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Abstract:  Test Suite Minimization problem is a nondeterministic polynomial time (NP) complete problem in
software engineering that has a special importance in software testing. In this problem, a subset with a minimal
size that contains a number of test cases that cover all the test requirements should be found. A bruteforce
approach to solving this problem is to assume a size for the minimal subset and then search to find if there is a
subset of test cases with the assumed size that solves the problem. If not, the assumed minimal size is gradually
incremented, and the search is repeated. In this paper, a quantuminspired genetic algorithm (QIGA) will be
proposed to solve this problem. In it, quantum superposition, quantum rotation and quantum measurement will
be used in an evolutionary algorithm. The paper will show that the adopted quantum techniques can speed up
the convergence of the classical genetic algorithm. The proposed method has an advantage in that it reduces the
assumed minimal number of test cases using quantummeasurements, which makes it able to discover the minimal
number of test cases without any prior assumptions.

KeyWords:  QuantumInspired Genetic Algorithm, Classical Genetic Algorithm, Minimization Problem,
Software Testing, Optimization

Received: January 26, 2020. Revised: July 17, 2020. Accepted: August 10, 2020. Published: August 17, 2020.

1 Introduction

Software testing is a widely studied approach for as
sessing and improving software quality. Various tech
niques exist to perform software testing [1]. For ex
ample, there are functional techniques and structural
techniques. The functional techniques are when the
program is viewed as a black box and the test cases se
lection is based on the requirement or the software de
sign specification [1]; meanwhile, the structural tech
niques view the software as a white box and select the
test cases based on the software’s implementation[1].
Searchbased software engineering (SBSE) is used to
solve optimization problems. When there is a space
of solutions, SBSE can be used to find the best solu

tion among the candidate solutions using fitness func
tions [2]. SBSE can be applied to structural testing,
modelbased testing, mutation testing, temporal test
ing, exception testing, configuration and interaction
testing, stress testing, regression testing, and integra
tion testing [2]. Regression testing is used to test a
modified version of a program [3]. It is expensive be
cause engineers may start testing the modifed version
by retesting the test suite that is used to test the old
program version.

Minimization techniques aim to reduce the size of
the regression test suite of a software system untill it
reaches a state where it may be no longer feasible to
execute the entire test suite. Prioritization techniques
generate an ideal test execution order. Regression
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testing requires optimization to solve the case when
there are large data sets [3]. The test suite minimiza
tion problem is crucial due to test time and resource
constraints [4]. It aims to achieve the smallest subset
of test cases that covers testing all the requirements
and will be discussed in detail later in the paper [4, 3].
Researchers have discussed the classic test suite min
imization problem in different ways. These ways
can be classified as evolutionary algorithms and
nonevolutionary algorithms. The nonevolutionary
algorithms started in 1998 when Chen and Lau
proposed this problem using the greedy algorithm,
but it involved the random selection of test cases
in small scale test suites and required optimiza
tion in large scale cases [5]. In 2004, J. Black, E.
Melachrinoudis and D. Kaeli proposed a bicriteria
model for minimizing test cases to reveal the errors,
but it only minimizes the test suite with respect to
their fault detection effect [6]. Sriraman and Neelam
also proposed a concept analysis inspired greedy
algorithm for test suite minimization in 2005, but
their minimized results are not always smaller than
the input suites [7]. In 2006, Khan and Nadeem
used statementcoverage criterion to propose the Test
Filter with the drawback of wasting time and costs
when applying the coverage [8]. In 2007, Jeffrey
and Gupta uses selective redundancy to generate a
representative set for the test suite reduction, but they
need to select tests that expose additional faults in the
software [9]. In 2009, HwaYou and Alessandro used
MINTS to propose a general test suite minimization
framework and tool, but they introduced fairly similar
results for different versions of a program, which
requires more investigation [10]. Saeed Parsa and
Alireza Khalilian also used the greedy algorithm in
their optimization approach of test suite minimization
in 2010, but their algorithm requires the coverage
information for a single criterion, and it needs to be
tested with more than one criterion [11]. In 2010,
Yoo and Harman proposed multiobjective test suite
reduction, but it needs more optimization for better
results and they suggest combining various tech
niques together, such as the efficient approximation
of the greedy approach with a populationbased
genetic algorithm [12].In 2012, Khalilian and Parsa
proposed bicriteria test reduction with cluster anal
ysis of execution profiles, but it used two coverage
criteria to improve the fault detection’s effectiveness
[13]. In 2013, Ankur Prakash proposed a model
based on the Boolean function simplification, but
it is tested over a maximum of 9 test cases in a test
suite, which is quite small compared to benchmark
applications [14]. In 2014, Isha used the concepts of
set theory to propose their minimization technique,
but it was not implemented [15]. In 2017, an integer
linear programming model was proposed for this

issue, but it was applied to small scale tests [16].
Additionally, Shilpi and Raj proposed a multi criteria
based test suite optimization framework; however, it
just minimizes the test suite, but it does not produce
the optimal solution [17].
In [6] researchers used the Linear Formulation with
the Linear Solver (LF_LS) approach to solve the
MultiCriteria Test Suite Minimization (MCTSM)
problem by modeling the problem using a linear
formulation and solving it with a linear solver.
MCTSM can also use a nonlinear solver, which is
then referred to as the Nonlinear Formulation with
Nonlinear Solver (NF_NS) but it does not guarantee
optimal solutions. Auxiliary variables can be used
to change the nonlinear MCTSM to a linear one,
which can be referred to as the nonlinear formulation
using linear solvers (NF_LS) [18]. The experimental
results of the proposed technique will be compared to
those techniques, as will be shown later in Section 4.

Genetic algorithms were first proposed by John
Holland in the 1970s. They have various applications
such as software testing, computerautomated design,
codebreaking, optimization, image processing, qual
ity control, feature selection for machine learning, fil
tering and signal processing, finding hardware bugs,
the travelling salesman problem and its applications,
and many others [4]. Solving the test suit minimiza
tion problem using evolutionary algorithms started in
2001 when Lou and Lu proposed a genetic algorithm
for the timeaware regression testing reduction prob
lem that examines some criteria to confirm their satis
faction, but their experimental results show that some
times a vectorbased reduction strategy performs bet
ter than their proposed genetic one [1]. In 2005, a
genetic algorithm was proposed that builds the initial
population based on test history, but the problem is
that it needs its fault detection capability and other cri
teria examined [19]. In 2015, Sudhir Kumar proposed
an ant colony optimization algorithm for the test case
reduction of object oriented programs, but the result
ing reduction rates were improved in other research
papers [20]. While a genetic algorithm with vary
ing chromosome lengths was implemented to solve
the minimization problem by Sudhir and Srinivas in
2015, their algorithm takes quite a lot of time com
pared to other genetic algorithms [21]. Another al
gorithm that was implemented in 2017 combines the
greedy and genetic algorithms, which gives better re
sults than the greedy algorithm, but the execution time
of the GA exceeds the greedy one [22].
There are other evolutionary algorithms such as Parti
cle Swarm Optimization (PSO) that describes the be
havior of separation, alignment, and cohesion. Here,
separation means to avoid the crowded local flock
mates, alignment means moving towards its average
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direction, and cohesion means moving towards its av
erage position. However, when the PSO is applied
to the test suite minimization problem and finds an
optimal point, then other particles will be close to
that point, resulting in a weak global search and the
inability to find the minimum number of test cases
[23]. Ant Colony Optimization (ACO) can be used
to solve optimization problem, but it does not always
achieve good results. ACO is inspired by the sys
tem by which ants follow a marked path with high
intensity, which is not the case in our problem be
cause we have equal priorities for all the requirements
[23]. Differential Evolution (DE) and the GA are
similar except for that DE depends more on muta
tion, unlike theGA,which dependsmore on crossover
operations [23]. DE can be used in global opti
mization problems and quantum computing princi
ples can be used to enhance its performance [24].
Genetic algorithms can be implemented on quantum
computers since the universal Quantum Turing Ma
chine (QTM)was proposed in 1985 [25]. A Universal
Quantum Simulator has been proved to be possible,
whichmakes anything that is computable using a clas
sical computer to also be computable using a quantum
computer [26]. Deutsch also introduced quantum par
allelism, which can be considered as a key of most
successful algorithms. In 1994, Shor introduced an al
gorithm that is composed of a QTM and a TM to solve
the factorization problem in polynomial time [26].
The QIGA uses a hybrid strategy to incorporate
quantum computation concepts into the classical ge
netic algorithm (GA), which combines some com
mon operations such as crossover and mutation in
the classical GA with quantum characteristics such
as a quantum rotation gate. This combination im
proves the performance of some classical techniques,
as shown in Fig. 2 in [27]. There are many quantum
inspired genetic algorithms in the literature e.g., [23].
Quantuminspired Evolutionary Algorithms (QEAs)
have been successfully applied to solve knapsack
problem, the travelling salesman problem, the N
Queens problem, the job shop scheduling problem
[28], and others. It has been applied also to solve op
timization problems in networking and communica
tion. QEAs also explore the search space very well
due to the diverse results from the states’ superposi
tion.

The aim of this paper is to solve the test suite min
imization problem using a quantuminspired genetic
algorithm where the suggested number of tests based
on the chromosome length can be reduced by quan
tum measurements. The proposed algorithm takes a
novel approach regarding the main components of the
evolutionary algorithmwhere local and global param
eters are considered simultaneously. In addition to
the proposed fitness function that considers the local

Table 1: Example for test suite minimization problem
TestNo R1 R2 R3 R4 R5 R6

T1 0 1 0 0 1 1
T2 1 0 1 0 0 0
T3 1 0 0 0 1 0
T4 1 0 1 1 0 0

and the global parameters, better results are obtained
using the proposed crossover that affects the local pa
rameters without affecting the global parameters. Us
ing quantum interference and quantum measurement
in the proposed algorithm leads to faster convergence.

The remainder of this paper is organized as fol
lows. Section 2 defines the test suite minimization
problem, reviews the background concepts of the
QIGA, and gives a review of the basic concepts of
quantum computing and the operations of the QIGA.
In Section 3, the proposed technique is illustrated by
defining the encoding, the fitness function, the selec
tion operator, the crossover operator, the mutation op
erator, and the interference operator. In Section 4, the
proposed algorithm is evaluated and the experimen
tal results are given. Finally, Section 5 concludes the
paper.

2 Background
2.1 Test Suite Minimization Problem
The test suite minimization problem is a crucial prob
lem since it affects time and resources constraints.
The problem can be defined as follows.
Take a test suite T with a set of n test cases
{t1, t2, t3,...., tn} and a set R of m test require
ments {R1, R2, R3, ...., Rm}. Each test case
ti, where 1 ≤ i ≤ n covers a subset Si of
the test requirements, such that Si ⊆ R, and
0 < |Si| ≤ m. It is required to find the minimal
subset of T that covers all the test requirements [4].
For example, Table 1 illustrates a given test suite
showing the requirements that are covered with each
test case. Many solutions can be found that cover
all the requirements, but the target here is to find
the minimum number of tests for these solutions.
For example, all the requirements can be covered
with the test set {T1, T2, T4 } or {T1, T3, T4}, but
the minimum set is {T1, T4 }. It becomes more
complicated with large data sets. The TestNo column
represents the test case number while the Rs columns
represent the requirements that are to be satisfied by
each test case.

To solve this instance of the test suit minimiza
tion problem that is shown in Table 1, the minimal
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number of true assignments that satisfy the following
Boolean formula should be found as follows:

fTR = (T2 ∨ T3 ∨ T4)︸ ︷︷ ︸
R1

∧ (T1)︸︷︷︸
R2

∧ (T2 ∨ T4)∧︸ ︷︷ ︸
R3

(T4)︸︷︷︸
R4

∧ (T1 ∨ T3)︸ ︷︷ ︸
R5

∧ (T1)︸︷︷︸
R6

, (1)

which is a reduction of the test suite minimization
problem to the SAT problem.

2.2 QuantumInspired Genetic Algorithm
(QIGA)

2.2.1 Quantum Computing
The unit of information in a quantum computer is the
quantum bit or qubit, which can be in one of two
states, |0⟩, or |1⟩ as well as a linear combination of
both states (superposition principle). This linear com
bination represents a qubit in its quantum superposi
tion as follows [29]:

|ψ1⟩ = α |0⟩+ β |1⟩ , (2)

where αandβ are complex numbers such that

|0⟩ = [1 0]
T
, |1⟩ = [0 1]

T
, (3)

and

| α |2 + | β |2= 1. (4)

In general, the quantum computation can be repre
sented as follows:

F |X⟩ = |ψ⟩ , (5)
where |X⟩ represents the initial system state and F
is a unitary operator that is applied to the state |X⟩
resulting in |ψ⟩which is the final state that is achieved
[30].

Quantum computers store the data in registers as
quantum states that are the tensor product of two or
more qubits [28]; for example, the tensor product of
two qubits is calculated as follows:

[
α1

β1

]
⊗
[
α2

β2

]
=

α1α2

α1β2
β1α2

β1β2

 . (6)

The special states that cannot be written as a tensor
product of its components are known as the entangled
states [30].

Quantum gates perform unitary transformations
and are represented by matrices. One important
feature of quantum gates is their reversibility. An
ninput Boolean function is called reversible if the
following hold: [31]

1. The number of outputs and inputs are the same,
and

2. Any input pattern maps to a unique output pat
tern.
One of the quantum gates is the Hadamard or H

gate [28],

H =
1√
2

[
1 1
1 −1

]
, (7)

which has the following effect on a qubit:

H. |ψ1⟩ =
1√
2

[
1 1
1 −1

]
.

[
α
β

]
=

1√
2

[
α+ β
α− β

]
.

(8)

For example, we have the following:

H. |0⟩ = 1√
2

[
1 1
1 −1

] [
1
0

]
=

1√
2

[
1
1

]
. (9)

H. |1⟩ = 1√
2

[
1 1
1 −1

] [
0
1

]
=

1√
2

[
1
−1

]
. (10)

One of Hadmard’s gate applications is to initialize
a quantum register because applying H⊗n gates on
a quantum register of n qubits that are initialized to
state |0⟩ gives a superposition of all the 2n possible
states as follows:

H⊗n |0⟩⊗n =
1√
2n

2n−1∑
x=0

|x⟩ . (11)

There are many quantum gates such as CNOT,
Toffoli, and Fredkin gates as follows:

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (12)
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Toffoli =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


. (13)

Fredkin =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


. (14)

The quantum rotation gate, U(θ), helps to update
the quantum state, and its function is as follows:

U(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, (15)

where θ is the rotation angle.

2.2.2 Operations of the QIGA
The quantuminspired genetic algorithm uses a repre
sentation that is based on the concept of qubits. One
qubit is defined using a pair of complex numbers, (α,
β), as follows [32]:

|ψ1⟩ =
[
α
β

]
. (16)

Considering that anmqubits representation is de
fined as follows:

|ψm⟩ =
[
α1|α2|α3|........|αm

β1|β2|β3|........|βm

]
, (17)

where | αi |2 + | βi |2= 1, i = 1, 2, 3, .....,m. This
representation can represent a superposition of states.
For instance, assume that there is a threequbits sys
tem with three pairs of amplitudes such as follows:

|ψ3⟩ =


1√
2
| 1√

2
|12

1√
2
|−1√

2
|
√
3

2

 . (18)

Then, the system state can be represented as
follows [28]:

|ψ3⟩ =
1

4
|000⟩+

√
3

4
|001⟩ − 1

4
|010⟩ −

√
3

4
|011⟩

+
1

4
|100⟩+

√
3

4
|101⟩ − 1

4
|110⟩ −

√
3

4
|111⟩ .

(19)

The advantage of the quantuminspired genetic
algorithm is that a quantum population can be ex
ponentially larger than a classical one of the same
size because a quantum chromosome can exploit
the superposition to represent an exponentially large
number of classical chromosomes simultaneously.

• Rotation (Interference) Gate

The rotation operator or quantum interference is a
gate U(θ) similar to that shown in (15), which has
the following effect when applied on a qubit:

U(θ) |ψt⟩ = |ψt+1⟩ =
[
cos(θ) −sin(θ)
sin(θ) cos(θ)

] [
αt

βt

]
=

[
cos(θ)αt − sin(θ)βt
sin(θ)αt + cos(θ)βt

]
.

(20)

• Quantum Mutation

The mutation applies a random change to a chromo
somewith a certain mutation rate. Mutation is applied
by randomly selecting a mutation point in the chro
mosome and replacing that point with another random
value from a given set of values. For example, assum
ing the following chromosome is given and the muta
tion is applied on the first qubit, then a randomly cho
sen value is used to replace that first qubit but without
violating the quantum state rule that is shown in (4),
as follows:

p =

[
α1 α2 α3 ... αq

β1 β2 β3 ... βq

]
. (21)

The new chromosome will be as follows:

p′ =

[
α′
1 α2 α3 ... αq

β′1 β2 β3 ... βq

]
, (22)
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where
| α′

1 |2 + | β′1 |2= 1. (23)

• Quantum Crossover

The quantuminspired version of the classical
crossover operator is applied in many practical
optimization problems. For the one point crossover,
for example, if the cut point is randomly chosen to
be a point between the first and second positions,
then an exchange of chromosomal segments between
chromosomes p1 and p2 is as follows:

p1 =

[
α1| α2 α3 ... αq

β1| β2 β3 ... βq

]
, (24)

p2 =

[
α′
1| α′

2 α′
3 ... α′

q
β′1| β′2 β′3 ... β′q

]
. (25)

This will result in the following:

p′1 =

[
α1 α′

2 α′
3 ... α′

q
β1 β′2 β′3 ... β′q

]
, (26)

and
p′2 =

[
α′
1 α2 α3 ... αq

β′1 β2 β3 ... βq

]
. (27)

3 The Proposed Technique
This section illustrates the detailed structure and steps
to solve the test suite minimization problem using the
QIGA.

3.1 Problem Representation
To solve the test suite minimization problem, a test re
quirement matrix (TR) should be given to show what
requirements are covered in each test. In this paper,
various matrices are tested in addition to the identity
matrix, as will be seen in the results section. It can be
any binary matrix. Each row represents a test while
each column tells whether or not a specific require
ment is considered in this test. It is a binary matrix,
the value of 1 means that the requirement is fulfilled
in the test while the value of 0 means that the require
ment is not covered. Table 1 shows a test case exam
ple with the requirements that each test case satisfies.
The aim is to find the minimum number of test cases
that satisfies all the requirements. The matrix that is
derived from Table 1 is as follows:

TR =

0 1 0 0 1 1
1 0 1 0 0 0
1 0 0 0 1 0
1 0 1 1 0 0

 . (28)

Table 2: Example to illustrate the global α and global
β values

TestNo Global Values
T1 α1, β1
T2 α2, β2
T3 α3, β3
T4 α4, β4

An important point to consider here is the chromo
some data structure. The chromosome is composed
of a set of tests that are chosen from the tests that are
given in theTR. For example, if the chromosome size
is 3, this can be (T1, T3, T4). There are globally cal
culated α and β values that are associated with each
test in the derived matrix. These global α and global
β values are fixed for this given matrix (TR). Table
2 shows an example for the various tests existing in
the given matrix along with the α and β values that
are globally associated with them. Each population
includes a number of tests that are selected from the
TR, and each of these tests has its calculated global α
and β. When they are selected for the chromosome,
the local α and β values will be initialized using the
global α and β. These local α and β are updated from
one generation to another based on applying the inter
ference operator on the chromosome, as calculated in
(20). Table 3 shows how the local α and β are at
tached to the tests. For example, in chromosome 1,
the chromosome contains T1, T2, and T4. The am
plitudes of T1 have been initialized with the global
α and β and the amplitudes have been updated using
the rotation operator to reach αp11 and βp11 (the local
α and β). The indices of the local α and β are com
posed of three parts, including the population number,
the chromosome number, and the test, respectively.

The population size that is used in the QIGA to
solve the given test is popSize. sumOfOnes and
sumOfAllOnes representing the summation of 1’s
with their weights and the summation of the case
when there is a string of all 1’s, respectively. These
values need to be prepared as follows:

sumOfOnes =

testColSize∑
j=0

((testColSize− (j))

∗ (j + 1) ∗ elementV alue, (29)

sumOfAllOnes =

testColSize∑
j=0

(j+1)∗(testColSize−j),

(30)
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Table 3: Example showing the local α and β values in a specific population p of size 4
Chromosome Number Chromosomes(population, chromosome, test)

1 T1
αp11, βp11

T2
αp12, βp12

T4
αp14, βp14

2 T3
αp23, βp23

T1
αp21, βp21

T2
αp22, βp22

3 T3
αp33, βp33

T1
αp31, βp31

T4
αp34, βp34

4 T1
αp41, βp41

T2
αp42, βp42

T3
αp43, βp43

where testColSize is the column size of the test re
quirement matrix, and the elementV alue is the value
of each added element such that elementV alue ∈
{0, 1}, which means that the elementV alue = 0 can
be ignored. The global α and β can be initially calcu
lated as follows:

global_β =
√
sumOfOnes/sumOfAllOnes,

(31)

global_α =
√

1.0− global_β2. (32)

The initial population is then generated. A number
of chromosomes are then randomly generated using
the tests in the test requirement matrix. Interference
is then applied to update the local α and β values for
each chromosome i, as in (20), where the change in θ
will be a random number between 0 and 1, which is
represented by δθ, as shown in (33). Then, the data
are measured based on the updated local α and β
values.

θt+1 = θt ± δθt. (33)

3.2 Fitness Function
To calculate the fitness function, a weight is prepared
for the whole matrix using the sumOfAllOnes and
is calculated as in (30). Then, a weight for each chro
mosome in the population is prepared and denoted as
w, as follows:

w =

testColSize∑
j=0

((testColSize−(j))∗(j+1)). (34)

Then, the w values are used to calculate the fitness
function as follows:

fitnessV alue =
|w|

sumOfAllOnes
∗ 100. (35)

3.3 Selection
The fitness function is calculated for each chromo
some and the Roulette wheel algorithm is used for se
lecting chromosomes from the random initial popula
tion.

3.4 Crossover
A single point crossover is then applied with a
crossover probability of 90%. The crossover oper
ation considers the local α and β values but it does
not affect the global α and β that are associated with
the TR tests. The operation first passes by each
chromosome with a random cross rate between 0 and
1 to mark the chromosomes that will apply crossover.
A random crossover position is then selected and the
operation is applied.

3.5 Mutation
The mutation is applied at a rate of 5% by randomly
choosing a point in a chromosome and replacing it
using a random test from the TR.

3.6 Interference
The interference is applied to all tests in the chromo
some. It updates the θ value with a random number δθ
between 0 and 1, as shown in (33). Then, it updates
the local α and β values according to (20).

4 Experimental Results
The pseudo code that is shown in Algorithm 1
summarizes the proposed method. To evaluate the
proposed method, experiments has been conducted
on random test suite minimization problems with
different sizes. Table 4 summarizes the experiments’
GA parameters. For demonstration purposes, the
results of the case with 200 test cases and 200
test requirements, i.e., a matrix of size 200 × 200,
will be discussed. Three different types of ma
trices have been randomly generated: the sparse
matrices where the 1s randomly occupy 20% of
the matrices, the balanced matrices where the 1s
randomly occupy 50% of the matrices, and the dense
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Algorithm 1 Pseudocode for the proposed algorithm
Read a test requirement matrix TR of sizem× n.
Calculate sumOfOnes and sumOfAllOnes val
ues for the whole matrix as illustrated in (29) and
(30).
Generate the initial population of a chosen popula
tion size and a chosen chromosome length. The el
ements of the chromosomes in each population are
chosen from the tests in the test requirement matrix.
Initialize the local α and β values from the global
ones.
while a 100% fitness value is reached or a prede
fined number of iterations is reached do

Apply the interference operation and then the
measurement.

Update the local α and β values according to
the interference operation.

Select from the population using Roulette
wheel method.

Apply crossover with a crossover rate of 90%.
Apply mutation with a mutation rate 5%.
Calculate the fitness values for the population

elements using the fitness function in (35).
Check the maximum fitness among the popula

tion elements.
if a 100% fitness value is found then

Report a solution that covers all the require
ments that are found.

end if
end while

matrices where the 1s occupy 80% of the matrices.

The same random test suite minimization prob
lem has been solved using the classical GA and
the proposed QIGA with similar parameters such
as the mutation rate, the population size, and the
crossover rate to be able to compare their perfor
mances. The chromosome length has been fixed
for 100 generations or until a fitness of 100% is
reached. If no solution was found using the assumed
chromosome length, then the size of the chromosome
will be gradually incremented and then fixed for
another 100 generations and so on, until the maxi
mum length of the chromosome, which is equal to
the number of tests, is reached. This will help to
demonstrate the ability of the proposed QIGA to
discover the minimum number of test suites despite
the suggested chromosome length, as in the case
of the classical GA, and this will be shown next.

Using the same chromosome length, both the
classical GA and the proposed QIGA evolved to get
a solution. The found solution using the classical
GA can be further reduced by eliminating repeated

test cases (redundancy). In the case of the QIGA, the
reduced number of the test cases is obtained by the
quantum measurement where only a subset of the test
cases is assumed to be the candidate solutions based
randomly on the amplitudes of the superposition.
Fig. 1 shows a comparison between the size of the
obtained solution using the classical GA and the
proposed QIGA. This shows that even by increasing
the suggested size of the chromosome, the proposed
QIGA can achieve a better reduction in the size of
the solution compared with the classical GA. This
can help to remove the burden of assuming a size
for the chromosome. A large chromosome size can
be used and the quantum measurement can help to
reduce the solution size to the near minimal size.

The proposed algorithm used the minimum chro
mosome length, i.e., the minimum number of test
cases. The average fitness and the maximum fitness
of the population have been recorded during the evo
lution for the three cases, i.e., sparse, balanced and
dense. Then, the average performance over 50 trials
is used in the analysis, as shown in Fig. 2, Fig. 3 and
Fig. 4, respectively, which show that the proposed
QIGA achieves faster convergence than the classical
GA. Fig. 2 analyzes the sparse case by calculating the
average fitness values over 50 runs, as shown by the
QIGA_avg curve, and similarly the GA_avg is cal
culated. This comparison shows faster convergence
for the QIGA_avg curve; moreover, it reaches higher
fitness values than the GA_avg, even before the con
vergence. To give more power and consistency to the
results, the maximum fitness values are also consid
ered, as shown in the QIGA_max. Then, it is com
pared to the maximum fitness values of the GA_max
curve. This comparison confirms the faster conver
gence of the QIGA algorithm than the GA algorithm
and it shows also higher fitness values than the GA
ones before the convergence. The other case to be
studied is the balanced case, which is analyzed in Fig.
3, where QIGA_max represents the maximum fitness
values that are generated by applying the QIGA al
gorithm. The QIGA_max clearly converges faster
thanGA_max, which shows themaximum fitness val
ues that are generated by applying the GA algorithm.
Then, the average fitness values are considered for
both the QIGA and GA algorithms, as shown in the
QIGA_avg and GA_avg curves. QIGA_avg gives
better results than GA_avg. Fig. 4 shows the max
imum fitness values that are calculated in the dense
case using the QIGA_max curve and compares them
to the ones that are calculated in the dense case us
ing the GA algorithm with the GA_max curve. Here,
QIGA_max converges faster and has better fitness
values than GA_max. Similarly, the average fitness
values are studied and shown using QIGA_avg and
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GA_avg, which proves the better convergence of the
QIGA algorithm than the GA algorithm.

Table 5 provides the summary of the data set that
is used in the experiment [18, 33]. It shows the in
formation such as the version, description, and LOC,
which represents the lines of code in the program.
Then, it also provides columns for the number of
test cases before the reduction, the #Tests for the
reduced suite size, and the #Faults for the number of
detected faults in the program, which measures the
fault detection ability. Table 6 and Table 7 compare
the experimental results using the proposed technique
over the five programs in the data set with the results
that are shown in [18], which shows a better reduction
in the number of required tests. Table 6 displays
the test suite size before and after the reduction for
the Grep, Flex, and Sed programs. The results of
applying the LF_LS technique, NF_LS technique,
NF_NS technique, and the proposed technique are
shown for each program and then a comparison
is performed between the proposed technique and
each of the mentioned techniques. This illustrates
the better results of the proposed technique than the
others. Similarly, Table 7 gives the same study for
the Make and Gzip programs and it also illustrates
the better reduction for the proposed technique than
NF_LS, LF_LS, and NF_NS.

5 Conclusion
In this paper, a quantuminspired genetic algorithm
(QIGA) has been proposed to solve the test suite min
imization problem where quantum superposition has
been used in the encoding of the chromosome to in
crease the size of the search space over approximately
the same physical space. The quantum rotation gate
has been used with the crossover and mutation oper
ators to enhance the search capabilities of the classi
cal genetic algorithm. The proposed algorithm used
local and global parameters simultaneously to guide
the search. Here, the crossover operator affects the lo
cal parameters, while the global parameters have been
kept unchanged to save the algorithm from getting
lost due to the increase in the search space because
of the quantum superposition. The quantum mea
surement has been be used in the proposed quantum
inspired evolutionary algorithm to reduce the number
of test cases to avoid any priori assumptions on the
minimal number of test cases. It has been shown that
the adopted quantum techniques accelerates the con
vergence to the solution compared with the classical
genetic algorithm.

Experimental results have been shown for the
sparse, balanced and dense instances of the test suite
minimization problem and the quantuminspired ver
sion performs better than the classical genetic version

of the algorithm. The proposed algorithm has been
used to solve the instances in the data set that was used
in [18, 33]; here, the proposed algorithm provides bet
ter reduction results than those of the approaches that
are shown in the literature.
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Fig. 2: The convergence of the average fitness values and the maximum fitness value of the proposed QIGA
compared with the classical GA for the sparse case.
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Table 4: GA Parameters for the proposed technique
GA Parameter Value
Population Size 500

Crossover Singlepoint
Crossover Rate 90%
Mutation Rate 5%
Selection Roulette Wheel
θinitial π
δθ A random number between 0 and 1

Operator Probabilities Selected with trials
Termination To find a solution OR Reach the number of trials

Table 5: Programs used in the experimental results [18].
Program Version Description LOC #Tests #Faults
Grep 2.7 Pattern search and matching utility 58,344 746 54
Flex 2.5.4 Lexical analyzer 12,366 605 37
Sed 4.2 Command line text editor 26,466 324 25
Make 3.80 Executable builder and generator 23,400 158 15
Gzip 1.3 Data compressor 5,682 397 56

Table 6: Comparison among the different methods modeling the classic bicriteria problem.
Programs Grep Flex Sed

#T #F #T #F #T #F
Methods
Original 746 54 605 37 324 25

LF_LS [18] 59 29 44 28 12 21
NF_LS [18] 59 36 44 32 12 25
NF_NS [18] n/a n/a 44 32 12 25

Proposed Technique 42 30 32 21 10 14
%Proposed_technique over NF_LS 40.47% 20% 37.5% 52.38% 20% 78.57%
%Proposed_technique over LF_LS 40.47% 3.45% 37.5% 33.33% 20% 50%
%Proposed_technique over NF_NS n/a n/a 37.5% 52.38% 20% 78.57%

Table 7: Continuation of Table 6: Comparison among the different methods modeling the classic bicriteria prob
lem.

Programs Make Gzip
#T #F #T #F

Methods
Original 158 15 397 56

LF_LS [18] 14 12 45 50
NF_LS [18] 14 13 45 50
NF_NS [18] 14 13 45 49

Proposed Technique 10 10 32 44
%Proposed_technique over NF_LS 40% 30% 40.6% 12.24%
%Proposed_technique over LF_LS 40% 20% 40.6% 12.24%
%Proposed_technique over NF_NS 40% 30% 40.6% 2.04%
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