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Abstract: - Increasing urban intensification has caused civic planners to devote additional resources to more 
appropriate logistics planning. Electric vehicles have proved to be both a lower cost alternative and more 
environmentally friendly than the more ubiquitous internal combustion engine vehicles. However, prevailing 
decision-making formulations employed by municipalities and businesses are not necessarily computationally 
conducive for the evaluation and optimization of urban transportation systems using electric vehicles. An 
innovative computational approach, the range limited routing problem, is introduced that enables urban planners 
to more readily evaluate the contributions of electric vehicles to the city logistics decision-making process. While 
there is no generalized solution technique for solving this new formulation, this paper employs the Firefly 
Algorithm (FA) metaheuristic to solve the range limited routing problem using electric trucks. 
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1 Introduction to Urban Logistics and 
Electric Vehicles 

Finding a solution to urban freight transshipment 
problems is an important aspect of sustainable 
development planning within large muncipalities 
[1][2]. Effective civic transportation infrastructure 
must combine account for many incongruent 
constraints arising from vehicle congestion, high 
fuel usage, lack of human resources, stuctural 
deficiencies, and various prevailing environmental 
components [3]-[5]. A major sub-field in logistics 
planning has emerged to address recently introduced 
environmental requirements [6][7]. To satisfy these 
sustainability constraints, urban freight carriers must 
simultaneously integrate low-cost, just-in-time 
transportation systems into high levels of customer 
satisfaction [8]. 

All logistics activities occur under the numerous 
constraints and limitations inherent to cities. In 
addition to market-economic benefits, urban 
planning must simultaneously achieve social, 
sustainable, and environmental satisfaction [5][9]. 

The goal uniting freight transport with urban 
logistics is to optimize logistics operations within 
the cities under social, environmental, energy usage, 
economic, traffic congestion, and financial 
constraints [2][3][5][8]. Without an effective 
logistics plan, civic development will not improve 
the overall quality of life. Therefore, effective urban 
logistics is one of the key building-blocks for 
successful urban planning [6][10]. 

Street-level noise pollution in combination with 
vehicle emissions represent two of the foremost 
environmental problem areas in urban logistics 
planning [3][5]. Although there has been a 
significant decrease in vehicle emissions due to 
more stringent government regulations, total 
emissions have actually increased due to even 
higher traffic volumes [1][11]. While rural air 
quality has improved, air quality has remained a 
major obstacle on urban roadways [12][13]. 
Consequently, further actions must be taken to 
improve vehicle emission impacts on human health 
[5]. Noise pollution is also a major cost arising from 
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transportation [14]. Heavy trucks, buses, diesel-
engine cars, and motorcycles all contribute to 
elevated urban noise pollution. Replacing internal 
combustion engines (ICE) with silent-running, zero-
emission electric motors affords one primary 
mechanism for overcoming excessive emissions 
issues and urban noise levels [12][13][15][16]. 
Recent developments in electric storage and 
automotive technology have resurrected awareness 
for employing electric vehicles (EV) to conduct 
urban freight delivery [15][17]. Relative to ICE 
vehicles, EVs possessing high efficiency electric 
motors hold numerous advantages such as low fuel 
and maintenance costs, zero emissions (improves air 
quality while decreasing emissions), and silent 
operations issues [9][15][16]. 

Unfortunately, if a decision between selecting 
ICE and EV engine vehicles for urban 
transshipment is posed as a strict either-or 
evaluation, using existing computational methods, it 
is not difficult to establish that ICE vehicles would  
be the preferred choice. In such comparative 
decision-making assessments, new EV technology 
currently lacks widespread commercial acceptance 
due to low vehicle range, long recharge times, and 
significant initial adoption costs [15][17]. Thus, the 
introduction of significant technological advances 
are requisite prior to considering EVs as an effective 
replacement in long-range transportation [2]. 
Nevertheless, while it may not currently be feasible 
for EVs to act as a comprehensive substitute for the 
logistical satisfaction of long-haul heavy-truck 
transportation, it will be computationally 
demonstrated that room does exist for the partial 
deployment of EVs in urban logistics. Low 
operation costs do render EVs as an attractive 
alternative to ICE vehicles for within-city 
transportation [1][12]. Specifically, although EVs 
may not appear feasible for universal transportation 
purposes, when some routes can be electrified, it can 
be shown that a significant cost reduction can exist. 
Thus, municipalities and companies should ascertain 
which subsets of civic routes are amenable to 
electrification. Under appropriate conditions, the 
urban transshipment problem with smart vehicles 
can be modified into a detemination of what 
proportion of the transportation networks ought to 
be served by EVs and ICE vehicles, respectively, 
and an identification of exactly which urban 
routings each vehicle type should cover. In this 
study, new mathematical model of this adapted 
urban transshipment problem with EVs is 
formulated. Because the actual optimization of this 
formulation can prove challenging, the 
computationally efficient Firefly Algorithm (FA) 

metaheuristic is employed for its solution [18][19]. 
In this paper, the computational effectiveness of this 
innovative optimization approach for solving the 
urban transshipment problem is established on an 
example of the range limited routing problem. 
 
 

2 Electric Vehicle Selection Issues 
Depending upon the specific configurations, the 

overall vehicle expenses of most EVs will tend to be 
20% to 50% higher than ICE vehicles. The 
increased costs arise mostly from the Lithium-ion 
batteries, although the costs of other components, 
especially the engines, are currently much higher 
than ICE motors. Conversely, as there is only a one 
rotating part in an electric motor in comparison to 
numerous moving parts in a combustion engine, the 
EV maintenance costs are approximately half those 
of ICE engines [15][17]. Moreover, EV fuel costs 
are considerably lower than ICE vehicles. 
Depending upon the fuel and electricity prices, cost 
per kilometre for EVs is from one half (USA) to 
one-sixth (Turkey). The environmental impact of 
EVs depends heavily on the generation source of 
electricity (e.g. wind, solar, hydroelectric, coal, 
nuclear). However, there is still an improvement in 
carbon emissions even when the electricity is 
sourced from coal. EVs area always far superior to 
ICE trucks with respect to air quality when 
measured at street level,  [12]. 

The technology of ICE vehicles is far more 
versatile for long-range transportation purposes than 
that supplied by existing batteries. For example, 
petroleum-based vehicles can be refueled swiftly in 
less than 5 minutes and then be driven for distances 
of exceeding 500 km. On the other hand, the 
batteries of a standard EV take more than an hour to 
recharge, providing only sufficient sufficient 
capacity to cover a range of no more than 100-150 
km. While swapping a battery or replenishing its 
electrolyte fluid provide two alternative approaches 
to the recharging speed dilemma, the battery 
distance capacity limitations do not change. Thus, 
for long range transportation needs, recharging 
points for EVs would need to be planned along the 
route to perhaps coincide with scheduled driver rest 
periods. The European Commission [4] restricts the 
longest nonstop period of truck driving to 4.5 hours 
which must then be followed by a requisite break of 
45 minutes. Accordingly, to satisfy the EU driving 
requirements, long-range EV freight transportation 
would need to have a range of approximately 400 
km together with a battery that could be fully 
charged within an hour. In such a situation, all travel 
and rest periods would have to be highly 
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synchronized with battery recharging times, thereby 
introducing significant operational challenges and 
additional logistical planning in order to co-ordinate 
long-range transportation activities. 

In major urban environments, EV distance 
limitations are a less challenging problem than the 
actual  battery costs. For municipal logistics, EV 
recharging periods could occur during regular on-
site loading/unloading activities or during pre-
programmed periods of downtime (i.e. overnight). 
Regrettably for EV, in large cities where 100+ km 
routes would not be uncommon, the 100-150 km 
distance constraint would impose significant 
operational boundaries on the planning 
requirements. Additionally, to deliver refridgerated 
products, the overall distance limitations of EVs 
would be even more restricted due to the extra 
loading drawn from the batteries. 

Therefore, if the vehicle selection problem is 
posed as an either-or determination between ICE 
technology and EVs, current decision-making 
models would select ICE transportation in all urban 
transshipment situations. However, a different 
solution approach arises if the problem is posed as 
determining the optimal proportion of EVs to 
include in the transportation fleet. 
 
 

3 Example Problem with Electric 
Vehicles 

To facilitate a better understanding of the 
ensuing modelling, this section introduces an easy-
to-solve urban transshipment problem with electric 
vehicles. Consider a symmetrical, urban distribution 
network containing a centralized storage warehouse, 
A, that supplies the four outlying facilities B, C, D, 
and E (Figure 1). For simplicity, assume that the 
demand at each store is 1 unit/day and that this 
quantity is delivered daily by a truck with a capacity 
of 2 units. Assume that the transportation and 
environmental costs are proportional to the distance 
covered and independent of the load amount. Hence, 
while in this problem, only operational costs are 
provided, in “real life”, the calculations would also 
need to incorporate the full spectrum of expenses 
including environmental charges. From Figure 1, to 
satisfy the requisite transshipment requirements, it 
can be ascertained that the two feasible routes A-E-
A-C-A and A-B-A-D-A would have a combined cost 
160 + 160 = 320 units, while routes A-D-C-A and A-
E-A-B-A would cost 180 + 120 = 300 units. 
Nevertheless, it is relatively straightforward to 
determine that the minimum cost routes, A-E-D-A 

and A-C-B-A, possess a total cost of 120 + 120 = 
240 units. 

 
 

Figure 1. Sample Distribution Network (The 
numbers denote the distance or cost between nodes) 

 
If the entire truck fleet could be replaced by EVs 

with 1/6 fuel costs, the minimum total cost would 
decrease to only 240/6 = 40 units. However if a 
reasonable cost electric truck typically possesses a 
100 km range, then it would be neither operationally 
feasible to undertake 120 km (A-C-B-A, A-E-D-A) 
delivery routes, nor possible to even service the 
facilities C and D. Due to these infeasibilities, if the 
problem were posed as whether the ICE trucks 
should be resplaced by more energy efficient, 
environmentally benign EVs, the response would 
necessarily be negative. 

However, if the problem was rephrased as 
finding “the ratio of the fleet to be converted to 
EVs” then this would lead to a completely different 
decision-problem. Specifically, the question could 
be re-stated as “in order to reduce overall costs, 
which routes could be satisfied by EVs and which 
routes would be served by ICE trucks?”. In the 
transshipment network if nodes B and E were served 
by EVs, while C and D were still serviced by ICE 
trucks, then the optimal routes A-E-A-B-A and A-D-
C-A would now have a total cost of 200 units (180 + 
120/6). Thus, it can be seen that a partial coverage 
of the distribution network using EVs would have 
better overall costs than the originally determined 
240 units. In this situation, the urban transshipment 
problem with electric vehicles converts into a 
determination of what proportions of the network 
are served by EVs and ICE vehicles, and exactly 
which routes do these respective vehicle types need 
to cover. Optimizing this version of the urban 
transshipment problem with EVs will, henceforth, 
be referred to as the Range Limited Routing 
Problem (RLRP). 
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4 Range Limited Routing Problem 
Formulation 

A generalized mathematical formulation of the 
RLRP will be provided in this section. Together 
with the additional challenges that arise from the 
range limitations of EVs, the approach for 
formulating the RLRP requires a combination of 
both standard vehicle routing problems [20] and 
capacitated vehicle routing problems [21]. 

The following notation will be employed in the 
RLRP: 

k – index for trucks k = 1,..,K. 
i, j – index for node (stores: 1,..,N and 

warehouse: 0). 
Rk and Tk – represents truck range and capacity, 

respectively, for truck k, k = 1,..,K. 
d0 – warehouse capacity. 
di – demand at node i, i = 1..,N. 
rij – distance between node i and j, i, j = 0,..,N. 
lik – load transshipped to node i using truck k. 
One assumption for the RLRP is that total 

capacity must equal the total demand with no excess 
capacity: 

1k toK Tk = 
1i toN di   (1) 

Hence, the complete mathematical programming 
formulation of the RLRP is to determine a solution 
to the following problem: 

Max 
1k toK 0i toN 1j i toN  dj xijk (2) 

Subject to: 

1k toK 1j toN x0jk  K   (3) 

0 ,i toN i j  xijk = 
0 ,j toN i j  xijk j,k (4) 

1 ,j toN i j  xijk  1   i,k (5) 

1 ,i toN i j  xijk  1   j,k (6) 

0i toN 0 ,j toN i j  rij xijk  Rk  k (7) 

ljk  dj 1 ,i toN i j  xijk   j,k (8) 

1k toK lik  di    i (9) 

1i toN lik  Tk    k       (10) 

The constraints in the model ensure that at most K 
trucks are used to deliver the goods (3), the truck 
routes are continuous and non-recurrent (4)-(6), the 
trucks do not exceed their range capacities (7), and 
that the demand at each store is satisfied by at least 
one truck (8)-(10). Determining a solution that 
satisfies all of the constraints enables a search for 
the feasibility of the urban transshipment problem 
with EVs. The optimal RLRP requires a feasible 
solution that maximizes the satisfied demand at each 
node and provides an urban cargo, fleet forming 
decision to the urban transshipment problem. 
Optimizing the RLRP can prove very 
computationally challenging. In the subsequent 
sections, the population-based, metaheuristic FA 
will be used to efficiently optimize the RLRP [22]. 

 
 

5 Firefly Algorithm Optimization 
This section provides a brief overview of the 

mechancis of the FA procedure that is covered in 
significantly greater detail in [18][19][23]. The FA 
is a population-based metaheuristic. Each firefly in 
the population corresponds to one potential solution 
to a problem and the initial population of fireflies is 
distributed randomly and uniformly through the 
decision space. The FA operates under the following 
three concepts: (i) All fireflies within the population 
are considered unisex, implying that any one firefly 
could be attracted to any other firefly irrespective of 
their sex; (ii) The relative attraction between two 
fireflies is directly proportional to their respective 
brightness. This implies that for any two fireflies, 
the less bright firefly will be predisposed to advance 
towards the brighter one. However, brightness and 
attraction both decrease as the distance between the 
fireflies increases. A firefly will move about 
randomly, if no brighter firefly exists within its 
neighborhood of visibility; and, (iii) The relative 
brightness of a firefly is determined by the value of 
its objective function. For example, in a 
maximization problem, the brightness is 
proportional to the value of the objective function. 

In the FA, there are two important aspects: the 
formulation of attractiveness and the variation of 
light intensity. For simplicity, firefly attractiveness 
is determined by its brightness which, in turn, is 
related to the value of its objective function. In the 
simplest case, the brightness of a firefly at a location 
X would be its calculated objective value F(X). 
However, the attractiveness, , between fireflies is 
relative and will vary with the distance rij between 
firefly i and firefly j. Light intensity decreases with 
the distance from the source, and light is also 
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absorbed in the media, so the attractiveness needs to 
vary with the degree of absorption. Consequently, 
the overall attractiveness of a firefly is calculated by  
  = 0 exp(-r2)              (11) 

 
where 0 is the attractiveness at distance r = 0 and  
is the fixed light absorption coefficient for a specific 
medium. If the distance rij between any two fireflies 
i and j located at Xi and Xj, respectively, is 
calculated using the Euclidean norm, then the 
movement of a firefly i that is attracted to another 
more attractive (i.e. brighter) firefly j is determined 
by 
  Xi = Xi + 0 exp(-rij)2)(Xi – Xj) + i .            (12) 

In this expression of movement, the second term 
is due to the relative attraction and the third term is 
a randomization component. Yang [18][19] 
indicates that  is a randomization parameter 
normally selected within the range [0,1] and i is a 
vector of random numbers drawn from either a 
Gaussian or uniform (generally [-0.5,0.5]) 
distribution. It should be explicitly noted that this 
expression represents a random walk biased toward 
brighter fireflies and if 0 = 0, it becomes a simple 
random walk. The parameter  characterizes the 
variation of the attractiveness and its value 
determines the speed of the algorithm’s 
convergence. For most applications,  is typically 
set between 0.1 to 10 [19]. In any given 
optimization problem, for a very large number of 
fireflies n >> k, where k is the number of local 
optima, the initial locations of the n fireflies should 
be distributed essentially uniformly throughout the 
search space. As the FA proceeds, the fireflies tend 
to converge into these local optima (including the 
global ones). By comparing the best solutions 
among all of these optima, the global optima can 
easily be determined. Yang [19] proves that the FA 
will approach the global optima when n    and 
the number of iterations t, is set so that t >>1. In 
reality, the FA has been found to converge 
extremely quickly with n set in the range 20 to 50 
[18][19]. Furthermore, the FA can find both global 
optima and local optima concurrently, which 
contributes huge computational and efficiency 
advantages. 
 

6 Computing Solutions to the Range 
Limited Routing Problem with the 
Firefly Algorithm 

In this section, a computational testing of the 
efficacy of solving the RLRP using the FA 
metaheuristic will be illustrated. Since the example 
problem is small, assume that the direction of travel 

specified in the distribution network is considered 
non-commutative (i.e. the route A-B-C-A is 
considered to be different from the route A-C-B-A). 
Under these problem specifications, the RLRP of 
the example problem was solved by the FA-driven 
metaheuristic to solution shown in Table 1. The 
computational example illustrates how the very 
computationally efficient, FA-based metaheuristic 
can be used to compute a solution to the RLRP. It 
can be explicitly noted that the best solution 
calculated by the FA procedure is identical to the 
optimal solution previously found in the RLRP 
example section. 

 
 F(X) X (Truck Routes) 

Best Found 200 (A-E-A-B-A), (A-D-C-A) 

 
Table 1. Objective Value and Solution for the 
RLRP 

 
As described earlier, the selection of EVs for 

support in urban transshipment planning cannot 
necessarily be stated in either-or terms with respect 
to the replacement of ICE trucks with EVs. 
Consequently, in addition to calculating the optimal 
proportion of EVs relative to ICE vehicles needed to 
service an urban logistics network, the RLRP model 
was formulated to also determine the optimal, 
specific truck routes for each type of vehicle. The 
computational results from the RLRP urban 
transshipment problem demonstrate that the FA-
driven algorithm provides a highly suitable 
approach for producing the overall single optimal 
solution of the problem formulation. 
 
 

7 Conclusion 
While electric vehicles may not provide a direct 

substitute for the logistical requirements of long-
haul heavy-truck transportation, space does exist for 
their employment in urban logistics. The decision to 
use electric vehicles can be made either through a 
strictly either-or evaluation or, instead, the ratio of 
partial electrification required in covering a subset 
of the urban routes. Although a complete conversion 
to EVs may not appear feasible, in general, when a 
portion of the routes can be electrified, there is a 
significant potential for cost reduction. Hence, to 
lower their costs, municipalities and companies 
need to determine which routes are suitable for 
electrification. The RLRP model formulates the 
problem, but determining its solution can prove 
computationally challenging. Therefore, an efficient 
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solution approach to optimize the RLRP model is 
required. 

This paper has employed the computationally 
efficient FA-based metaheuristic procedure to 
conduct this solution determination. The 
computational efficacy of employing the algorithm 
in conjunction with the population-based FA 
metaheuristic was demonstrated on the urban 
transhipment RLRP example. The computational 
procedure found the optimal solution to the 
formulated RLRP problem. The practicality of this 
FA-based computational approach for the urban 
transhipment problem using EVs can clearly be 
extended to wide range of other “real world” 
engineering and scientific applications. Such 
extensions will be examined in future research. 
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