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Abstract. - This paper aims at examining the performance of a recently proposed measure of dependence – the 
Monotonic Dependence Coefficient – MDC - with respect to classical monotonic correlation measures like 
Pearson’s r, Spearman’s ߩ, and Kendall’s τ, using simulated outlier contaminated and non-contaminated data 
sets as well as a contaminated real dataset, considering three different cases. This comparison aims at checking 
how and when these coefficients detect dependence relationships between two variables when outliers are 
present. Several scenarios are created with multiple values for the dependence measures, outlier contamination 
fractions and data patterns. The basic simulated dataset is generated from a bivariate standard normal 
distribution. Using values generated from the exponential, power-transformed, lognormal, and Weibull 
distributions, added to the basic generated dataset, we transform the contaminated data, allowing for multiple 
patterns. The main findings tend to favour the Spearman’s ߩ coefficient for most of the simulated scenarios, 
especially when the outlier contamination is taken into account, whereas MDC performs better than ߩ in non-
contaminated data. However, in the real data scenario Spearman’s ߩ outperforms the other measures in two out 
of three cases, whereas MDC performs better in the other case.   
 
Key-Words: Outliers; Correlation Coefficient; Monotonic Dependence; Monte Carlo Simulation; 
Environmental Quality; Economic Growth.  
 
 

1 Introduction 
Dependence analysis is one of the most important 
research topics not only in statistical literature, but 
also in many other fields of science. Several 
statistical approaches have been proposed since the 
dawn of statistical science to model the relationship 
between continuous, discrete or ordinal variables, 
while the increasing availability of ordinal datasets, 
especially in social sciences, has recently 
contributed to the development of new reliable 
methods also for qualitative variables. Among the 
most important dependence analysis methods, 
monotonic dependence methods, such as Pearson’s 
r, Spearman’s, and Kendall’s τ, are also the most 
used. Pearson’s product moment correlation 
coefficient ݎ is generally appropriate to detect linear 
relationship between two continuous variables, 
whereas the Spearman’s rank correlation 
coefficient	ߩ is used to measure the strength of the 
association between two ordinal variables. Another 
very popular coefficient is Kendall’s ߬, which is 
used as an alternative to ߩ. However, most of the 
times i.e. in practical situations when both measures 
are not too close to 1 in absolute values -	߬ has a 
stable relationship with [2 ,1] ߩ. 

Among recently proposed methods, the 
Monotonic Dependence Coefficient [3] (MDC), 
based on the Lorenz and concordance curves, and 
built by comparing the observed values of the 
dependent variable and the corresponding values of 
the independent variables properly reordered 
according to the relationship with the independent 
variable, is suitable to be applied when the 
dependent variable is continuous or discrete and the 
independent variable is at least of ordinal nature. 
This method has been proved to be an effective 
competitor of the Pearson and Sperman’s 
coefficients, especially in the case of non-normally 
distributed data and when some important 
information is lost [4]. 

 
In this literature stream Bishara and Hittner 

[5] compared the bias in point estimates among five 
correlation approaches: Pearson’s ݎ, Spearman’s ߩ, 
the bootstrap estimate, the Box–Cox transformation 
family, and a normalizing transformation correlation 
after the ranked-based inverse transformation, using 
the rankit equation [6]. They performed this 
comparison using Monte Carlo simulation for 
different scenarios with normal and non-normal 
data, various combinations of distribution shapes 
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and sample sizes. The degree of inaccuracy was 
evaluated using both bias and Root Mean Square 
Error (RMSE).  

The main finding in Bishara and Hittner’s 
work was that the Spearman’s ߩ coefficient and the 
rankit correlations, being similar methods, perform 
better in reducing the bias and providing more 
robust estimates. Rankit correlations also minimized 
the RMSE for most sample sizes, except for the 
smallest samples, for which bootstrapping was more 
effective. Generally, these results justify the use of 
carefully chosen alternatives to Pearson’s ݎ when 
data are non-normally distributed. The non-
normality of the data (particularly distributions 
having heavy-tails) can cause a biased and 
overestimated evaluation of the correlation. Some 
correlation coefficients can mitigate the bias 
problem better than others, depending on the choice 
of alternatives for the sample size and distribution 
shape.  

Together with the sample size and the type 
of underlying distribution of the data, in some 
specific contexts the existence of outliers in the 
dataset can become a crucial issue for estimation, 
particularly when variables are continuous [7]. 
Outliers can be the main cause of under- or over-
estimation for the parameter of interest. In such 
cases, some of the correlation coefficients might fail 
in detecting the real dependence relationship 
between the variables and some corrections are 
needed [8]. 

It is not infrequent that real data sets contain 
outliers presenting unusually large or small values 
when compared with the majority of the 
observations. The existence of outliers may cause a 
negative effect on the output, particularly on 
correlation and regression measures or measures 
based on distributional assumptions. However, 
when they are not caused by measurement errors, 
outliers may be informative about some 
characteristics of the observations. For example, in 
psychology, social research or demographics, outlier 
analysis helps detecting people clustered apart, 
having a different social behaviour with respect to 
the majority of the population, as is the case of tiny 
ethnic minorities or migrants [9]. 

 In the case of dependence analysis, due to 
the effects of the outliers in detecting the real 
relationship between variables, several statistical 
methods have been deployed to adjust the estimates. 
Although some methods are powerful with large 
normally distributed data, they might be sensitive to 
outliers or extreme values, and may be problematic 
when applied to non-normal data or small samples 
[10]. Moreover, some simpler measures like the 

median are more robust to outliers than others and 
might be more suitable in such cases. 

The usual definition of outliers is that 
observations have unusually large/small values 
compared to other observations in a data set. Barnett 
and Lewis [10] defined an outlier as the observation 
appearing to be inconsistent with the remainder of 
the others. Grubbs [11] defined the outlying 
observation as a value appearing to deviate 
markedly from other elements of the sample. 

Outliers could occur as incorrectly recorded 
data, or come from heterogeneous data sets or a 
different underlying population. Most likely, 
outliers are present when data are collected from 
heterogeneous groups having different 
characteristics regarding a certain variable. 

Outliers may be deleterious for data analysis 
for several reasons: (i) they could increase the error 
in the estimates, (ii) reduce the power of statistical 
tests, (iii) decrease the normality of the data 
distribution, (iv) influence the estimated 
coefficients, and, therefore, (v) provide distorted 
information.  

The main purpose of this study is to 
compare the performance of four statistical methods 
in detecting the dependence relationship, namely, 
the Monotonic Dependence Coefficient (MDC), 
Pearson’s ݎ Spearman’s ߩ and Kendall’s τ for 
contaminated and non- contaminated data sets. This 
comparison is performed via a Monte Carlo 
simulation study and an application on a real 
dataset. These methods are quite effective when 
working with large dataset that are fairly normally 
distributed, but many distributions of real-world 
data do not follow the normal distribution. They are 
often highly skewed because of the inclusion of 
some extreme values, being the skewness very often 
positive, so that the distribution resembles a 
lognormal distribution. This is why the lognormal 
distribution is often used in practice [12]. Findings 
from this study might help to propose some 
guidelines to the use of a proper dependence 
analysis method, which could be robust against the 
presence of outliers and/or skewed data, and give 
advice in case of violation of statistical test 
assumptions.  

The rest of the paper is organized into four 
sections: the next section illustrates the simulation 
study, followed by a section describing its results. 
Section 4 presents an application to a real situation 
and the last section concludes the paper. 
 
 
 

2 Simulation Study 
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The assessment of the performance and comparisons 
among the four dependence measures were carried 
out through Monte Carlo (MC) simulation. In this 
simulation we applied MC on MDC, Pearson’s r, 
Spearman’s ߩ, and Kendall’s τ on outlier 
contaminated and non-contaminated data sets.  All 
the four correlation coefficients have a direct or 
inverse monotonic relationship ranging from −1 to 
+1, assuming the value zero with no correlation. We 
analyse the behaviour of all four dependent 
measures in different experimental scenarios, 
according to the sample size, the percentage of the 
contamination in the data and the type of 
distribution generating the outliers. 

The simulation dataset was built in two 
steps [13]. In the first step, we generated correlated 
data for two variables ݔ and ݕ from a bivariate 
standard normal distribution, having zero skewness. 
An MC process with 10,000 iterations was 
performed generating random samples of size ݊ ൌ
500 having two particular correlation structures. 
Finally, the four dependence methods were applied 
to evaluate the relationship between ݔ and ݕ by 
averaging over the MC samples. In the second step, 
we generated a contamination correlated data set 
amounting to 5% and 10% of the whole sample size 

for ݔ and ݕ by first generating a bivariate standard 
normal distribution with zero mean parameter and 

correlation matrix ቀ1 ݎ
ݎ 1

ቁ.  Two values of 0.2) ݎ, 

0.8) were considered. Contaminating data for the 
variable ݕ were added to these values using the 
exponential distribution, the power transformation 
ݓ ൌ ହݕ ൅ ଷݕ ൅  the lognormal distribution and ,ݕ
the Weibull distribution with scale parameter equal 
to 2.1 and shape parameter equal to 1.1. Examples 
of generated data are presented in the scatterplots 
provided in Figures 1 and 2. Yellow points represent 
the values generated from a bivariate standard 
normal, whereas the red stars represent the 
contamination outlier observations. Black and blue 
dash lines indicate the simple regression lines before 
and after the contamination, respectively. In general, 
adding the random contamination to the bivariate 
normal dataset will reduce the values of the 
regression coefficients for all scenarios and the 
relationship between ݔ and ݕ goes toward the 
horizontal direction after adding the contaminated 
data (Fig. 1 and 2, (a) and (b)).  The lognormal and 
the Weibull outlier scenarios are the least influenced 
by the contamination as the patterns of the two lines 
are almost indiscernible (Fig. 1 and 2, (c) and (d)). 

Fig. 1. Scatter plots for simulated data (ݎ ൌ 0.20; ݊ ൌ 500). (a) Power transformation; (b) Exponential 
transformation; (c) Lognormal transformation; (d) Weibull transformation. 

 5% contamination 10% contamination 

(a) 

 

(b) 
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(c) 

 

(d) 

 

Fig. 2. Scatter plots for simulated data (ݎ ൌ 0.80; ݊ ൌ 500). (a) Power transformation; (b) Exponential 
transformation; (c) Lognormal transformation (d) Weibull transformation 

 5% contamination 10% contamination 

(a) 

 

(b) 

 

(c) 
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(d) 

 

 
 
3 Results on Simulated Data 
Our simulation procedure considers samples 
generated from a bivariate standard normal 
distribution. Then, contamination data are added to 
the values of these samples. Results of the MC 
simulations on the performance of the four 
statistical measures considered – MDC, ߩ ݎ and τ - 
in detecting the dependence relationship on 

contamination and non-contamination datasets 
generated as described in the previous section are 
shown in Table 1 and Table 2. The evaluation of the 
performances of these methods is determined by 
their ability to detect the dependence relationship 
between ݔ and ݕ in the contaminated data sets. The 
benchmark is the value of ݎ in the non-contaminated 
data set, so all the results are compared with it. 

 
Table 1. Simulation results. ݎ ൌ 0.20, ݊ ൌ 500. Most successful results for each scenario in bold – Validation 

percentages in brackets 
 MDC ߩ ݎ τ MDC ݎ  τ ߩ

Without outliers 

 
0.199 

(0.995) 
0.2 

(1.00) 
0.191 

(0.955) 
0.128 
(0.64) 

 

With outliers 
 Percentage of contamination 

Transformation 5% 10% 
Power 
transformation 

0.079 
(0.395) 

0.016 
(0.080) 

0.170 
(0.850) 

0.120 
(0.60) 

0.080 
(0.400) 

0.019 
(0.095) 

0.165 
(0.825) 

0.113 
(0.565) 

Exponential  
0.154 
(0.77) 

0.076 
(0.38) 

0.178 
(0.89) 

0.120 
(0.60) 

0.129 
(0.645) 

0.051 
(0.255) 

0.167 
(0.835) 

0.110 
(0.55) 

Lognormal 
0.176 

(0.880) 
0.159 

(0.795) 
0.177 

(0.885) 
0.119 

(0.595) 
0.157 

(0.785) 
0.133 

(0.665) 
0.164 

(0.820) 
0.111 

(0.555) 
Weibull (scale 
2.1, shape 1.1) 

0.192 
(0.96) 

0.183 
(0.915) 

0.182 
(0.91) 

0.121 
(0.605) 

0.186 
(0.93) 

0.170 
(0.85) 

0.175 
(0.875) 

0.116 
(0.58) 

 
Table 2. Simulation results	ݎ ൌ 0.80, ݊ ൌ 500. Most successful results for each scenario in bold– Validation 
percentages in brackets 

 MDC ߩ ݎ τ MDC ݎ  τ ߩ
Without outliers 

 
0.799 

(0.998) 
0.8 

(1.000) 
0.785 

(0.981) 
0.59 

(0.74) 
 

With outliers 
 Percentage of contamination 

Transformations 5% contamination 10% contamination 
Power 

transformation 
0.324 

(0.405) 
0.067 

(0.084) 
0.728 

(0.910) 
0.550 

(0.688) 
0.315 

(0.393) 
0.076 

(0.095) 
0.678 

(0.847) 
0.517 
(0.65) 

Exponential 
0.615 

(0.769) 
0.302 

(0.378) 
0.732 

(0.915) 
0.551 

(0.689) 
0.514 

(0.643) 
0.201 

(0.251) 
0.686 

(0.858) 
0.517 

(0.646) 

Lognormal 
0.706 

(0.882) 
0.639 

(0.798) 
0.725 

(0.906) 
0.546 

(0.683) 
0.632 

(0.790) 
0.531 

(0.664) 
0.672 

(0.840) 
0.508 

(0.635) 
Weibull (scale 2.1, 

shape 1.1) 
0.770 

(0.963) 
0.733 

(0.916) 
0.750 

(0.938) 
0.557 

(0.696) 
0.744 

(0.930) 
0.679 

(0.849) 
0.719 

(0.899) 
0.528 

(0.660) 

 
Findings of Table 1 and Table 2 show that generally each method presents correlation values to detect 
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the relationship between ݔ and ݕ lower to the 
benchmark values ݎ ൌ ݎ 0.2 ൌ 0.8 and, for each 
method, increasing the contamination percentage 
ends up in further lowering the measures’ values. 
When there is no contamination and presence of 
asymmetric outlying observations, MDC is the best 
method to detect the relationship between ݔ and ݕ 
with respect to ݎ, as its values on the non-
contaminated dataset are {0.199, 0.799} which are 
almost identical to the values {0.2, 0.8} of the 
Pearson’s ݎ coefficient. 
MDC had less variability than ݎ throughout the 
different scenarios as compared to other methods in 
the presence of outliers. Passing from a 
contaminated percentage of 5% to 10% in the data 
set provided similar findings of the performance of 
the four methods in both cases for ݎ ൌ{0.2, 0.8}. 
However ߩ performed decidedly better than MDC in 
the first two scenarios, but in the third and fourth 
scenarios the difference between the two 
coefficients was very tiny. In the lognormal scenario 
(ρ = 0.2, 5% contaminated data) MDC had 
practically the same behaviour of ߩ.  MDC behaved 
better on the third and fourth scenarios as the 
lognormal and Weibull distributions are from the 
normal distribution family.  

4 Results on Real Data 
In this section we present results on the performance 
of MDC, ߩ ,ݎ and τ by using a contaminated real 
data set. We considered a contaminated data set 
containing two variables: the per-capita gross 
domestic product (GDP) measured in USD$ (y), and 
the amount of Carbon dioxide emission (CO2), 
measured in metric tons per capita (x) for 
Luxembourg from 1960 to 2008. Data were 
obtained from the World Bank website [14] [15].  

Before performing the analysis using the four 
coefficients, we should identify the outliers in the 
data set as it is important to enhance the efficiency 
of the estimated coefficients. For that purpose, the 
Mahalanobis distance method has been applied to 
detect the outliers in the relationship between GDP 
and CO2, as it provides a robust estimation by using 
the minimum covariance determinant (MCD) 
estimator. Moreover, this method identifies the 
leverage points and the residuals outliers at the same 
time. The Robust Mahalanobis Distance is 
constructed as 

   1

MCDi MCD i MCDRD x x 
     (1) 

where MCD and 

1

MCD



 are respectively the mean 
vector and the covariance matrix estimated by MCD 
[16].  

 

Fig. 3. Diagnostic Mahalanobis distances for the 
relationship between CO2 and GDP. 

 

The diagnostic outliers plot is shown in Figure 3. 
The scatterplot shows the values of the Mahalanobis 
distance on the horizontal axis, while on the vertical 
axis the values of standardized residuals are plotted. 
The values above 2.5 and lower -2.5 in the 
horizontal line are considered as outliers. Figure 3 
clearly shows that the data contains some outliers.  
 
We performed the analysis on three different 
measurement scales, similar to the classification in 
[3]: 

a) The case with continuous values for x and y, 
as provided in the original data to represent 
the real situation of the analysis.   

b) The case with the average groups values for 
 five groups with group average CO2) ݔ
emission); we classified the ݔ variable into 
five groups, the intervals being determined 
by using the max-min/5 rule (bottom row of 
Table 3).  

c) The case with ordinal values for the ݔ 
variable encoded as group rank (first row of 
Table 3).  

The purpose of this analysis of the three situations is 
to check the validations of the four coefficients into 
detecting the relationship among the three cases as 
pieces of information are lost.   
 

Table 3 Frequency Distribution of Groups and 
Average of CO2 

Groups  1 2 3 4 5 

CO2 Less 25422- 48622- 71821- More than 
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intervals than  
25422 

48621 71821 95020 95020 

Number 
(n) 

29 10 5 3 2 

Actual 
average  

8906.70 39942.96 52934.98 81803.77 112560.17 

 
Obtained coefficients’ values for the three 
coefficients for the cases a), b) and c) are displayed 
in Table 4. 
 
With regard to case (a), ߩ and MDC achieves 
slightly similar results (-0.844, -0.828) respectively. 
Such findings suggest the presence of a high 
concordance between ݕ and ݔ. Kendall ߬	presents 
the smallest value (-0.571). This result for the real 
data is coherent with the results obtained in the 
simulation study. 
With regard to case (b) all the four coefficients 
values decreased. However, ߩ outperformed to 
detect the dependence relationship between the two 
variables. MDC and Pearson’s ݎ became weaker to 
detect the dependence relationship because the 
actual means of ݔ are replaced by equidistant 
values. On the other hand, ߬ did not decrease much 
as the other coefficients because the involved 
variables are of a different nature.  In the last case 
(c) there are no substantial differences with respect 
to the results obtained in (b) except on ݎ as it results 
slightly decreased.  
 
Table 4. Simulation results on a contaminated real 
data. (a) Continuous variable; (b) Average values in 
CO2 emissions groups; (c) Ranks related to groups. 
Most successful results for each scenario in bold. 

 (a) (b) (c) 
MDC -0.844 -0.614 -0.614 
 0.588- 0.597- 0.682- ݎ
 0.689- 0.689- 0.828- ߩ
߬ -0.571 -0.522 -0.522 

 
 

5 Conclusion 
In the presence of a vast literature concerning the 
dependence analysis methods, it is always 
problematic to choose the best performing method 
depending on the real situation at hand, especially 
when outliers are present. Within the scope of our 
work, we have tried to address this point by 
comparing, under several distinct data patterns and 
different outlier contamination scenarios, four 
monotonic methods, the Pearson’s correlation 
coefficient, the Spearman’s rank correlation 
coefficient, the Kendall correlation coefficient and a 
recently proposed method, the Monotonic 
Dependence Coefficient. 

Even though these coefficients seem to cover 
positively several situations of dependence analysis, 
they present some drawbacks especially in cases 
where one variable is continuous and the other is of 
another nature and when outliers are present. Our 
findings showed that the Spearman’s ߩ method is 
more efficient in terms of detecting the dependence 
relationship for contaminated data sets. However, 
MDC is very close to it when outliers having a 
similar distribution (lognormal or Weibull) to that of 
the non-contaminated values (normal) are present 
and performs better with non-contaminated data. 
The results on real data are coherent with the results 
obtained in the simulation study. 
We argue that the simulation study we have 
designed to analyse the performance in a 
dependence problem could have a more general 
application scope, e.g. concerning other kinds of 
statistical dependence techniques and investigations. 
Our simulation study permitted us to give some 
useful insights to the potential users on the choice of 
the most performing dependence methods. 
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