smallest value of 'Mean Decreasing 
Gini' parameter.  
 
 MeanDecreaseGini 

Alcohol 0.5614071 
MalicAcid 6.8422540 

Ash 6.4693717 
Alk_ash 5.9103567 

Magnesium 5.9426505 
T_phenols 6.2928709 
Flavanoids 6.2902370 
Non_flav 5.7312940 
Proantho 6.2657613 

C_Intensity 6.5375605 
Hue 6.3297808 

0D280_315 6.4894731 
Proline 6.6105274 

Table 13. Value of the Mean Decreasing Gini parameter  
 

For Table 14, we calculated the dissimilarity matrix 
using the formula�(1 − 𝑝𝑝𝑟𝑟𝑜𝑜𝑥𝑥𝑒𝑒𝑝𝑝𝑒𝑒𝑜𝑜𝑝𝑝) , where the 
value of the proximity is estimated from random 
forest.  
 

 1 2 
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1 0 0.8605821 
2 0.8605821 0 

Table 14. Dissimilarity matrix values 
 

We measured the difference between the Random 
Forest method results and the cultivar as below. 
 
Random 
Forest 

1 2 3 

1 55 4 0 
2 5 64 2 
3 0 6 42 

Table 15. Number of data sets each cluster contains using 
Random Forest 

 

In Table 15, the number of clusters at each column 
represents the coefficients of the 'cultivar' where 
cultivar represents the identification of actual data 
set. In this case, the Random Forest accuracy is 90% 
which is calculated as 55+64+42

59+71+48
∗ 100% where the 

denominator represents the total number of clusters 
data set contains.  
 
 

 
Figure 21. Clustering with Random Forest using Wine Data 

 

 Comp
lete 

Ward K-Means PAM Random 
Forest 

Accuracy 
value 

84% 93% 97% 94% 90% 

Table 16. Accuracy of the model using Hierarchical, K-Means, 
and PAM, and Random Forest. 

 

4. Conclusion 

In conclusion, we tested four different clustering 
methods, Hierarchical Clustering, K-means, PAM 
clustering, and Gower with Random Forest. First, 
we compared each of the accuracy values that 
obtained by using three different clusters. We used 

numerical and categorical variables to perform the 
analysis. We also utilized numerical variables and 
were able to directly test the data set using 
Hierarchical Clustering, and K-means method. Still, 
we had to convert the data set into the categorical 
variable by using PAM clustering and Gower with 
the Random Forest method. 

In some cases, we obtained similar results like for 
example, when we used Hierarchical Clustering or 
K-means method when the 'Alcohol' variable is 
numerical. In contrast, when we changed the 
'Alcohol' into the categorical variable ('High' or' 
Low'), we got a slightly different value when using 
the Hierarchical Clustering and K-means methods. 
When we used Ward's Clustering method, which is 
based on the Hierarchical approach, we obtained the 
highest accuracy value compared to the rest of the 
methods.  

5. Future Work 

For the future work, we will focus on the 
Persistence Homology, Hierarchical Method, and K-
means to compare the clustering given categorical 
data. Since we concentrate on the Persistence 
Homology based on the Topology and other primary 
clustering methods for this research, we analyzed 
the numerical variable data to compare each 
clustering algorithm to find which one is more 
proper among them. Next, we can test the CLARA 
and CLARANS clustering methods, that are based 
on the Machine Learning tools. Additionally, we 
can analyze other data, which contains the multiple 
factored or categorical variables to consider which 
clustering method is appropriate to compare to the 
numerical variables data.  
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