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 Abstract: - Particular case of nonlinear equations are polynomial equations, solving algorithms of which are 
justified and investigated in the most detail. However, a general approach to solving such equations and their 
systems that could be considered universal for solving most practical problems has not yet been developed. This 
is an incentive to search for new algorithms, adapted, at least, to solve typical applied problems. This paper is 
devoted to the development the method of Laguerre's type for solving polynomial equations systems with real 
coefficients. It is shown that this method is close in form to the method of homotopy, which effective, for 
example, in solving optimization problems of nonconvex functions. Its efficiency and advantages in comparison 
with the known methods are demonstrated on examples of the study of mathematical models of real objects and 
processes.  
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1 Introduction 
The problem of roots finding of nonlinear equations 
and their systems has attracted the attention of 
researchers for several centuries, due to which many 
methods for solving it are available in the scientific 
literature. Despite this, it remains one of the most 
important problems of computational mathematics, 
due to the need to solve a large number of applied 
problems, which models are represented by 
nonlinear equations and their systems.  

To systems of polynomial equations are come 
down mathematical models of many problems of 
kinematics and dynamics of multilink mechanisms 
with finite number degrees of freedom, optimization 
problems, analysis of cyclic molecules, combustion 

processes and chemical equilibrium, studies of the 
generalized eigenvalue problem, economic 
processes, and many others. It is known that in most 
cases numerical methods and, most often, Newton's 
method or its modifications are used to study such 
models. In recent years, evolutionary and 
probabilistic methods have received significant 
development. However, as we know, the use of 
these methods is not always effective. 

Consider the following problem. Let 𝐺 be an 
open subset of space ℝ𝑛: 𝐺 ⊂ ℝ𝑛, on which is given 
a sufficiently smooth mapping ℱ: 𝐺 → ℝ𝑛.  It is 
required to find a solution to the equation ℱ(𝒳) = 0  
with respect to the unknown vector 𝒳 ∈ 𝐺. 
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Even if we assume that there is a compression 
mapping 𝒳(𝑖+1)𝑘 = Φ(𝒳𝑖𝑘) constructed by the 
given equation ℱ(𝒳) = 0, which converges to a 
fixed point 𝒳𝑘∗, situations are possible in which to 
find numerical solution of the equation ℱ(𝒳) = 0   
using classical numerical methods is not possible. 
However, in such cases, it is possible to find a 
solution of problem by a homotopy method, in 
which the original vector equation ℱ(𝒳) = 0 is 
replaced by one of easily solved equations, which, 
in turn, after several iterations goes to the original 
equation [1-6]. The main difficulty in this case lies 
precisely in the selection of such easily solvable 
equation. 

 Let ℋ:𝐺 × [0,1] → ℝ𝑛 – smooth mapping 
satisfying the condition:  

                   ℋ(𝒳, 1) = ℱ(𝒳), 𝒳 ∈ 𝐺,                (1) 

and the equation 

                             ℋ(𝒳, 0) = 0                            (2) 

has a solution 𝒳0𝑘 ∈ 𝐺, which can be easily found. 
The operator ℋ allows to carry out homotopy of 

the mapping ℋ(∘ ,0) to the mappi ℋ(∘ ,1) ≡ ℱ, or, 
in another way, a smooth transition from easily 
solved equation (2) to equation (1). Therefore, 
homotopy is nothing more than a continuously 
differentiable function 

                      ℋ(𝒳(𝑞), 𝑞) = 0, 𝑞 ∈ [0,1]. 

Thus, the iterative process implemented in 
accordance with the homotopy method begins with 
solving the problem, which at the initial stage has a 
simple (or known) solution, which, in turn, is 
“deformed” by continuously changing the parameter 
q until the solution of original problem will be 
obtained. 

If we assume that the mapping ℋ(∘, 𝑞): 𝐺 → ℝ𝑛 
has an unique zero 𝜁(𝑞), ∀𝑞 ∈ [0,1], that is, 

                              ℋ( 𝜁(𝑞), 𝑞) = 0,                     (3) 

then 𝜁(1) = 𝒳𝑘∗ is a desired solution to the original 
equation ℱ(𝒳) = 0. 

In cases when defined in this way mapping  
𝜁: [0,1] → 𝐺: is smooth, then after differentiation 
(3), we obtain 

            𝜕ℋ
𝜕𝒳𝑇|

𝒳=𝜁(𝑞)
𝜁′(𝑞) +

𝜕ℋ

𝜕𝑞
|
𝒳=𝜁(𝑞)

= 0,         (4) 

when 𝜕ℋ
𝜕𝒳𝑇 = (

𝜕ℋ𝑖(𝒳,𝑞)

𝜕𝑥𝑗
)
1≤𝑖,𝑗≤𝑛

is the Jacobi matrix of 

the mapping ℋ(𝒳 , 𝑞) calculated relatively to the 
vector 𝒳 at 𝒳 =  𝜁(𝑞). 

If the matrix 𝜕ℋ

𝜕𝒳𝑇 is non-degenerate, then 
equation (4) is solvable with respect to the 𝜁′(𝑞) =
𝑑𝜁(𝑞)

𝑑𝑞
 and can be written in the following form: 

            𝜁′(𝑞) = −( 𝜕ℋ
𝜕𝒳𝑇|

𝒳=𝜁(𝑞)
)
−1

𝜕ℋ

𝜕𝑞
|
𝒳=𝜁(𝑞)

. 

In fact, this relation can be used to replace the 
equation ℱ(𝒳) = 0 by the Cauchy problem for the 
system of ordinary differential equations with 
dummy time 𝑞 ∈ [0,1] and the initial condition 
𝒳0𝑘 ∈ 𝐺, which is the zero of the mapping ℋ(∘ ,0), 
which is homotopic to the original maping ℱ. This 
approach is called the Davydenko homotopy method 
[7] can be implemented in different ways.  

The main aim of this work is to substantiate an 
effective homotopy method for solving a system of 
polynomial equations with real coefficients, realized 
through iterations of the Laguerre's type. 
 

2 The Method Justification 
 
 
2.1 LRP-Polynomials and Laguerre's Type 

Homotopy   
Consider the polynomial equation 

                    𝑝𝑛(𝑥) = ∑ 𝑎𝑛−𝑗𝑥
𝑗𝑛

𝑗=0 = 0                (5) 

where 𝑝𝑛(𝑥) is a polynomial from a ring𝑅[𝑥], 𝑥 ∈
ℝ, 𝑎𝑗 ∈ ℝ, 𝑗 = 0,1,… , 𝑛, 𝑛 ∈ ℕ, as well as the family 
of polynomials generated by it, depending on the 
parameter 𝜈 ≠ 1: 

          𝑝𝑛(𝜈, 𝑥) = ∑ 𝑎𝑛−𝑗[1 − (𝑛 − 𝑗)𝜈]𝑥
𝑗𝑛

𝑗=0 .     (6) 

The properties of polynomials from family (6), 
which were called polynomials with a linear real 
parameter (LRP-polynomials), are described in [8]. 
We transform the right side of the expression (6) 
and present it in the following form: 

            𝑝𝑛(𝜈, 𝑥) = ∑ 𝑎𝑛−𝑗𝑥
𝑗 − 𝜈∑ (𝑛 −𝑛

𝑗=0
𝑛
𝑗=0

𝑗) 𝑎𝑛−𝑗 𝑥
𝑗 =      𝑝𝑛(𝑥) − 𝜈𝑔𝑛−1(𝑥).                   (7)   

In [8] was proved following lemma:  
Lemma 1. If for any real number 𝜈 ≠ 1 the equality 
𝑝𝑛(𝜈, 𝑥) = 𝑝𝑛(𝑥) is true, then there exists 𝑥 = 𝑥𝑟 ∈
ℝ for which 𝑔𝑛−1(𝑥𝑟) = 0. 

Indeed, if we randomly choose two real numbers 
𝜈𝑘 and 𝜈𝑚, then, taking into account (7), we will 
have 𝑝𝑛(𝜈𝑘 , 𝑥) = 𝑝𝑛(𝜈𝑚, 𝑥) and, therefore: 

                       (𝜈𝑘 − 𝜈𝑚)𝑔𝑛−1(𝑥) = 0.                 (8) 

For 𝜈𝑘 = 𝜈𝑚, equation (8) holds for all 𝒙 ∈ ℝ𝑚. 
Otherwise, if 𝑥 = 𝑥𝑟 ∈ ℝ𝑚 is the root of (8), then 

WSEAS TRANSACTIONS on COMPUTERS 
DOI: 10.37394/23205.2020.19.14 Aleksandr Poliakov, Narina Kolesova, Pavel Bugayov

E-ISSN: 2224-2872 104 Volume 19, 2020



𝑔𝑛−1(𝑥𝑟) = 0. That is, the graphs of all LRP-
functions 𝑓𝜈(𝑥) = 𝑝𝑛(𝜈, 𝑥), 𝜈 ≠ 1 intersect at points 
whose abscissas are real roots 𝑥 = 𝑥𝑟(𝑘), 𝑘 ≤ 𝑛 − 1 
of the equation 𝑔𝑛−1(𝑥𝑟) = 0. For 𝑥𝑟 = 0, i.e. in 
cases where the equation 𝑔𝑛−1(𝑥𝑟) = 0 has no real 
roots, the graphs of LRP-functions do not intersect. 
Thus, we can assume that the family of LRP-
polynomials (6) defines a continuous homotopy of 
the polynomial function 𝑝𝑛(𝑥) [7]. 

In [9], it was shown that homotopy 

                  𝑥 = 𝜑(𝑥) = 𝑥 𝑔𝑛−1(𝑥)

𝑔𝑛−1(𝑥)−𝑝𝑛(𝑥)
,               (9) 

being constructed based on LRP-polynomials from 
family (6), it is guaranteed to have a single fixed 
point if it is a compression mapping. Therefore, the 
iterative process 

                𝑥𝑘 =
𝑥𝑘−1

1−𝜈𝑘−1
= 𝑥𝑘−1

1

1−
𝑝𝑛(𝑥𝑘−1)

𝑔𝑛−1(𝑥𝑘−1)

=

                         𝑥𝑘−1
𝑔𝑛−1(𝑥𝑘−1)

𝑔𝑛−1(𝑥𝑘−1)−𝑝𝑛(𝑥𝑘−1)
 ,              (10) 

converges and lim
𝑥→∞

𝑥𝑘 = 𝑥𝑟 – is a fixed point of the 
mapping (10). 

The iterative formula (10) also can be 
represented as follows: 

               𝑥𝑘+1 = 𝑥𝑘 −
𝑝𝑛(𝑥𝑘)

𝑝𝑛
′ (𝑥𝑘)−(𝑛−1)

𝑝𝑛(𝑥𝑘)

𝑥𝑘
−

,         (11)                          

whence it follows that it differs from the classical 
Newton's iterative formula by the presence of the 
second term in the denominator. 
In addition, formula (11) corresponds to one of the 
iterative formulas of the Laguerre's type 

       𝑥𝑘+1 = 𝑥𝑘 −
𝛼+1

𝛼𝑠1(𝑥𝑘)±[(𝛼+1)𝑠2(𝑥𝑘)−𝛼𝑠1(𝑥𝑘)
2]
1
2

, 

which, in the case of 𝛼 = 1

𝑛−1
, has the form [10]: 

𝑥𝑘+1 = 𝑥𝑘 − 
                              

𝑛𝑓(𝑥𝑘)

𝑓′(𝑥𝑘)±[(𝑛−1)
2𝑓′(𝑥𝑘)

2−𝑛(𝑛−1)𝑓(𝑥𝑘)𝑓
′′(𝑥𝑘)]

1
2

 .           (12) 

Back in 1968, O.N. Tikhonov showed that 
formula (11) is a special case of (12) and, therefore, 
can be assigned to one of the Laguerre's type 
families [11]. 

It should be noted that the authors of this paper 
obtained iterative formula (11) based on an 
algorithm that significantly differs from the 
Tikhonov form, namely, the new algorithm uses the 
real parameter 𝜈, which defines the continuous 
homotopy ℋ(𝜈, 𝑥) of the polynomial 𝑝𝑛(𝑥): 

       ℋ(𝜈, 𝑥) = 𝑝𝜈(𝜈, 𝑥) = 𝑝𝑛(𝑥) − 𝜈𝑔𝑛−1(𝑥).  (13) 

During the iterative process, this parameter 
decreases thereby bringing ℋ(𝜈, 𝑥) to 𝑝𝑛(𝑥). In 
fact, the parameter ν at each iteration allows us to 
estimate the degree of deformation ℋ(𝜈, 𝑥) from a 
given value of 𝑥. That is, if we assume that ∃𝑥𝑘 ∈
ℝ: ℋ(𝜈𝑘 , 𝑥𝑘) = 𝑝𝑛(𝑥𝑘) − 𝜈𝑘𝑔𝑛−1(𝑥𝑘) = 0, then 
the degree of deformation 𝜈𝑘, defined by the 
formula 

                            𝜈𝑘 =
𝑝𝑛(𝑥𝑘)

𝑔𝑛−1(𝑥𝑘)
,                           (14) 

can be used to approach ℋ(𝜈, 𝑥) with a smaller 
deviation from 𝑝𝑛(𝑥). To do this, it is necessary to 
calculate 𝑥𝑘+1 =

𝑥𝑘

1−𝜈𝑘
, which gives 𝜈𝑘+1 =

𝑝𝑛(𝑥𝑘+1)

𝑔𝑛−1(𝑥𝑘+1)
. The new value of the parameter 𝜈 

calculated in this way, hypothetically allows us to 
bring ℋ(𝜈, 𝑥) closer to 𝑝𝑛(𝑥). 

One of the advantages of the described algorithm 
is that it can be generalized to systems of 
polynomial equations [12].When including a 
subsection you must use, for its heading, small 
letters, 12pt, left justified, bold, Times New Roman 
as here.  
 
 
2.2 Multi-Variant LRP-Polynomials and 

Laguerre's Type Homotopy of Polynomial 

Systems    
Consider a multi-variant polynomial 

𝑃𝑆
𝑖(𝑥1, … , 𝑥𝑚) = 

     ∑ … ∑ 𝑎𝑛1−𝑘1,…,𝑛𝑚−𝑘𝑚
𝑛2
𝑘𝑚=0

𝑛1
𝑘1=0

𝑥1
𝑘1 ⋅ … ⋅ 𝑥𝑚

𝑘𝑚,                        

from a ring 𝑅[𝑥1, … , 𝑥𝑚] of polynomials with 𝑚 
variables over the field ℝ: 𝑎𝑛1−𝑘1,…,𝑛𝑚−𝑘𝑚 ∈ ℝ; 
𝑛1, … , 𝑛𝑚 ∈ ℕ, where 𝑆 = 𝑑𝑒𝑔(𝑃𝑆𝑖) is a degree of 
the 𝑃𝑆𝑖, to which corresponds the following 
polynomial equation 

                           𝑃𝑆𝑖(𝑥1, … , 𝑥𝑚) = 0.                   (15) 

If an arbitrary m-dimensional vector𝑅0 =
(𝑟1
0, … , 𝑟𝑚

0)𝑇, 𝑟1
0, … , 𝑟𝑚

0 ∈ ℝ, is not a solution of the 
equation (15), then suppose that the solution is an 
m-dimensional vector 

                       𝑅1 = ( 𝑟1
0

1−𝜈1
0 , … ,

𝑟𝑚
0

1−𝜈𝑚
0 )

𝑇

,                (16) 

where {𝜈𝑗
0 ∈ ℝ: 𝜈𝑗

0 ≠ 1}, 𝑗 = 1,… ,𝑚 are 
components of error vector 

                          𝐸0 = (𝜈10, … , 𝜈𝑚0 )𝑇.                   (17) 
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Then 𝑃1
𝑖 = 𝑃𝑆

𝑖 (
𝑟1
0

1−𝜈1
0 , … ,

𝑟𝑚
0

1−𝜈𝑚
0 ) ≤ 𝛿 ≈ 0, that 

allows you to record  

            ℋ(𝐸, 𝑋) = 𝑃𝑆𝑖(𝜈10, … , 𝜈𝑚0 , 𝑟10, … , 𝑟𝑚0  ) =
                     𝑃𝑆

𝑖(𝑟1
0, … , 𝑟𝑚

0  ) − 𝐺𝑆−1
𝑖 𝐸0,                  (18) 

where 𝑋 = (𝑥1, … , 𝑥𝑚)𝑇 is a column vector of 
variables of polynomial equation  (15); 𝐺𝑆−1𝑖 =

(𝑔1
𝑖 , … , 𝑔𝑚

𝑖 ) is a row vector whose components are 
values of polynomial 𝑔𝑗𝑖 , 𝑗 = 1,… ,𝑚 degrees of 
𝑆𝑗 = 𝑑𝑒𝑔(𝑔𝑗

𝑖) ≤ 𝑆 − 1 in the point 𝑅0. 
Polynomials 𝑔𝑗𝑖  are obtained in the natural way 

as coefficients for 𝜈𝑗0 in the polynomial equation 
(15) after substituting the components of the vector 
(16) into it, if we neglect the products 𝜈𝑗0 ⋅
𝜈𝑘
0, ∀𝑗, 𝑘 = 1,… ,𝑚 and take into account that 
𝜈𝑗
0, 𝜈𝑘

0 ≠ 1. 
The described procedure makes it possible to 
construct an algorithm of the iterative process for 
solving polynomial equations systems similar to 
(10). 
To do this, we consider a finite system of equations 
of the form (15): 

                       {
𝑃𝑆1
1 (𝑥1, … , 𝑥𝑚) = 0,

⋮
𝑃𝑆𝑚
𝑚 (𝑥1, … , 𝑥𝑚) = 0,

                 (19) 

where 𝑆1, … , 𝑆𝑚 are degrees of polynomial 
equations with numbers 1, ..., m, respectively. 

Applying the method of obtaining expression 
(18), we come (in the general case) to a system of m 
heterogeneous linear algebraic equations 

   {
𝑃𝑆1
1 (𝑟1

0, … , 𝑟𝑚
0) − 𝐺𝑆1−1

1 (𝑟1
0, … , 𝑟𝑚

0)𝐸0 = 0,

⋮
𝑃𝑆𝑚
𝑚 (𝑟1

0, … , 𝑟𝑚
0) − 𝐺𝑆𝑚−1

𝑚 (𝑟1
0, … , 𝑟𝑚

0)𝐸0 = 0.
  (20) 

In matrix form the system (20) has the form 

                          𝒫𝑆0 − 𝒢𝑆−10 𝐸0 = 0,                     (21) 

where 𝑆 = max
𝑗
(𝑆𝑗) ; 𝒫𝑆

0 = (𝑃𝑆1
1 , … , 𝑃𝑆𝑚

𝑚 )
𝑇
|
𝑅0
; 

 𝒢𝑆−1
0 = (𝐺𝑆1−1

1 , … , 𝐺𝑆𝑚−1
𝑚 )

𝑇
|
𝑅0
 , and 𝐸0 is the 

vector determined in accordance with (17). 
Assuming that the matrix  𝒢𝑆−1

0  is non-
degenerate and 𝑑𝑒𝑡 𝒢𝑆−10 ≠ 0, we multiply (21) 
from the left by ( 𝒢𝑆−10  )

−1. As a result, we obtain 

                          𝐸0 = ( 𝒢𝑆−10  )
−1
𝒫𝑆
0.                   (22) 

If ‖𝐸0‖ = √(𝜈10)2 +⋯+ (𝜈𝑚0 )2 ≤ 𝜀, then 𝑅0 =

(𝑟1
0, … , 𝑟𝑚

0)𝑇 is an 𝜀-solution of the system (22). 

Otherwise, according to (16), we take 𝑅1 =

(
𝑟1
0

1−𝜈1
0 , … ,

𝑟𝑚
0

1−𝜈𝑚
0 )

𝑇

and we will move to the next 
iteration. 

The iterative process continues until at the 
iteration with number K we will have the condition 

            ‖𝐸𝐾‖ = √(𝜈1𝐾)2 +⋯+ (𝜈𝑚𝐾)2 < 𝜀,       (23) 

or until the number of iterations exceeds the 
allowable value be 𝐾𝑚𝑎𝑥. 

Let 𝐼𝑚×𝑚 is an identity matrix of 𝑚 ×𝑚 size, 
and 𝐼𝑚×1 = (1,… ,1) is a column matrix of 𝑚 × 1 
size with unit elements. Then, taking into account 
(16) and (22), identifying the 𝑚-dimensional vectors 
𝑅𝑘 = (𝑟1

𝑘 , … , 𝑟𝑚
𝑘)
𝑇 and 𝐸𝑘 = ( 𝒢𝑆−1

𝑘  )
−1
𝒫𝑆
𝑘 =

(𝜈1
𝑘, … , 𝜈𝑚

𝑘 )
𝑇
: {𝑘 ∈ ℕ0, 𝑘 < 𝐾𝑚𝑎𝑥} with 𝑚 × 1 

column matrices, we obtain 𝑅𝑘+1 = 𝐼𝑚×𝑚(𝐼𝑚×1 −
𝐸𝑘)

−1
𝑅𝑘, or 

     𝑅𝑘+1 = 𝐼𝑚×𝑚 [𝐼𝑚×1 − ( 𝒢𝑆−1𝑘  )
−1
𝒫𝑆
𝑘]
−1
𝑅𝑘, (24) 

It is easy to see that for 𝑚 = 1 formula (24) is 
transformed to form (10) and, therefore, can be 
assigned to the family of iterative formulas of the 
Laguerre's type. 

Considering, that 

     𝑅𝑘 = 𝐼𝑚×𝑚 [𝐼𝑚×1 − ( 𝒢𝑆−1𝑘−1 )
−1
𝒫𝑆
𝑘−1]

−1
𝑅𝑘−1, 

we get 

       𝑅𝑘 = 𝐼𝑚×𝑚 [𝐼𝑚×1 − ( 𝒢𝑆−1𝑘−1 )
−1
𝒫𝑆
𝑘−1]

−1
⋅ … ⋅

               𝐼𝑚×𝑚 [𝐼𝑚×1 − ( 𝒢𝑆−1
0  )

−1
𝒫𝑆
0]
−1
𝑅0, 

which implies that iterative process (24) is 
convergent if, for some 𝐾: 𝑅𝐾+1 = 𝑅𝐾, 

  ∃𝐾 ∈ ℕ: lim
𝑘→𝐾

( 𝒢𝑆−1
𝑘  )

−1
𝒫𝑆
𝑘 = 0 or lim

𝑘→𝐾
‖𝐸𝑘‖ = 0. 

For m = 1, this condition has the form 
corresponding to (10) 

                 𝑥𝑘 =
𝑥𝑘−1

1−𝜈𝑘−1
=

𝑥0
(1−𝜈𝑘−1)⋅…⋅(1−𝜈0)

,  

and taking into account that 𝜈𝑘 =
𝑝𝑛(𝑥𝑘)

𝑔𝑛−1(𝑥𝑘)
, we can 

assume that there is such number 𝑘 = 𝐾 ∈ ℕ, that 
𝜈𝐾 = 0 and, therefore 𝑝𝑛(𝑥𝐾) = 0. 

Let define a multi-metric in the metric space ℝ𝑚 

        𝐷𝑖𝑠𝑡[𝐹(𝑅1), 𝐹(𝑅2)] ≤ 𝐿 ⋅ 𝐷𝑖𝑠𝑡(𝑅1, 𝑅2).    (25) 

Schroeder's fixed point theorem [13]. 
Let the mapping 𝐹: 𝑋 → ℝ𝑚 is contracting on a 

closed subset 𝑋 of the space ℝ𝑚 with the multi-
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metric 𝐷𝑖𝑠𝑡. Then, for any 𝑅0 the iterations 
sequence 𝑅𝑘+1 = 𝐹(𝑅𝑘), 𝑘 = 0,1, … converges to a 
single fixed point 𝑅∗ of the mapping 𝐹 in 𝑋 and 
takes place estimate 

     𝐷𝑖𝑠𝑡(𝑅𝑘, 𝑅∗) ≤ (𝐼 − 𝐿)−1𝐿 ⋅ 𝐷𝑖𝑠𝑡(𝑅𝑘, 𝑅𝑘−1). 

Thus, iterative process (24) will converge not for 
all 𝑅0  (in the one-dimensional case 𝑥0). To ensure 
convergence, it is necessary that the mapping (24) 
be compressing and that Schroeder's fixed point 
theorem be satisfied. 

As an example, consider a system of two 
polynomial equations 

            {
𝑃1(𝑥1, 𝑥2) = 4𝑥1

3 − 3𝑥1 − 𝑥2 = 0,

𝑃1(𝑥1, 𝑥2) = 𝑥1
2 − 𝑥2 = 0               

        (26) 

with well-known real solutions: 

               [0,0], [−0.75, 0.5625], [1.0,1.0]. 

We describe in detail the iterative process (24), 
taking into account that the Jacobian of the system 
(26) 𝕁 = 12𝑥12 − 2𝑥1 − 3 vanishes at 𝑥1 = 𝑥𝐽1 =
−0.4236 and 𝑥2 = 𝑥𝐽2 = 0.5902. 

For arbitrary 𝑥1 and 𝑥2, the system (26), taking 
into account (24), takes the following form: 

             ℋ(𝒩,𝑋) = 𝑃𝑆(𝑋) − 𝐺𝑆−1(𝑋)𝒩 = 

(
4𝑥1

3 − 3𝑥1 − 𝑥2
𝑥1
2 − 𝑥2

) + (
6𝑥1 −4𝑥1

2

2𝑥2 −𝑥1
2 )(

𝜈1
𝜈2
) = (

0
0
) . 27) 

Solution of the system (27) is a vector 

      (𝜈1
(𝑥1, 𝑥2)

𝜈2(𝑥1, 𝑥2)
) = (

𝑥2(4𝑥1
2−𝑥1−3)

2𝑥1
2(4𝑥2−3)−3𝑥1(2𝑥1+𝑥2)

2𝑥1
3(4𝑥2−3)+𝑥2(𝑥2−3𝑥1

2)

𝑥1[2𝑥1
2(4𝑥2−3)−3𝑥1(2𝑥1+𝑥2)]

). 

Thus, the mapping (24), which for this example 
has the form 

        𝑅 = 𝐼2×2[𝐼2×1 − 𝒢−1𝒫]−1𝑅 = 𝐼2×2[𝐼2×1 −
𝐸]−1𝑅, 

can be represented as 

          (
𝑥1
𝑥2
) = (

𝑥1[2𝑥1
2(4𝑥2−3)−3𝑥2(𝑥1+2)]

2𝑥1
2(2𝑥2−3)−𝑥2(2𝑥1+3)

𝑥1[2𝑥1
2(4𝑥2−3)−3𝑥2(𝑥1+2)]

6𝑥1+𝑥2

).         (28) 

It is easy to see that equations of the system (28) 
are identities in two cases: 1) (

𝑥1
𝑥2
) = (

−0.75
0.5625

); 2) 

(
𝑥1
𝑥2
) = (

1.0
1.0
), i.e., when 𝑥1 and 𝑥2 are nonzero 

solutions of system (26). In the case (
𝑥1
𝑥2
) = (

0
0
), 

elements of the vector (28) take infinite values and, 

therefore, trivial solution of the system (26) cannot 
be obtained iteratively. 

Now, to find ε-solutions of the system (26) using 
the iterative process (24), we set the following 
initial approximations: 𝑥10 = 𝑥𝐽1 = −0.4236  and  
𝑥2
0 =1.5. That is, consider one of cases when, as an 

initial approximation, the value 𝑥1 is selected, for 
which 𝕁 = 0. The iterative process (24) in such case 
converges and at the 7th iteration we obtain ε-
solution (

𝑥1
𝑥2
) = (

−0.75
0.5625

) of the system with the 
required accuracy. The dynamics of the iterative 
process for this case of initial data is shown in Fig. 
1. 

 
Fig.1. The dynamics of the iterative process (24) for 
solving the system (26) with initial approximations: 

x1
0 = xJ1 = −0.4236  and  x20 =1.5. 

That is, iterative processes implemented in 
accordance with the method presented above 
converge in cases where the Jacobi matrix of the 
system of equations is poorly conditioned or even 
degenerate. This is explained by the structure of 
formula (24), a special case of which for m = 1 is 
the formula (10). 

At the same time, iterative processes will 
obviously diverge when ‖𝐼𝑚×1 − ( 𝒢𝑆−1𝑘  )

−1
𝒫𝑆
𝑘‖ ≈

0. This fact must be taken into account when 
designing software modules for solving polynomial 
equations systems of general form. 

The homotopy of polynomial equations system, 
which in the case 𝑚 = 2  has the form (27), leads to 
the deformation of all equations with parameters 
𝜈1, 𝜈2. In the above example, using (26), we obtain: 

    𝑃𝜈1(𝑋) = 4𝑥13 − 3𝑥1 − 𝑥2 + 6𝑥1𝜈1 − 4𝑥12𝜈2,  29) 

              𝑃𝜈2(𝑋) = 𝑥12 − 𝑥2 + 2𝑥2𝜈1 − 𝑥12𝜈2.      (30) 

If to use the terminology accepted above then 
polynomials (29) and (30) can be called multi-
variant locally convex polynomials that define the 
homotopy ℋ(𝒩,𝑋) of the system of two 
polynomial equations (26) with the vector of real 
parameters 𝒩 = (

𝜈1
𝜈2
).  Obviously, in the case when 
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investigated the system of 𝑚 equations, the vector 
𝒩 will have the dimension 𝑚 . 

Fig. 2 shows graphs of multi-variant LRP-
functions 𝑓𝜈

1(𝑋) = 𝑃𝜈
1(𝑋) and 𝑓𝜈

2(𝑋) = 𝑃𝜈
2(𝑋), 

constructed for different values 𝜈1 and 𝜈2, which 
illustrate homotopy of the system (26 ). 

 
Fig.2. Graphs of multi-variant LRP-functions 

fν
i(X) = Pν

i(X), i=1,2, which illustrate homotopy of 
the system of polynomial equations (26) for various 
values of real parameters ν1 and ν2: 1. ν1 = ν2 = 0; 

2. ν1 = 1.0,  ν2 = 2.0; 3. ν1 = 2.0,  ν2 = 1.0; 4. 
ν1 = 3.0,  ν2 = 3.0:a) fν1(X) = Pν1(X); б) fν2(X) =

Pν
2(X). 

It is easy to see that all graphs of 
functions 𝑓𝜈𝑖(𝑋), 𝑖 = 1,2 in Fig. 2 are distorted with 
respect to graphs of functions 𝑓0𝑖(𝑋) as parameters 
values 𝜈1 and 𝜈2 are changed. Moreover, for any 𝜈1 
and 𝜈2they intersect along strictly defined lines. 
Obviously, that points at which such lines intersect, 
intrinsic to functions 𝑓𝜈

1(𝑋) and 𝑓𝜈
2(𝑋), 

respectively, are solutions of the system (27) for any 
values of real parameters 𝜈1 and 𝜈2, which 
determine only the degree of homotopy ℋ(𝒩,𝑋) 
with respect to 𝑃𝑆(𝑋). Moreover, if Schroeder 
theorem conditions for some initial approximations 
are satisfied then lim

𝑘→∞
𝜈1 → 0, lim

𝑘→∞
𝜈2 → 0 and 

ℋ(𝒩,𝑋) → 𝑃𝑆(𝑋). 
 
 
3 Numerical Examples 
We will give are some more examples illustrating 
practical implementation of the iterative process 
(24) in solving various nonlinear polynomial 
equations systems. 

 
A. An almost linear Brown’s system [14]. 

     

{
 
 

 
 
2𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 = 6,
𝑥1 + 2𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 = 6,
𝑥1 + 𝑥2 + 2𝑥3 + 𝑥4 + 𝑥5 = 6,
𝑥1 + 𝑥2 + 𝑥3 + 2𝑥4 + 𝑥5 = 6,
𝑥1𝑥2𝑥3𝑥4𝑥5 = 1.                        

        (31) 

As initial approximations were chosen 
sufficiently large numbers (in absolute value) for a 
given system: 𝑥1

0 = 8.0, 𝑥2
0 = 6.0, 𝑥3

0 =
4.0, 𝑥4

0 = 1.0, 𝑥5
0 = −2.0. The dynamics of the 

iterative process for solving system (31) is shown in 
Fig. 3. 

 
Fig.3. The dynamics of the iterative process (24) for 

solving system (31) with initial approximations: 
𝑥1
0 = 8.0, 𝑥2

0 = 6.0, 𝑥3
0 = 4.0, 𝑥4

0 = 1.0, 𝑥5
0 = −2.0 

It should be noted that in the considered 
example, to obtain the ε-solution with the required 
accuracy, a large number of iterations K = 20 were 
required. However, when choosing initial 
approximations in sufficiently small neighborhoods 
of the roots, the desired solutions were obtained 
with a much smaller number of iterations. 

 
B. The problem of the intersection of circles 

[14]. 

    {
(𝑥1 − 𝑎10)

2 + (𝑥2 − 𝑎20)
2 = 𝑟2,                  

(𝑥1 − 𝑏10)
2 + (𝑥2 − 0.5)

2 = (0.5 − 𝑏10)
2,

  (32) 

where 𝑎20 = 0.5 + (𝑎10 − 0.5)𝑡𝑔𝜗; 𝑟 =
𝑎10−0.5

𝑐𝑜𝑠𝜗
; 

𝜗 = 1′;  𝑎10 = 100; 𝑏10 = −100.  
As noted in [14], the process of finding solutions 

to the system (32) using the bisection method for 
given initial data is very difficult. Using formula 
(24) with initial approximations 𝑥10 = 0.01 and 
𝑥2
0 = −0.8, the iterative process turned out to 

converge and the desired solution (
𝑥1
𝑥2
) =

(
0.4999576
0.52918069

) was obtained for K = 12 iterations.  
The dynamics of the iterative process 24 for the 

solving of the system (32) is shown in Fig. 4. 
 
C. Combustion chemistry problem [14]. 
This is a real practical task of burning 

hydrocarbons in case of excess fuel. Its 
mathematical model can be represented by a system 
of four polynomial equations 
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{
 

 
𝑃(𝑋, 𝐴) = 0,
𝑃(𝑋, 𝐵) = 0,

𝑥1
2 − 𝑥2 = 0,

𝑥4
2 − 𝑥3 = 0,

                      (33) 

where 𝑃(𝑋, 𝐴) = 𝛼1𝑥2𝑥4 + 𝛼2𝑥2 + 𝛼3𝑥1𝑥4 +
𝛼4𝑥1 + 𝛼5𝑥4; 𝑃(𝑋, 𝐵) = 𝛽1𝑥2𝑥4 + 𝛽2𝑥1𝑥3 +
𝛽3𝑥1𝑥4 + 𝛽4𝑥3𝑥4 + 𝛽5𝑥3 + 𝛽6𝑥4 + 𝛽7; 
𝛼1 = −1.697 ⋅ 10

7; 𝛼2 = 2.177 ⋅ 10
7;  𝛼3 =

0.55;  𝛼4 = 0.45;  𝛽1 = 1.585 ⋅ 1014; 𝛽2 = 4.126 ⋅
107;  𝛽3 = −8.285 ⋅ 10

6;  𝛽4 = 2.284 ⋅ 10
7;  𝛽5 =

−1.918 ⋅ 107;  𝛽6 = 48.4; 𝛽7 = −27.73. 

 
Fig.4. The dynamics of the iterative process (24) for 

the solving of the system (32) with initial 
approximations:  𝑥10 = 0.01 and 𝑥20 = −0.8 

As it is easy to notice, the main problems that 
may arise in the process of solving the system (33) 
are determined by the significant difference in the 
values of the coefficients and their absolute values. 
When using formula (24), these problems 
manifested themselves in the initial iterations (see 
Figure 5). Nevertheless, as a result of K = 28 
iterations, a unique solution was obtained in the 
domain of small values of variables:  

             (

𝑥1
𝑥2
𝑥3
𝑥4

) = (

−0.0001588472
2.523242375 ⋅ 10−8

0.1478747693
0.3845448859

).  

In this case, the following values were taken as 
initial approximations: 𝑥10 = 2.0, 𝑥20 = 𝑥30 = 𝑥40 =
0.01.  

The dynamics of the iterative process (24) for the 
solving of the system (33) is shown in Fig. 5. 

 
 

4 Conclusion 
In this paper, we analyze the capabilities of the 
iterative Laguerre's type method for numerically 
solving polynomial equations systems. It is shown 
that this method can be considered as one of the 
variants of the homotopy method, which allows one 
to efficiently find approximate solutions even in 
cases where the Jacobi matrix of the system is 

poorly conditioned, for example, with an 
unsuccessful choice of initial approximations.  

 
Fig.5. The dynamics of the iterative process (24) for 

solving system (33) with initial approximations: 
𝑥1
0 = 2.0, 𝑥2

0 = 𝑥3
0 = 𝑥4

0 = 0.01. 

Numerical experiments using systems of 
polynomial equations of various types have shown 
that in almost all cases this method is superior in 
efficiency to the classical Newton method. This is 
especially pronounced when the initial 
approximations are chosen, in general, arbitrarily. 
At the same time, in the case of choosing initial 
approximations in small neighborhoods of the 
desired solutions, the effectiveness of these two 
methods is almost the same. 

Further research in this direction will be devoted 
to the development of the method with the aim of 
ensuring the possibility of its use for solving 
arbitrary nonlinear equations systems. 
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