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Abstract: - Engineering optimization problems can be dominated by inconsistent performance requirements and 
incompatible specifications that can be difficult to detect when supporting mathematical programming models 
are formulated. Thus, it often proves advantageous to construct a set of options that provide dissimilar 
approaches to such problems. These alternatives should satisfy the required performance criteria, but be 
maximally different from each other in their decision spaces. The method for constructing maximally different 
sets of solutions is referred to as modelling-to-generate-alternatives (MGA). This paper considers a 
multicriteria method that can generate sets of maximally different alternatives using any population-based 
solution algorithm. This MGA approach is both computationally efficient and simultaneously produces the 
prescribed number of maximally different solution alternatives in a single computational run of the procedure. 
The computational efficacy of this multicriteria MGA approach is demonstrated on two commonly-tested 
engineering optimization problems using the population-based Firefly Algorithm metaheuristic. 
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1 Introduction 
Complex engineering optimization problems 

frequently contain inconsistent and incompatible 
design specifications that can be difficult to 
incorporate into mathematical decision-models [1]-
[5]. While “optimal” solutions can be calculated for 
the mathematical formulations, whether these 
answers produce best outcomes for the original 
“real” system is far less certain [1]-[6]. To improve 
decision-making under such ambiguities, it is often 
preferable to construct a limited number of 
dissimilar options that provide very different 
perspectives [3][7]. To be beneficial, these distinct 
options should be close-to-optimal with respect to 
all mathematically modelled objective(s), but be 
maximally different from each other within the 
solution space [6]-[8]. Numerous methods 
collectively referred to as modelling-to-generate-
alternatives (MGA) have been created to achieve 

this multi-solution requirement [6]-[8]. The primary 
motivation behind MGA is to construct a set of 
alternatives that are all “good” with respect to the 
specified objective(s), but fundamentally distinct 
from each other in the decision space. Decision-
makers must conduct a subsequent assessment of 
the alternatives to ascertain which specific option(s) 
most closely satisfies their underlying 
circumstances. Consequently, MGA is generally 
considered a decision support method rather than as 
an explicit solution creation process assumed in 
“normal” mathematical optimization. 

The earliest MGA approaches employed a 
straightforward process in which each alternative 
was incrementally formulated by re-running the 
solution generation algorithm whenever a new 
option had to be produced [6]-[10]. These iterative 
procedures mimicked the seminal approach in [8] 
where, once the initial mathematical model had been 
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optimized, all supplementary alternatives were 
produced one-at-a-time. These incremental 
approaches all required n+1 computational iterations 
– initially to optimize the original problem, then to 
produce each of the subsequent n alternatives 
[7][11]-[18]. Subsequently, it was demonstrated 
how a set of maximally different alternatives could 
be efficiently generated using any population-based 
algorithm by permitting the generation of the overall 
optimal solution together with n distinct alternatives 
in a single computational run irrespective of the 
value of n [19]-[23]. In [23] a novel data structure 
was introduced that permits alternatives to be 
constructed simultaneously by population-based 
solution techniques. 

In this paper, it is demonstrated how a set of 
maximally different engineering design options can 
be produced by extending several earlier 
optimization techniques [12]-[18]. A multicriteria, 
max-sum, max-min MGA process provides a 
method that can be deployed using any population-
based solution algorithm. This approach advances 
earlier procedures [13][15]-[18] by permitting the 
simultaneous generation of n distinct alternatives in 
a single computational run. Namely, to construct the 
requisite n maximally different design options, the 
algorithm has to run only once irrespective of the 
value of n [19]-[23]. The multicriteria objective 
combines the data structure into the simultaneous 
solution approach in the MGA algorithm. The max-
sum components of the objective produce a 
maximum distance between alternatives by ensuring 
that the total deviation between all of the variables 
in all of the alternatives is collectively large. This 
does not, however, preclude the occurrence of 
relatively small (or zero) deviations between certain 
individual variables within certain solutions. In 
contrast, max-min objectives force a maximum 
distance between every variable over all solutions. 
By considering the multiple objectives 
simultaneously, the alternatives created can be 
forced as far apart as possible for all variables in 
general and the closest distance in the worst case 
between any solutions will never be less than the 
value obtained for the max-min objective. The 
computational efficacy of this approach for creating 
alternatives is demonstrated by applying the 
multicriteria MGA procedure to two highly non-
linear, engineering optimization benchmark 
problems using the population-based Firefly 
Algorithm (FA) metaheuristic. 
 
 
 
 

2 Modelling to Generate Alternatives 
Mathematical programming has focused almost 

exclusively on finding single optimal solutions to 
single-objective problems or, equivalently, 
producing noninferior solutions to multi-objective 
formulations [2][5][8]. While these approaches may 
solve the formulations as constructed 
mathematically, whether these solutions are truly 
“best” for the original “real world” applications 
remains less certain [1][2][6][8]. In most “real 
world” systems, there are countless system 
specifications that can never be incorporated into 
the mathematical problem formulation [1][5]. 
Unavoidably, the majority of the subjective aspects 
remain unmodelled and unquantified in the 
mathematical system formulations. This frequently 
occurs when final outcomes are decided upon based 
not only on modelled objectives, but also on more 
subjective socio-political-economic preferences and 
stakeholder goals [7]. When unmodelled 
components are suspected to exist, non-traditional 
solution approaches are needed for searching the 
decision space not only for noninferior solutions, 
but also for sub-optimal possibilities. Specifically, 
any search for alternatives to problems suspected to 
possess unmodelled components must concentrate 
not only on a non-inferior set of solutions, but also 
necessarily on an explicit exploration of the 
problem’s inferior solution space. Numerous “real 
life” instances of these types of modelling situations 
are illustrated in [6][8]-[10]. 

To demonstrate the impact of unmodelled 
objectives on a solution search, assume that the 
optimal solution to a maximization problem is X* 
with objective value Z1* [24]. Suppose a second, 
unmodelled, maximization objective Z2 exists that 
represents some “politically acceptable” feature. 
Assume that the solution, Xa, belonging to the 2-
objective noninferior set, exists that corresponds to a 
best compromise solution if both objectives could 
actually have been simultaneously considered. 
While Xa would be the best solution to the real 
problem, in the actual mathematical formulation it 
would seem inferior to solution X*, since Z1a  Z1*. 
Thus, when unmodelled components are included in 
the decision-making process, inferior decisions to 
the mathematically modelled system could actually 
be optimal to the fundamental “real” problem. If 
unmodelled aspects and unquantified objectives 
might exist, alternative solution procedures are 
essential to not only explore the decision region for 
noninferior solutions to the modelled problem, but 
also to concurrently search the decision space for 
explicitly inferior solutions. 
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Necessarily, then, in these situations, the aim is 
to create a workable set of options that are 
quantifiably good with respect to the modelled 
objectives yet are as different as possible from each 
other within the solution space. By satisfying this 
maximal difference condition, the resulting set of 
alternatives is able to supply truly different 
perspectives that all perform similarly with respect 
to the known modelled objective(s) yet very 
differently with respect to various potentially 
unmodelled aspects. By creating good-but-different 
options, the system designers are the able to 
consider potentially desirable qualities within the 
alternatives that might be able to satisfy the 
unmodelled objectives to varying degrees of 
stakeholder acceptability. 

To motivate the process, it is necessary to 
formally characterize the mathematical definition of 
maximal difference [6][7]. Assume that the optimal 
solution to an original mathematical programming 
formulation is X* with corresponding objective 
value Z* = F(X*). An ensuing difference model can 
then be solved to produce an alternative solution, X, 
that is maximally different from X*: 

Maximize   (X, X*) = Min
i

 | Xi - Xi* | (1) 

Subject to:  X   D   (2) 
   | F(X) - Z* |  T (3) 

where   represents an appropriate difference 
function (shown in (1) as an absolute difference) 
and T is a tolerance target relative to the original 
optimal objective value Z*. T is a user-specified 
limit that determines what proportion of the inferior 
region ought to be explored for acceptable 
alternatives. This difference function concept can be 
extended into a difference measure between any set 
of alternatives by replacing X* in the objective of 
the maximal difference model and calculating the 
overall minimum absolute difference (or some other 
function) of the pairwise comparisons between 
corresponding variables in each pair of alternatives 
– subject to the condition that each alternative is 
feasible and falls within the specified tolerance 
constraint. 

The population-based procedure that is 
subsequently employed is designed to generate a 
fixed, pre-determined number of close-to-optimal, 
but maximally different alternatives, by adjusting 
the value of T and solving the corresponding 
maximal difference problem instance by exploiting 
the population structures of the optimization 
algorithm. The survival of solutions depends upon 
how well the solutions perform with respect to the 
problem’s originally modelled objective(s) and 
simultaneously by how far away they are from all of 

the other alternatives generated in the decision 
space. 
 
 

3 Multicriteria MGA Procedure 
In this section, a data structure is employed that 

permits a multicriteria MGA approach to be used for 
creating system options using any population-based 
solution algorithm [24]-[28]. Suppose that it is 
desired to be able to produce P alternatives that each 
possess n decision variables and that the population 
algorithm is to possess K solutions in total. Namely, 
each solution in the population contains one 
complete set of P maximally different alternatives. 
Let Yk, k = 1,…, K, represent the kth solution 
consisting of one complete set of P different 
alternatives. Specifically, if Xkp corresponds to the 
pth alternative, p = 1,…, P, of solution k, k = 1,…, K, 
then Yk can be represented as 

  Yk = [Xk1, Xk2,…, XkP] .   (4) 
If Xkjq, q = 1,…, n, is the qth variable in the jth 

alternative of solution k, then 
  Xkj = (Xkj1, Xkj2,…, Xkjn) .  (5) 
Accordingly, the entire population, Y, comprised 

of K different sets of P alternatives can be expressed 
in vectorized format as, 

  Y’ = [Y1, Y2,…, YK] .   (6) 
The multicriteria method that follows can 

produce a pre-determined number of close-to-
optimal, maximally different system options, by 
modifying the value of T in the maximal difference 
model and using any population-based optimization 
algorithm to solve the corresponding, maximal 
difference problem. Each solution in the population 
is composed of one complete set of P different 
possible system options. By exploiting the co-
evolutionary aspects of the algorithm, the procedure 
evolves each solution (i.e. set of alternatives) toward 
sets of dissimilar local optima within the solution 
domain. In this processing, each solution alternative 
mutually experiences the search steps of the 
algorithm. Solution survival depends both upon how 
well the solutions perform with respect to the 
modelled objective(s) and by how far apart they are 
from every other alternative in the decision space. 

A straightforward process for generating 
alternatives solves the maximum difference model 
iteratively by incrementally updating the target T 
whenever a new alternative needs to be produced 
and then re-solving the resulting model [24]. This 
iterative approach parallels the seminal Hop, Skip, 
and Jump (HSJ) approach [8] in which the 
alternatives are constructed one-at-a-time through 
an incremental adjustment of the target constraint. 
Although the HSJ is straightforward, it necessitates 
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a repetitive execution of the optimization algorithm 
[7][12][13]. To improve upon the stepwise HSJ 
approach, a concurrent technique was subsequently 
designed based upon co-evolution [13][15][17]. In a 
co-evolutionary approach, pre-specified stratified 
subpopulation ranges within an algorithm’s overall 
population are established that collectively evolve 
the search toward the specified number of 
maximally different alternatives. Each desired 
solution alternative is represented by each respective 
subpopulation and each subpopulation undergoes 
the common processing operations of the procedure. 
The survival of solutions in each subpopulation 
depends simultaneously upon how well the solutions 
perform with respect to the modelled objective(s) 
and by how far away they are from all the other 
alternatives. Consequently, the evolution of 
solutions in each subpopulation toward local optima 
is directly influenced by those solutions contained in 
all of the other subpopulations, which forces the 
concurrent co-evolution of each subpopulation 
towards good but maximally distant regions within 
the decision space according to the maximal 
difference model [7]. Co-evolution is more 
computationally efficient than the sequential HSJ-
style approach by exploiting inherent population-
based searches to concurrently generate the entire 
set of maximally different solutions using only a 
single population [12][17]. 

While concurrent approaches possess the ability 
to exploit population-based algorithms, co-evolution 
can only occur within each of the stratified 
subpopulations. Consequently, the maximal 
differences between solutions in different 
subpopulations can only be based upon aggregate 
subpopulation measures. Conversely, in the 
following MGA algorithm, each solution in the 
population contains exactly one entire set of 
alternatives and the maximal difference is calculated 
only for that particular solution (i.e. the specific 
alternative set contained within that solution in the 
population). Hence, by the evolutionary nature of 
the population-based search procedure, in the 
subsequent approach, the maximal difference is 
calculated simultaneously for the specific set of 
alternatives considered within each specific solution 
– and the need for concurrent subpopulation 
aggregation measures is circumvented. 

Using the data structure terminology, the steps 
for the multicriteria MGA algorithm are as follows 
[14][19]- [28]. The stratification approach employed 
by this method can be easily modified for solution 
via any population-based optimization algorithm. 

Preliminary Step. Solve the original optimization 
problem to find its optimal solution, X*. Based upon 

the objective value F(X*), establish P target values. 
P represents the desired number of maximally 
different alternatives to be generated within 
prescribed target deviations from the X*. Note: The 
value for P must be fixed a priori by the decision-
maker. 

Without loss of generality, it is possible to forego 
this step and to use the algorithm to find X* as part 
of its solution processing in the subsequent steps. 
However, this significantly increases the number of 
iterations of the computational procedure and the 
initial stages of the processing become devoted to 
finding X* while the other elements of each 
population solution are retained as essentially 
“computational overhead”. 

Step 1. Create an initial population of size K 
where each solution is divided into P equally-sized 
partitions. The partition size corresponds to the 
number of decision variables in the original 
optimization problem. Xkp represents the pth 
alternative, p = 1,…,P, in solution Yk, k = 1,…,K. 

Step 2. In each of the K solutions, evaluate each 
Xkp, p = 1,…,P, with respect to the modelled 
objective. Alternatives meeting both their target 
constraint and all the other problem constraints are 
designated as feasible, while all other alternatives 
are designated as infeasible. An individual solution 
can only be designated as feasible if all of the 
alternatives contained within it are feasible. 

Step 3. Apply an appropriate elitism operator to 
each solution to rank order the best individuals in 
the population. The best solution is the feasible 
solution containing the most distant set of 
alternatives in the decision space (the distance 
measures are defined in Step 5). 

Note: Because the best-solution-to-date is always 
retained in the population throughout each iteration, 
at least one solution will always remain feasible. 
Furthermore, a feasible solution based on the 
initialization step can be constructed using P 
repetitions of X*. 

Step 4. Stop the algorithm if the termination 
criteria (such as maximum number of iterations or 
some measure of solution convergence) are met. 
Otherwise, proceed to Step 5. 

Step 5. For each solution Yk, k = 1,…, K, 
calculate R Max-Min and/or Max-Sum distance 
measures, Dr

k, r = 1,…, R, between all of the 
alternatives contained within the solution. 

As an illustrative example for calculating the 
multicriteria distance measures, compute : 

D1
k = 1 ( Xka, Xkb) = 

, ,
Min
a b q

 | Xkaq – Xkbq | ,  

          a = 1,…,P, b = 1,…,P, q = 1,…,n, (7) 

D2
k  = 2 ( Xka, Xkb)  

WSEAS TRANSACTIONS on COMPUTERS Yavuz Gunalay, Julian Scott Yeomans

E-ISSN: 2224-2872 242 Volume 18, 2019



  = 
1a toP 1b toP 1...q n | Xkaq – Xkbq |.  (8) 

and 

D3
k  = 3 ( Xka, Xkb)  

  = 
1a toP 1b toP 1...q n ( Xkaq – Xkbq )2.  (9) 

D1
k denotes the minimum absolute distance, D2

k 
represents the overall absolute deviation, and D3

k 
determines the overall quadratic deviation between 
all of the alternatives contained within solution k. 

Alternatively, distance function could be 
calculated using other appropriately defined 
measures. 

Step 6. Let Dk = G(D1
k, D2

k, D3
k,…, DR

k) 
represent the multicriteria objective for solution k. 
Rank the solutions according to the distance 
measure Dk objective – appropriately adjusted to 
incorporate any constraint violation penalties for 
infeasible solutions. The goal of maximal difference 
is to force alternatives to be as far apart as possible 
in the decision space from the alternatives of each of 
the partitions within each solution This step orders 
the specific solutions by those solutions which 
contain the set of alternatives which are most distant 
from each other. 

Step 7. Apply appropriate metaheuristic “change 
operations” to each solution within the population 
and return to Step 2. 
 
 

4 Firefly Algorithm Optimization 
While this section provides a brief synopsis of 

the steps involved in the FA process, more extensive 
details can be found in [29]. The FA is a nature-
inspired, population-based metaheuristic that 
employs the following three idealized rules: (i) All 
fireflies within a population are unisex, so that one 
firefly will be attracted to other fireflies irrespective 
of their sex; (ii) Attractiveness between fireflies is 
proportional to their brightness, implying that for 
any two flashing fireflies, the less bright one will 
move towards the brighter one. Attractiveness and 
brightness both decrease as the distance between 
fireflies increases. If there is no brighter firefly 
within its visible vicinity, then a particular firefly 
will move randomly; and (iii) The brightness of a 
firefly is determined by the landscape of the 
objective function. Namely, for a maximization 
problem, the brightness can simply be considered 
proportional to the value of the objective function. 

In the FA, there are two important issues to 
resolve: the variation of light intensity and the 
formulation of attractiveness. For simplicity, it can 
always be assumed that the attractiveness of a firefly 
is determined by its brightness which in turn is 

associated with the encoded objective function. In 
the simplest case, the brightness of a firefly at a 
particular location X would be its calculated 
objective value F(X). However, the attractiveness, 
, between fireflies is relative and will vary with the 
distance rij between firefly i and firefly j. In 
addition, light intensity decreases with the distance 
from its source, and light is also absorbed in the 
media, so the attractiveness should be allowed to 
vary with the degree of absorption. Consequently, 
the overall attractiveness of a firefly can be defined 
as  
  = 0 exp(-r2)              (10) 

 
where 0 is the attractiveness at distance r = 0 and  
is the fixed light absorption coefficient for a specific 
medium. If the distance rij between any two fireflies 
i and j located at Xi and Xj, respectively, is 
calculated using the Euclidean norm, then the 
movement of a firefly i that is attracted to another 
more attractive (i.e. brighter) firefly j is determined 
by 
  Xi = Xi + 0 exp(-rij)2)(Xi – Xj) + i .            (11) 

In this expression of movement, the second term 
is due to the relative attraction and the third term is 
a randomization component. Yang [29] indicates 
that  is a randomization parameter normally 
selected within the range [0,1] and i is a vector of 
random numbers drawn from either a Gaussian or 
uniform (generally [-0.5,0.5]) distribution. It should 
be pointed out that this expression is a random walk 
biased toward brighter fireflies and if 0 = 0, it 
becomes a simple random walk. The parameter  
characterizes the variation of the attractiveness and 
its value determines the speed of the algorithm’s 
convergence. For most applications,  is typically 
set between 0.1 to 10 [29]. In any given 
optimization problem, for a very large number of 
fireflies n >> k where k is the number of local 
optima, the initial locations of the n fireflies should 
be distributed relatively uniformly throughout the 
entire search space. As the FA proceeds, the fireflies 
would converge into all of these local optima 
(including the global ones). By comparing the best 
solutions among all these optima, the global optima 
can easily be determined. Yang [29] demonstrated 
that the FA will approach the global optima when n 
   and the number of iterations t, is set so that t 
>>1. In reality, the FA has been found to converge 
extremely quickly. 

Two important limiting or asymptotic cases 
occur when   0 and when    . For   0, the 
attractiveness is constant  = 0, which is equivalent 
to having a light intensity that does not decrease. 
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Thus, a firefly would be visible anywhere within the 
solution domain. Hence, a single (usually global) 
optima can easily be reached. If Xj is replaced by the 
current global best G*, then this implies that the FA 
becomes a special case of the accelerated particle 
swarm optimization (PSO) algorithm. Subsequently, 
the computational efficiency of this special case of 
the FA is equivalent to that of enhanced PSO. 
Conversely, when    , the attractiveness is 
essentially zero in the sightline of other fireflies. 
This is equivalent to the case where the fireflies 
randomly roam throughout a very thick foggy 
region. No other fireflies are visible and each firefly 
roams in a completely random fashion. This case 
corresponds to a completely random search method. 
As the FA operates between these two extremes, it 
is possible to adjust the parameters  and   so that 
an FA can outperform both the random search and 
the enhanced PSO algorithms. Furthermore, the FA 
can find both the global optima as well as the local 
optima concurrently which holds huge 
computational and efficiency advantages for MGA 
purposes [7][16][17]. Another additional advantage 
of the FA for MGA implementation is that different 
fireflies essentially work independently of each 
other and FA are thus better than genetic algorithms 
and PSO for MGA because the fireflies can 
aggregate more closely around each local optimum 
[16][17]. 
An FA-based MGA procedure is designed to 
generate a small number of good but maximally 
different alternatives by adjusting the value of T and 
using the FA to solve the corresponding, new 
maximal difference problem instance [16][17]. In 
this approach, subpopulations within the algorithm’s 
overall population are established as the Fireflies 
collectively evolve toward different local optima in 
the solution space. Each desired solution alternative 
undergoes the common search procedure of the FA. 
As required, the survival of solutions depends upon 
how well the solutions perform with respect to the 
modelled objective(s) and by how far away they are 
from all of the other previously generated 
alternatives in the decision space. 
 

5 Computational Testing of the MGA 
As outlined earlier, in engineering optimization, 

decision-makers frequently prefer to be able to 
select from a set of “near-optimal” alternatives that 
significantly differ from each other in terms of the 
system structures characterized by their decision 
variables. In order to create this set of alternative 
planning options, a computational testing of the 
efficacy of employing the multicriteria MGA 

algorithm in conjunction with the population-based 
FA metaheuristic will be illustrated using (i) a well-
studied, standard, constrained engineering 
optimization problem [30] and (ii) a 100-peak 
multimodal optimization problem taken from [6]. 

The first computational test of the MGA 
procedure will consider the engineering spring 
design benchmark problem from [30]. The design of 
a tension and compression spring has frequently 
been employed as a benchmark problem for 
constrained engineering optimization problems [30]. 
The problem contains three design variables: (i) 1x , 

the wire diameter, (ii) 2x , the coil diameter, and (iii) 

3x , the length of the coil. The aim is to essentially 

minimize the weight subject to constraints on 
deflection, stress, surge frequency and geometry. 
The mathematical formulation for this test problem 
can be summarized as: 

 Minimize F(X) =  2
1 2 32x x x             (14) 

Subject to: 

 g1(X) = 1 – 
3
2 3

4
171785

x x

x
   0           (14) 

g2(X) =  4
12

3
1

21
2
2

12566

4

xxx

xxx




 + 
2
15108

1

x
 – 1   0 (16) 

 g3(X) = 1 – 
3

2
2

145.140

xx

x
   0            (17) 

 g4(X) = 
5.1

21 xx 
 – 1   0            (18) 

0.05   1x    2, 0.25   2x    1.3, 2   3x    15 (19) 

The optimal solution for the specific design 
parameters employed within this formulation is 
F(X*) = 0.0127 with decision variable values of X* 
= (0.051690, 0.356750, 11.287126) [30]. The FA-
driven multicriteria MGA algorithm was run to 
create the 11 maximally different solutions shown in 
Table 1. 
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Alternatives F(X) 1x  2x  3x  

Best 
Found 0.0127 0.05 0.3174 14.0324 

1 0.0128 0.05 0.3164 14.1754 

2 0.0128 0.0514 0.3472 12.0089 

3 0.0129 0.0529 0.3862 9.9684 

4 0.0130 0.0521 0.3656 11.0667 

5 0.0131 0.0527 0.3766 10.5179 

6 0.0134 0.05 0.3157 14.978 

7 0.0135 0.0524 0.3597 11.6966 

8 0.0137 0.052 0.3629 12.1615 

9 0.0138 0.0523 0.348 13.3247 

10 0.0140 0.0535 0.3857 14.162 

 
Table 1. Objective Values and Solutions for the 11 
Maximally Different Alternatives 

 
The second computational test will be on the 

highly non-linear, engineering optimization 
benchmark problem from [6]. The mathematical 
formulation for this multimodal test problem is: 

Maximize F(x, y) =  

    Sin(19πx) + 
1.7

x
 + Sin(19πy) + 

1.7

y
 + 2 (12) 

                0.0   x    1.0,  0.0   y    1.0 (13) 
The corresponding feasible region for this 

problem contains 100 peaks separated by valleys 
with the amplitudes of both the peaks and valleys 
increasing as the values of the decision variables 
increase from their lower bounds of (0,0) toward 
their upper limits at (1,1). For the design parameters 
employed in this specific problem formulation, the 
mathematically optimal solution of F(x, y) = 5.146 
occurs at point (x, y) = (0.974, 0.974) [6]. The FA 
metaheuristic was used in the multicriteria MGA 
procedure to generate the 11 maximally different 
solutions shown in Table 2. 

 
Alternatives F(x,y)   x   y 

Best Found 5.14 0.97 0.97 
1 5.10 0.98 0.97 
2 5.05 0.87 0.98 
3 5.00 0.76 0.98 
4 4.99 0.98 0.87 
5 4.91 0.98 0.76 
6 4.89 0.55 0.97 
7 4.89 0.98 0.55 
8 4.74 0.34 0.98 
9 4.69 0.98 0.24 

10 4.64 0.13 0.98 

 
Table 2. Objective Values and Solutions for the 11 
Maximally Different Alternatives 

 

The two computational examples have 
demonstrated how a multicriteria MGA modelling 
perspective can be effectively used to generate 
multiple, good solution alternatives by employing 
the very computationally efficient, population-based 
FA metaheuristic. By following this process, the 
alternatives produced all satisfy the required system 
criteria, yet remain as maximally different from 
each other as possible within the decision space. 
Furthermore, the multicriteria MGA procedure has 
simultaneously performed exceedingly well with 
respect to its role in function optimization. It can be 
noted explicitly that the overall best solutions 
calculated in the MGA procedure are identical to the 
optimal solutions determined in [6] and [30]. 

As described earlier, many “real world” 
engineering optimization applications can be riddled 
with inconsistent performance specifications that 
can be very difficult to capture and quantify. 
Consequently, it is frequently preferable to create 
several quantifiably good alternatives that 
concurrently provide very different perspectives to 
the potentially unmodelled performance design 
issues during the policy formulation stage. The 
unique performance features captured within these 
dissimilar alternatives can result in very different 
system performance with respect to the unmodelled 
issues, thereby incorporating the unmodelled issues 
into the actual solution process. The computational 
results from the two benchmark optimization 
problems demonstrate that the FA-driven 
multicriteria MGA algorithm provides a suitable 
approach for producing not only a requisite set of 
maximally different alternatives but also the overall 
single optimal solution of the problem formulation 
if that result, alone, is desired. 
 

6 Conclusion 
Complex engineering problem-solving inherently 

involves complicated performance components that 
can be confounded by incongruent requirements and 
inconsistent performance objectives. These decision 
environments frequently contain incompatible 
design specifications that are problematic – if not 
impossible – to incorporate when ancillary decision 
support models are constructed. Invariably, there are 
unmodelled elements, not apparent during model 
formulation, that can significantly affect solution 
adequacy. These confounding features require the 
decision-makers to integrate numerous 
discrepancies into their solution processes before a 
definitive solution can be determined. Faced with 
such inconsistencies, it is unlikely that any single 
solution can simultaneously satisfy all ambiguous 
system requirements without significant 
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compromises. Therefore, any decision support 
approach must somehow address these complicating 
features in some way, while simultaneously being 
flexible enough to condense the potential effects 
within the intrinsic planning incongruities.  

This paper has employed a multicriteria 
procedure in conjunction with a population-based 
FA metaheuristic to direct this MGA search 
processes. The computationally efficient MGA 
method establishes how population-based 
algorithms can simultaneously construct entire sets 
of close-to-optimal, maximally different alternatives 
by exploiting the evolutionary characteristics of any 
population-based solution approach. In this MGA 
role, the multicriteria objective can efficiently 
generate the requisite set of dissimilar alternatives, 
with each generated solution providing an entirely 
different outlook to the problem. The max-sum 
criteria ensure that the distances between the 
alternatives created by this algorithm are good in 
general, while the max-min criteria ensure that the 
distances between the alternatives are good in the 
worst case. The computational efficacy of 
employing the multicriteria MGA algorithm in 
conjunction with the population-based FA 
metaheuristic was demonstrated on two well-known, 
engineering optimization benchmark problems. The 
computational procedure not only produced sets of 
high-quality, maximally different solution 
alternatives, but also simultaneously found the 
optimal solutions to the two benchmark engineering 
problems examined. The practicality of this 
multicriteria MGA solution approach can clearly be 
extended to wide range of “real world” engineering 
and scientific applications. Such extensions will be 
examined in future research. 
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