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 Abstract— Navigation, which most people have an idea about, is often known as information about 

how to get from one point to another on the land. Navigation is an interest area for both civil and military 
aviation. Therefore, we get help from various sensors in order to trace the aircraft route. The most used 
sensor among them is GPS. It is a sensor that can be out of use although it has high accuracy rates. This 
research focused on being able to maintain the navigation of an aircraft in the environments where GPS is 
out of use. There are two visual-inertial navigation systems VINS-Mono and ORB-SLAM3, which are the 
best known algorithms in the literature, were examined and compared in terms of performance. It has 
been observed that ORB-SLAM3 outperformed almost twice the VINS-Mono system in various 
situations. 
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1. Introduction 

In its simplest definition, navigation is a process 
finding a way from one point to another. Aircraft 
navigation is one of the most important application 
areas, whether military or civil, in order to 
complete mission. Navigation in aviation is 
generally carried out by two methods known as 
dead reckoning and piloting. We can explain 
pilotage as the method by which the pilot 
navigates by reference to various visual landmarks 
such as rivers, cities, airports and houses. 
However, sometimes the reference points are not 
easily detected in situations with poor visibility or 
if the pilot is slightly off course [12]. Demanding 
more skill and experience than pilotage, dead 
reckoning is the method the pilot uses while flying 
overseas, forests or deserts. It is a navigation 
method that depends only on parameters such as 
time, airspeed, distance and direction. The pilot 
must know the distance from one point to another. 
The pilot will prepare his route in advance on the 
pre-flight plan map. While the pilot is traveling at 
a constant speed, he can measure how long to 

reach his target and will keep the plane in the right 
direction with the help of the compass. However, 
due to the changing wind direction, dead 
reckoning is not always a reliable method [6].  The 
sensors that assist in the methods we mentioned 
above called navigation aids (NAVAIDS). The 
most important of these sensors is the Global 
Positioning System (GPS). GPS has proven how 
reliable and effective it is as the most widely used 
navigation aid today. GPS can provide navigation 
service in any weather conditions at any time in 
the world while improving flight stages from the 
departure, progress on the route, to the navigation 
on the airport surface [1].  Despite its accuracy and 
ease of use, GPS is also prone to be erroneous 
results. Given the advancing technologies and 
large investments in aviation, it is inevitable that 
companies or governments will want to be more 
vigilant against errors and attacks. In this study, 
we conducted research on how we can use the 
Simultaneous Localization and Mapping (SLAM) 
approach in aviation, which is more common in 
robotic, in case of the navigation aids (in our case 
GPS) are exposed to attack or malfunction. In the 
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first part of this research, SLAM approaches 
previously proposed in literature were studied. In 
the second part, the fusion of the camera and the 
inertial measurement unit were examined. Finally, 
comparative tests of the two most powerful SLAM 
frameworks in the literature, VINS-Mono and 
ORB-SLAM3 were conducted and assumptions on 
the problems that may be encountered in aircraft 
mission scenarios were discussed. 

2  Related Work 

Nowadays, aviation is an area that countries 
attach importance to both to provide transportation 
in civil aviation and to protect their borders via 
military aviation. The permanent operation of 
aircraft navigation systems is very critical for 
safety and performance of flights. In this section, 
we examine the previous important studies in the 
literature on the SLAM systems which frequently 
encountered in the field of robotics. The researches 
[7, 22] have created a basis for manipulating the 
relationship between signs and geometric 
uncertainty. They illustrated there is a high degree 
of correlation between estimations of various 
landmark locations on the map, and those 
correlations increase with successive observations. 
When the IEEE Robotics and Automation 
Conference was held in 1986, the probabilistic 
approaches had just started to join in the area of 
robotics and artificial intelligence. Peter 
Cheeseman, Jim Crowley and Hugh Durrant 
Whyte were among the researchers working for 
theoretical methods to mapping and localization 
problems [2].  According to [2], SLAM is the 
method by which a mobile vehicle may use the 
map of the world and assess its location. The 
critical problem with SLAM as shown in Fig. 1, it 
needs a simultaneous calculation of both robot and 
landmark locations.  Observations are made 
between the actual robot and the landmarks 
because the information about the actual location 
is not known, or we cannot measure it directly. 

Localization is one of the two problems that 
SLAM is trying to solve. Visual Odometry (VO) is 
one of the subtitles of SLAM focused on in order 
to solve this problem. In the landmark paper [17], 
the word VO was introduced. This term was used 
because of its resemblance to the wheel odometry 
which gradually predicts the motion of the vehicle. 

 

 
 

VO estimates the relative motion of the camera 
by processing sequential camera images [26]. 
Similar to wheel odometry, the errors associated 
with the estimations obtained in visual odometry 
accumulate over time. Mapping is the second 
problem we need to solve in order to achieve true 
autonomy in localization [24]. There is a two-fold 
need to use a map of the environment. First, to 
help other functions, the map is also necessary; for 
example, a map may inform route planning or 
provide a human operator with an intuitive 
visualization. Second, the map allows the mistake 
committed to estimating the robot's state to be 
reduced. Dead reckoning can easily drift over time 
in the absence of a map; on the other hand, by 
revisiting identified areas, the vehicle would 
"reset" its localization error using a map. 
Therefore, in all cases in which a prior map is not 
usable and needs to be constructed, SLAM finds 
applications [5]. 

SLAM, on the other hand, by using the 
following filtering approaches such as EKF-
SLAM [23] and particle filter-based SLAM [14], 
and smoothing approaches such as Graph-SLAM 
[24] and RGB-D SLAM [12], goals to solve these 
two problems simultaneously. The map is a large 
stacking sensor vector and a landmark state in 
EKF-SLAM and is modeled using Gaussian 
variables. This map usually referred to as the 
stochastic map, is maintained by the Extended 
Kalman Filter (EKF) through the method of 
prediction (movement of sensors) and correction 
(sensors observe previously mapped landmarks in 
the environment) [25]. Graph-SLAM solves the 
SLAM problem through nonlinear sparse 
optimization. They turn their intuition into the 
graphical representation of the SLAM problem. 

Fig. 1. Simultaneous Localization and Mapping [2] 

WSEAS TRANSACTIONS on COMPUTERS 
DOI: 10.37394/23205.2020.19.27 Burak Kaan Özbek, Metin Turan

E-ISSN: 2224-2872 217 Volume 19, 2020



Graph-based techniques were first described in 
[20], but the first working solution was given in an 
enlightening paper [14]. 

The strength of the graphical SLAM methods is 
that they scale to several higher-dimensional maps 
than the EKF-SLAM. The key limiting factor in 
the EKF-SLAM is the covariance matrix, which 
includes quadratic space in the size of the map. 
There are no such drawbacks in graphical 
approaches [25].  

The other key paradigm for SLAM is the 
particle filters. Each particle is better thought of as 
a concrete guess as to what the true value of the 
state could be. Particle filters capture a 
representative sample from the posterior 
distribution via collecting a number of such 
conjectures to obtain a set of conjectures or a set of 
particles [15]. 

A general and efficient solution to navigation 
errors caused by the low-frequency noise of the 
IMU is to use a filter-based or optimization-based 
method to fuse visual and IMU measurements. 
IMU and Vision are combined during the fusing 
process to form a Visual-Inertial Odometry that 
not only takes advantage of the visual method's 
flexibility and is adaptable to a wide variety of 
scenes but also uses the IMU's high-precision 
features in the short term. Therefore, visual and 
inertial sensor-based research into the SLAM 
algorithm is of great significance and application 
importance, enabling vehicles to interpret the 
ambient environment in order to obtain knowledge 
about localization. [13] 

 
3.  Visual-Inertial Navigation 

A. Sensor Fusion 

In order to provide a comprehensive and 
complete image of the environment or process of 
interest, sensor fusion is the process of combining 
information from a number of different 
sources/sensors, so that the resulting information is 
less vague than if these sources is used 
individually. In autonomous systems and mobile 
robotics, sensor fusion methods play important 
role. In principle, sensor fusion processes make it 
possible to combine information, and provides 
sufficient knowledge and integrity that decisions 
can be formulated and implemented [27]. The 
design of a structure based on whether the fusion 
is tightly or loosely coupled is another aspect to be 
decided in the visual-inertial algorithm. Both 

camera and Inertial Measurement Unit (IMU) 
measurements are determined separately in the 
case of loosely coupled fusion and at the end, 
fusion is applied to their calculation. Because the 
fusion of visual and inertial information is not 
considered to be a raw data level in a loosely 
coupled process, this makes the device incapable 
of correcting vision drifts merely by 
approximation. On the other hand, to estimate the 
position of the platform, raw measurements of the 
camera and the IMU is used together in tightly 
coupled process. More computing resources are 
needed for a tightly coupled approach, but it is 
more reliable than a loosely coupled approach 
[10].  

For SLAM applications, there are several ways 
of collecting environmental measurements. For 
this reason, the most commonly used sensors are 
lidars and cameras. Monocular and stereo cameras 
are the most common cameras that use SLAM 
systems. In terms of the measuring properties for 
different applications, there are pros and cons of 
each kind of sensor. The benefit of LIDAR and 
stereo cameras is that they gather data on a scale 
and measure the area's depth. This property will be 
very useful in the process of data association of 
any SLAM scheme. However, in the case of 
LIDAR, for instance, it has the disadvantage of 
preventing the aircraft from being stealthy due to 
the active sensor that sends rays to the atmosphere 
while measurement process.  

Stereo and monocular cameras are options for 
the camera usage. In small scale applications, 
stereo cameras are useful and flexible, mostly 
indoor SLAM applications. They are not 
applicable in large environments because in order 
to obtain accurate depth information in stereo 
cameras, the baseline camera and the distance to 
the landmark ratio should not be too small. On the 
other hand, using the monocular camera reduces 
the impact of calibration errors in estimation of 
motion. One of the biggest advantages of using a 
monocular camera is that they are cheaper than 
stereo cameras and easy to deploy. Although 
monocular cameras suffer from scale uncertainty, 
IMU in visual-inertial navigation helps to solve 
this problem. 
B. VINS-Mono 

The VINS-Mono algorithm, a closely coupled, 
non-linear optimization-based approach is used to 
obtain visual-inertial odometry by fusing inertial 
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IMU measurements and visual camera 
measurements. 

Fig. 2 is the general structure for the visual-
inertial pose estimation. Most of the Visual-
Inertial Odometry (VIO) systems use a camera for 
visual data and an IMU sensor. In the framework 
given in Fig. 2, the inputs are the camera image 
and the IMU data containing acceleration and 
angular velocity measurements. Based on these 
inputs, the output is estimated by the 6-DoF 
(Degrees of Freedom) platform. The framework 
begins with the extraction of features and the pre-
integration of IMU. Inertial and visual poses are 
combined with their pose, velocity, gyroscope bias 
and gravity vector for the initial estimate of the 
platform. These values are modified iteratively by 
the visual-inertial odometry algorithm. The 6-DoF 
pose of the platform can be obtained finally. 

 
Fig. 2. General structure for the visual-inertial odometry [28] 

Two approaches are applied for camera 
systems. The first is designing a device using a 
stereo camera and the other is using a monocular 
camera. The stereo camera approach needs long 
duration for reliable performance. The baseline is 
the distance between the two lenses of the stereo 
camera and the depth range that can be observed 
and the depth resolution.  For that reason, it needs 
large baseline that is not practical actually for 
airborne applications. Fig. 3 demonstrates the 
detailed structure of the VINS-Mono algorithm. It 
starts with the measurement preprocessing stage in 
the structure of the VINS-Mono algorithm. This 
part is common for mentioned famous VIO and 
visual SLAM algorithms. The preprocessing 
measurement component contains a function 
extracting camera data and IMU measurements 
between two consecutive camera frames.  Posing 
values, velocity, vector, gravity, gyroscope bias 
and 3D position of the features on the environment 
are obtained at the initialization. In a further stage, 
in the VIO module, pre-integrated IMU 
measurements and observations of features are 
fused to re-locate the device. 

 
Fig. 3. Structure of VINS-Mono Algorithm [18] 

Finally, pose graph optimization module is used 
to eliminate the drift. Re-localization and graph 
optimization run simultaneously in the proposed 
framework. In the re-localization process, loop 
closures that identify the locations of already been 
visited are identified. Based on the loop closures 
observed, the entire pose graph is modified on the 
correspondence between the loop closure frame 
and current frame. On the other hand, the residual 
errors of the edges between frames are minimized 
in the graph optimization portion. Edges are the 
relative transformation between two frames.  As a 
result of this optimization, the pose graph changes 
and has become globally consistent. Fig. 4 
displays the pre-integration IMU and the sample 
trajectory of the IMU. Camera is coupled with the 
features observed in the field. The basic idea is to 
align the visual structure with the pre-integration 
of the IMU.  

 
Fig. 4. IMU pre-integration [18] 

Fig. 5 shows the flow after the initialization 
phase. This method is called “sliding window”, 
based on tightly coupled monocular VIO for state 
estimation. Fig. 6 describes the strategy for 
marginalization. In this method, the algorithm tests 
whether or not the second last frame is a 
mainframe. If it’s a mainframe, then it’s the oldest 
frame and marginalized. Marginalized visual and 
inertial ratios are used as above. But if the second 
last frame is not a mainframe, it will be removed 
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with its visual measurements.  But inertial 
measurements are always preserved at the IMU 
pre-integration phase for additional frames. Re-
localization pose graph optimization and loop 
closure are shown in Fig. 7, in the sliding window 
method. When a loop was identified with the next 
key-frame, the key-frame marginalized and re-
located. According to the re-location, all poses are 
optimized in another thread. 

 
 
Fig. 5. Sliding window approach [18] 

 
 
Fig. 6. Marginalization step [18] 

 
 
Fig. 6. Re-localization and pose graph optimization [18] 

C. ORB-SLAM3 

ORB-SLAM3 is a visual-inertial SLAM system 
built on ORB-SLAM [16] and ORB-SLAM 
Visual-Inertial [20] by Carlos Campos et al. Fig. 7 
shows the main parts of the ORB-SLAM3 [4]. 
ORB-SLAM3 claims being the best visual-inertial 
system in the literature.  They selected Oriented 
Fast and Rotated BRIEF (ORB) [8] for feature 
extracting as shown in Fig. 8. ORB is incredibly 
quicker to compute and match, although it’s 
invariant to the point of view. This allows to be 
aligned with wide baselines, improving the 
accuracy of the Bundle Adjustment (BA).  Atlas is 
a multi-map representation made up of a number 
of disconnected maps. There is an active map 
where the tracking thread locates the incoming 
frames, and the local mapping thread continuously 
optimizes and extends with new key frames. 
Tracking thread processes the information of the 
sensor and computes the location of the current 
frame with respect to the active map in real time, 
while minimizing the error of reprojection of the 
corresponding map features. It also determines if 
the current frame will become a keyframe. In 
visual-inertial mode, body velocity and IMU bias 
are calculated by using inertial residuals in 
optimization. If tracking lost, the tracking thread 
attempts to relocate the current frame to all Atlas 
maps.  

Local mapping thread adds the keyframes and 
points to the active map, eliminates redundant 
ones, and refines the map using visual or visual-
inertial bundle adjustments, running in a local 
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Fig. 8. Matching result using ORB [7] 

keyframe window near the current frame. Closing 
loop searches for loops with each new keyframe. If 
a loop is found, calculates a similarity 
transformation that informs about the drift 
accumulated in the loop. At the end both sides of 
the loop are aligned, and the duplicate points are 
fused. 

 
Fig. 7. Main components of ORB-SLAM3 [4] 

 

4  Experimental Results 

VINS-Mono and ORB-SLAM3 were compared 
in terms of availability for aviation. We showed 
trajectories of VINS-Mono and ORB-SLAM3 
initially. Eventually a numerical analysis 
conducted to demonstrate the accuracy of our 
systems by Root Mean Square Error (RMSE). 
D. Dataset 

VINS-Mono and ORB-SLAM3 were tested 
using a visual-inertial dataset of the EuRoC MAV 
[3]. Two datasets were provided. The first dataset 
was recorded in a large machine hall and was 
intended to test visual-inertial motion estimation 
algorithms or SLAM frameworks. A 3D location 
was provided by a laser tracker for ground truth.  
On the other hand, the second dataset was 
recorded in the Vicon room fitted with a motion 

capture device with an approximate size of 
8mx8.4mx4m. 
E. Evaluation 

The EuRoC MAV visual-inertial dataset provides 
11 sequences. 8 of them were selected for commenting 
on specific conditions. Each sequence has different 
environment specifications as given in Table 1. 
Experiments were executed on an Intel Xeon (R) CPU 
E5-1620 v4, at 3.50 GHz with 32 GB memory. The 
trajectories of 2 sequences (MH_02, V2_02) with their 
ground-truth are presented in the Fig. 9 in order to 
show that how the trajectories were examined. The 
Root Mean Square Errors (RMSE) of selected 
sequences in EuRoC datasets is evaluated by Absolute 
Pose Error (APE) using evo-tool 1  (Table 2). ORB-
SLAM3 has outperformed in all cases.  

TABLE I.  ENVIRONMENT SPECIFICATIONS OF SELECTED 
DATASETS[3] 

Name Distance/ 
Duration 

Avg. vel. 
/ 
angular 
vel. 

Conditions 

MH_01_easy 80.6m 
182s 

0.44ms-1 
0.22rads-1 

Good 
texture, 
bright 
scene 

MH_02_easy 73.5m 
150s 

0.49ms-1 
0.21rads-1 

Good 
texture, 
bright 
scene 

MH_03_mediu
m 

130.9m 
132s 

0.99ms-1 
0.29rads-1 

Fast 
motion, 
bright 
scene 

MH_04_difficult 91.7m 
99s 

0.93ms-1 
0.24rads-1 

Fast 
motion, 
dark scene 

V1_01_easy 58.6m 
144s 

0.41ms-1 
0.28rads-1 

Slow 
motion, 
bright 
scene 

V1_02_medium 75.9m 
83.5s 

0.91ms-1 
0.56rads-1 

Fast 
motion, 
bright 
scene 

V2_01_easy 36.5m 
112s 

0.33ms-1 
0.28rads-1 

Slow 
motion, 
bright 
scene 

V2_02_medium 83.2m 
115s 

0.72ms-1 
0.59rads-1 

Fast 
motion, 
bright 
scene 

1 github.com/MichaelGrupp/evo 
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The first thing makes an attention when look at 
RMSEs is that in the same environment conditions 
but with different flight durations VINS-Mono 
gave the same error rate in the sequences of 
MH_01_easy and MH_02_easy. On the other 
hand, the accuracy rate of ORB-SLAM3 is 
noticeably higher in the MH_01_easy sequence, 
where the flight takes longer. Although we might 
associate this success with better pose 
optimization in long-term flights, varying accuracy 
rates depending on the flight time will be 
challenging. Because, testing the success of ORB-
SLAM3 in systems where flight missions such as 
airplanes and helicopters can change frequently, 
and error rates are required to be close to zero will 
be costly in various topics such as time and 
workload. When the ORB-SLAM3 or similar 
system is to be integrated into such aircraft, 
additional developments and studies are required in 
this regard. 

 
a 

 
b 

 
c 

 
d 

Fig. 9. VINS-Mono in MH_02 (a) and V2_02 (c), 
ORB-SLAM3 in MH_02 (b) and V2_02 (d) 

When the MH_03_medium and MH_04_difficult 
sequences were traced, it cannot be fully interpreted 
how the dark environment affects the performance of 
the algorithms due to the change not only in the 
conditions but also in the distance between sequences. 
However, we know that the performance of the VINS-
Mono reduces the error rate in shorter flight missions 
and the ORB-SLAM3 achieves high accuracy rates in 
long term flights. From this point of view, we can say 
that both algorithms do not experience serious 
decreases in their performance in dark environments.  
If it is considered that the effect of the light level on the 
environment for performance is resolved at the 
hardware level (high sensitivity cameras), it is not 
possible to fully understand the capabilities of these 
algorithms in the dark environment with EuRoC MAV 
dataset. However, if different types of sensors are used 
in air vehicles such as planes and helicopters then 
algorithms need to be compared not only systematically 
but also according to hardware differences. 

 

TABLE II.  RMSE IN DATASETS(METERS) 

 VINS-Mono ORB-SLAM3 
MH_01_easy 0.182 0.016 
MH_02_easy 0.182 0.065 
MH_03_medium 0.404 0.041 
MH_04_difficult 0.393 0.110 
V1_01_easy 0.144 0.050 
V1_02_medium 0.311 0.013 
V2_01_easy 0.121 0.041 
V2_02_medium 0.275 0.013 
 

In the sequences such V2_01_easy and 
V2_02_medium where flight times are close to each 
other and only the speed of motion of the drone 
changes in the environment, we observed that the error 
rate increased approximately 2 times when VINS-
Mono performed fast maneuvers. On the other hand, 
ORB-SLAM3 decreased the error rate even more. In 
the case, moving objects are also included in the Vicon 
Room (V1_01_easy, V1_02_medium, V2_01_easy, 
V2_02_medium) sequences [3], it is seen that ORB-
SLAM3 yields better results in matching and tracking 
features.  

ORB-SLAM3 gives better results than VINS-Mono 
in every case. Accuracy rate not affected by flight time, 
good localization and feature matching ability at high 
altitudes, ensuring that the accuracy rate does not 
decrease in blur image that may occur due to changes 
in weather conditions are the major problems of ORB-
SLAM3 that must be solved. However, ORB-SLAM3 
can still be a starting point of research for aviation.. 
Besides, ORB-SLAM3 can be used for aircrafts in 
comparison of performance in feature matching and 
tracking in fast motion and optimizations made in long 
flights. 

5  Conclusion and Future Work 

In this paper, we compared two robust visual-
inertial estimators found in the literature. ORB-
SLAM3, in addition to its previous systems [15, 18], 
gave good results with the new fast and high accurate 
IMU initialization technique [3]. Especially in cases 
where the drone was moving fast, it was successful in 
the IMU integration by capturing the features. 
However, under the same conditions, ORB-SLAM3, 
which produces almost 10 times higher error only in 
the sequence where the environment is darker.  That is 
one of the problems to be solved for it. Although our 
study includes indoor tests on drones, we would like to 
discuss and study which parts of these systems can be 
developed and applied at high speeds, high altitudes 
and various weather conditions such as aircraft and 
helicopters in the future. While discussing these 
conditions and dealing with them in our future 
researches, we think that we will encounter problems 
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especially in feature extraction and matching. If we 
consider the researches and where technology is going, 
we can say that learning-based visual inertial systems 
can become widespread and it is necessary to focus on 
them. 
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