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Abstract: - In view of the intensified disasters and fatalities caused by natural phenomena and sporadic urban 
expansion, infrastructure safety and sustainability is a cynosure of Sustainable Development Goal 11 for 2030. 
This work proposed a novel Internet of Things Edge structural health monitoring system focused on 
E/CN.3/2016/2/Rev1 and A/RES/71/313-E/CN.3/2018/2 charters of the United Nations Development Program. 
This work is an archetype of a safety operations support system for regional SDG-11 using a novel melioration 
in our previous works SHM-UCM [1, 2] to enable the building owners and service companies in supporting the 
state agencies in achieving SDG-11 regarding safe infrastructure life-cycle as the multi-objective function of cost 
and sustainability. Results exhibited this work as a reference model for ISO/TC211-WG4 solution for SDG-11 
as a synergy of ISO/IEC JTC SC 41 (Internet of Things) and ISO/IEC JTC SC 42 (Artificial Intelligence).  
 
Key-Words: - SDG-11; infrastructure health monitoring (IHM); geomatic analytics; sustainability assessment; 
Internet of Things (IoT).  
 

1 Introduction 
Chronological and random natural disasters 
occurring across the globe have a vital impact [3] on 
state-level infrastructure safety and sustainability. 
The desultory chaos and disasters have a direct 
impact on regional [4] economics, and future 
investment plans irradiating need for a real-time 
safety operations support system (SOSS) to stipulate 
the regional sustainability. The sustainable 
development efforts were observed using the GDFI-
Simulator [5] for Africa, America, Asia, Europe and 
Oceania in the 19th and 20th centuries. The UNO 
Documents E/CN.3/2016/2/Rev1 presented [6] in 
2016 and A/RES/71/313-E/CN.3/2018/2 presented in 
2018 by Statistical Commission of the UN Economic 
and Social Council held credibility of a constitution 
in geographic SDGs. The GDFI-Simulator [7] work 
for safety and lifecycle costs epitomized gaps as real-
time sensing system architecture required to optimize 
the trade-offs in regional development and 
sustainability matrix. The community sustainability 
indicators (CSIs) for assessing the urban community 
safety in Malaysia [8] was a substantial effort and a 

nascence for brisk global sustainability 
systems(GSS). The risk interpretation and action 
framework for responses to natural hazards review 
and the role of urban actors to coordinate and 
contribute to sustainability cost [9] depicted a need 
for an integrated and enmeshed SHM IoT/Edge 
SOSS.  

In SDG-11 literature, a momentous rapture for 
GRSS in [10] was based on the meta-analysis of an 
etymological journey in resilience and disaster risk 
reduction from 1973, illuminated 38 cases with an 
obligation of dexterous SOSS. The urban 
sustainability through infrastructure safety [11] was 
demonstrated with systems of systems gap. The 
theoretical and empirical perspectives explained in 
[12] need to be formulated in the form of a reference 
model for resilience systems design. The mapping of 
nine narratives M1, M2, M3, N1, N2, N3, CT1, CT2 
and CT3 in figure 1 [13] were very practical safety 
design markup but still craved artificial intelligence 
and standardized geo-spatial sensing capabilities as 
addressed in [1, 2]. The life-cycle sustainability and 
assurance elevated in SDG-11 and [14] for 
infrastructure disaster management (IDM) created an 
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obligation for usage for infrastructure safety systems 
(ISS) as reality towards sustainability against natural 
calamities. This created an opportunity for 
infrastructure health monitoring systems, i.e. SHM 
sensing capabilities as a sustainability assessment 
tool for rapid resilience response in GRSS as a 
reliable MGCM system. 

By 2025, more than 80% of the government, 
community and headquarter buildings or structures 
[15] will be equipped with SHM IoT and Edge 
devices. Sensors diversity and parameter estimation 
for structural health to forecast zonal safety [16, 17] 
has always been a dream for geologists, 
environmental scientists, and international 
authorities. Utility Computing (UC) is a necessity [1, 
18] nowadays, like water, food, and shelter. It is 
commonly used as a surface-level comprehensive 
tool instead of having an eye on the background 
framework to deal with problems. UC is an 
application of cloud computing [19] that 
encompasses algorithms [1, 20] and theorems in a 
way that consumer is getting direct applications and 
benefits like in cases of Uber, Careem, AliExpress, 
Food Panda and Google Maps [21-25]. UC services 
react with distributed [26] Geographical Information 
Systems (GIS) platforms like Google Maps to enable 
applications like Navisworks [27] and Building 
Information Modeling (BIM) resulting in 
heterogeneous [2, 28] Geographical Area Networks 
(GAN). On the other hand, SHM is a systematic 
framework that shows the fitness of a structure [29] 
as a front-end tool-less focused on Mechanical 
Electrical and Plumbing (MEP) that are defined in 
BIM. In SHM, only derived parameters that justify 
the condition of structures which are visible to 
consumers. Building Information System (BIS) has 
brought a revolution [30] in the construction industry. 
BIS planned SHM [31] is the core ‘lifecycle 
management utility’ for stakeholders. However, in 
the SHM parameters driven sensors selection process 
for parametric SHM, sensors are not compatible with 
UC Infrastructure (UCI). 

SHM implementations using wireless sensors 
networks for Internet of Things (IoT) models [32, 33] 
needed improvement in their UC aspect; i.e. some 
algorithms and data processing that could assist Open 
System Interconnection (OSI) model which should 
be application layer (layer 6), and presentation layer 
(layer 7) devices and applications. Deep Learning 
(DL) was implemented [34] on the raspberry pi 3 but 
still needed improvement for cloud compatibility and 
to be paired with mathematical techniques. The role 
of SHM is very vital in reporting disasters [35] and 
handling any abnormal and hazardous conditions 
using seismic waves analysis through several signal 

processing algorithms i.e. Frequency Domain 
Decomposition (FDD) and Eigen System [36] 
Realization Algorithm (ERA).  
Furthermore, regional sustainability intents observed 
in [1-36] had the gaps in physical and real application 
centered SOSS design and implementation. The 
regional sustainability based on cost metrics and 
sustainability functions utilizing MOSPA in SHM-
UCM [1, 2] with geo-analytics capabilities would 
have been a huge service to geo-SOSS. The 
improvement in limitations of [1, 2] was 
accommodated in this work by improving the system 
architecture from regional sustainability [37] 
prospect by RSS, i.e. SURFmap. The National 
System of the Statistical and Geographic Information 
(NSSGI); the National Geo-Statistical Framework 
(NGF), and the Global Statistical Geospatial 
Framework (GSGF) in [38] had a noticeable gap of 
real-time geo-informatics and infrastructure 
analytics. The contribution OGC Web Processing 
Service (WPS) and Table Joining Service(TJS) for 
standard geo-spatial data statistics required MGCM 
and geomatics agility. The integration of geospatial 
information and UNECE statistical standards at 
Statistics Finland [39] was an excellent conceptual 
framework with a desideratum of cyber-physical geo-
information system evaluation and statistical tasks 
agility enhancements engine. The advancement in 
sustainability development indicators(SDIs) using 
SOA [40] for implementation of ISO/TC211 for 
standard layered architectures utilizing the 
information and communication technologies(ICT) 
backbone to architect OGC applications by Olaf 
Østensen [42] was a motivation behind this work.  
This work focuses on:  

1. Infrastructure Sustainability Model (ISM) 
2. Implementation System Design for SDG-11 
3. SDG-11 Map Generator (SMG) 

 
In section II, ISM is explained using the cost 
equations from [1, 2] and geo-spatial life-cycle 
operations safety variables. Section III cadastral and 
geo-analytics perception of ISM for SDG-11 for a 
geographical cluster under observation. 
 

2 Problem Formulation 
In urban infrastructure there are more than hundreds 
of structures with more than thousands of real-time 
variables monitored at extreme data rates modeled as 
ISM in this work. The stakeholders, authorities and 
service companies confront following needs to solve 
their problems: 

1. A single coordination model to stream-line 
infrastructure systems heterogeneity. 

WSEAS TRANSACTIONS on COMPUTERS

Hasan Tariq, Abderrazak Abdaoui, 
Farid Touati, Mohammed Abdulla E Alhitmi, Damiano Crescini, 

 Adel Ben Manouer

E-ISSN: 2224-2872 176 Volume 18, 2019



2. A real-time formulation of anomalies and costs 
expected from sensor time vectors as a 
function of life-cycle sustainability cost.  

3. Real-time geo-spatial mapping of disasters and 
SDG-11 zones.  

 

3 Problem Solution 
The problems addressed were proposed as a stepwise 
solution in the sections below. The following steps 
were taken to address the common challenges: 

1. First, the modeling of problems as a function of 
the cost was carried out in the urban canvas.  

2. SDG-11 live mapping our geo-plots. 
3. Proposal for a comprehensive cyber-physical 

system to achieve proposed goals. 
4. Customization of existing SHM systems to 

address SDG-11. 
5. Integration example of an algorithm from 

application prospect.   

3.1 Infrastructure Sustainability Model 
(ISM) 
First, the coordination model to relate cost and 
anomalies. Let t be the time vector for time-series 
variables as a set of Vectors V with n variables in a 
multi-sensing monitoring system with heterogeneous 
data rates D, vector V is given as a function of time.  

V(n, t) = {V1(n1, t1), V2(n2, t2), V3(n2, t2), ….. 
Vn(nn, tn)}                                              

(1)

There exist area-abnormalities or geospatial-
anomalies as a set A= {A1, A2, A3, …. An} in real-
time magnitudes M that have an unacceptable 
difference of ΔA from normal or safe values N 
ensuring sustainability termed as geo-temporal 
vectors filter(GTVF).  

Fig 1. Overall ISM-SG11 Block Diagram  

Let us say M>N or M<N in range a = ±10% from 
recent value is written as:  

ΔA(V(n1, t1), V(n2, t2)) = (M-N)/N   ∀    

ΔA ϵ [-0.1,+0.1] = {a | -0.1 ≤ a ≤ +0.1}      
(2)

Each combination of ΔAs is called chaos 
amplitude, The product of amplitude ΔA and 
duration of chaos TCHOAS is directly proportional to 
infrastructure lifecycle (ILC) cost vector CILC given 
as: 

CILC (ΔA, TCHOAS) ∞ ∫ ΔA	x	
��

��
 ∫ 	

��

��
TCHOAS (3)

This model works on all the data streams of 
isometric condition monitoring systems or all SHMs 
with same architecture, i.e. identical sensor types, 
number of nodes, polling rate or sampling rate, and 
communication infrastructure that can rarely happen 
at regional level due to variety of vendors and 
solution providers and terms of service level 
agreements(SLAs). SLAs in this work are based on 
SDG-11 domains centered statistical analysis on the 
% of the occurrence of ΔA for unique costs CILC.   

 
Fig 2. ISM-SG11 Implementation Overview 

In figure 2, in the center, there is a chronological 
structural healing or recovery diagram showing the 
different states. A ISMSTATE parameter is introduced 
here that assists in real-time expenditure tracking. Let 
US be a unique set of regional structures deployed 
with V-SHM as a unique cluster or set of sensors 
variables in V sent through B. Let SHM-SENSOR be 
a unique set of sensors. Let the number of real-time 
state variables for a unit ISM model be geo-event be 
ISMSTATE(Loc) for a single IHM cloud and given as: 

ISMSTATE(Loc) = DCB x USCV-SHM  x VCSHM-SENSOR (4)

The overall SHM cloud dashboard is displayed after 
this step. The percentage health H of structures is 
computed as the number of variables NV divided by 
the number of classified anomalies NA multiplied by 
100 and is given as: 

H(%) = (NV / NA) x 100 (5)

The live geo-analytics is the most popular tool used 
by local authorities is another visualization that 
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expert systems use to assist the decision making. A 
binary matrix operation has been used in this work 
i.e. load Google Maps frame in matrix G and 
subtracts it from ISMSTATE(Loc) Matrix RSS with 
geo-spatial coordinates of areas or structures with 
nodes having sequence numbers > 216 as shown in 
figure 2. 

Fig 3. ILC Adaptive Filter Subtraction Process 
Block Diagram for SDG-11 

In figure 3, the left-most is the actual geo-plot as 
matrix from Google Earth, middle-left is the 
implementation of MOSPA [1], middle-right is the 
area with cost or expenditure applied and at the right-
most is the area under ISM-SDG11 recovery 
operations. The safe area on the map with active 
recovery was modeled green and waiting was 
bordered green with computation ISMSTATE(Loc) in 
progress and unrecoverable as black. Geo-spatial 
images are treated as matrixes with selected latitude 
and longitude bounds with each patch as a pixel for 
the respective color model used e.g. RGB, CMY, etc. 
The matrix operation subtraction needed same 
dimensions as R for row and C for column given as: 

ISMSTATE(Loc)[RxC] = G(Layer)[RxC] –       
CILC (Layer)[RxC] 

(6)

 
3.2 IHM Utility Computing Model (IHM-
UCM)  
This work recommended a structured SHM that 
operated in compliance with a given Safety Integrity 
Level (SIL) and independently at Emergency 
Shutdown (ESD) level. SIL is governed by Structural 
Integrity Management (SIM) platform that over-rules 
decisions of Building Management Systems (BMSs). 
ESD is a binary decision based enveloped estimation 
that makes the structural health qualification criteria 
either pass or fail. SIM control parameters are set by 
GAN based on the geological, geographical and geo-
mechanic transients’ prediction assisted by weather 
stations. To this end, we present an IHM-GAN with 
heterogeneous Machine Learning (ML) algorithms 
engine in a distributed SIM framework at a 
lithosphere level, i.e., a separate SIM for a separate 
crust composition. Sandy, soiled, rocked and 
limestone-based areas have different foundation 
requirements for different type structures. GIS has 
critical databases of dynamic and real-time updates 
in datasets for real patches on the crust. 

Fig 1. Overall RDPP Hardware Block Diagram  

 
Fig 4. SHM Utility GAN [1] Architecture  

Figure 4 illustrates the proposed conceptual model of 
IHM-UCM networked through a mesh of IHM-GAN 
of the geospatial orientation of satellites dedicated to 
SHM. Three heterogeneous intracontinental patches 
are selected G1 for Canada, G2 for European Union 
and G3 for Qatar. Three different sizes have been 
selected to realize the freedom of observational 
geophysical patch selection. One each satellite i.e. 
G1, G2 and G3 decisions are made by MOSPA. This 
IHM-GAN enables globally engineered and 
administered implementation schemes for SHM for 
governments to reduce routine exhaustive 
calculations by Project Management Consultants 
(PMC). Quick tendering, systematic City and 
Regional Planning (CRP) initiatives are examples of 
noticeable outcomes of this SHM-UCM, to mention 
few.  

3.3.1 Deployed Structural Health Monitoring 
Systems   
An SHM is a sequential and systematic process in 
which the end product is a trustable abstract decision 
parameters dataset based on the data collected from 
SHM system variables. Firstly, the SHM is 
developed and deployed on structures-specific 
mandates that need to be monitored (e.g. residential, 
commercial, bridges, tunnels). SHM system 
architecture is based extracting upper and lower 
bounds of Finite Element Analysis (FEA) data. By 
upper and lower bound we mean the maximum and 
minimum values at which the structure is expected or 
meant to stay fully fit. An SHM system is a unique 
system that has to serve the purpose of the lifecycle 
evaluation of structure for a structure for the next 10 
years. The Body Area Heterogeneous Network 
(BAHN) for the SHM system is designed for a 
structure in which after hundreds of iterations in BIS 
frameworks Value of Information (VoI) is evaluated 
and finalized by multi-disciplinary Subject Matter 
Experts (SMEs) inputs to ML algorithm. 
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Fig 5. SHM by LM/LTE  

In figure 5, an SHM system has been shown for a 
specific structure with multiple variables obligatory 
for fitness for a given structure. The instruments 
shown in figure measure physical quantities of 
structure i.e. weight (load cells), water level, 
moisture (hygrometer), balance (gyro sensors), 
temperature (thermocouples or resistance 
temperature detectors), accelerometers (vibration), 
pressure indoor and outdoor (piezo-electric sensors), 
collision or obstacle detection in vicinity (ultrasonic 
sensors or sonar), tilt and inclination (tiltmeter) and 
wind speed (anemometer). Secondly, the location of 
and data communication is being achieved using GPS 
and GSM/GPRS respectively. The shown variables 
varied structure to structure and is a complex set of 
the formulation by a multi-disciplinary team. The 
variables shown in figure 4, can vary the SHM 
parameter estimation and feature extraction in other 
words directly affect the technical assessment of VoI 
of the respective structure. This work is an effort 
toward the development of a smarter service-oriented 
UCM that will bring the multi-disciplinary 
procedures and practices under one umbrella called 
SHM-UCM.   

3.3.2 SDG-11 Application Specific Standard 
Part (SDG11-ASSP) Nodes for IHM-UCM   
By 2018, an exponential rise in SHM nodes 
deployment has been registered across the world at 
institutional and organizational levels with different 
topologies, architectures, and frameworks on various 
IoT platforms [17 – 18]. For in-situ long-haul 
seamless monitoring, the most successful and 
frequent node architecture is used, which is mostly 
applied to a range of sensors, application-specific 
scale Signal Conditioners (SCs) and high-resolution 
Analog to Digital Converter (ADC) chips and 
microcontrollers like Intel 8051, Microchip P18F458 
and ATMega32. 

 

Fig 6. Conventional SHM Node Block Diagram 

Figure 6 reflects a typical or conventional SHM node 
used for heterogeneous Body Area Network (BAN) 
implementations for existing SHM systems [19]. It 
has to go through a sequence of primitive data 
processing methods to be compatible with SHM 
systems. This Column SHM Node has to be 
orchestrated like a cloud framework ZeRo Client 
(ZRC), ThiN Client (TNC) and ThicK Client (TKC) 
nodes to fit in the ecosystem of Industry 4.0 standard 
for SHM systems. 

The SHM nodes proposed in this work are IHM-
UCM coherent framework. The obligation of 
extreme sensitivity, scalability and sampling 
frequencies is imposed to achieve the variable data 
processing constraints for feature extraction 
techniques, Non-Destructive Testing (NDT) 
methods, and Non-Destructive Evaluation (NDE) 
procedures. It is repugnant to hire a new (different) 
team for detailed SHM parameter assessment every 
time. The SDG11-ASSP fills the gap of providing the 
utility of high-resolution data for NDT and NDE 
assessment procedures.  

 

Fig 7. SDG11-ASSP ZRC Node Block Diagram 

In Fig 7, an SDG11 Application Specific Standard 
Part (SDG11-ASSP) ZRC Node is illustrated. It 
includes MEMS Sensors along with Programmable 
SC (PSC) to make it compatible with monitoring 
specialized sensors and Programmable ADC (PADC) 
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that can adopt scaling and range recommendations 
for particular observational criteria. The SHM-
SDG11-ASSP ZRC nodes proposed in this work 
need no external instrumentation assistance for SHM 
operations. ‘STM32F10RBT6’ CPU interfaced with 
inclinometers sensors is the basic element of nodes. 

These nodes include: 
 SSN – 2 Sensors 

 CSN – 7 Sensors 

These nodes are using CANopen for HBAN 
segregated at Out Surface Board (OSB) TNC using a 
CAN-to-USB adapter as shown in Fig 6. 

  

a. SSN b. CSN 

Fig 8.  SDG11-ASSP ZRC Node Block Diagram 

In Fig 8, two SDG11-ASSP ZRC nodes are shown 
i.e. Seismic Sensors Node (SSN) and Cylindrical 
Sensors Node (CSN), both with remotely 
programmable and configurable parameters, which 
we developed in-house. 

Fig 9. SDG11-OSB TNC 

The SDG11-OSB in Fig 9 has a micro expert system 
that has multiple Resource-Constrained Machine 
Learning SHM Algorithms (RCMLA). 
 
 
3.3.1 Multi-Objective IHM-SDG11 Estimation 
Algorithm   
SHM is highly feasible for bigger structures, 
especially community buildings, where structure 
value and human lives are critical. The multi-
objective IHM-SDG11 estimation algorithm (MO-
IEA) is a real-time sustainability estimation tool.  Let 

�	 = 	 (�� 	 ·	·	· ��)	denote all occupancies that occur 
per second during a period of time and �� is a vector 
of occupancies for room � where � = 	1,2, 3, … .		� 
[20, 21]. Let ��  denote the average occupancy for a 
room ��. We calculate a vector of means �	 =
	(��, . . . , ��) and covariance matrix � from �. 
Using � and �, we define a Probability Density 
Function �: 

�	(�; 	�,�)

= 1
1

(2�)
�
�		|M|

�
�

exp �−
(� − α)�M��(� − 	α)

2
� 

(7) 

An ML algorithm is implemented for the installation 
of SHM-UCM based system. It uses a multi-objective 
Supervised Machine Learning Technique (SMLT) 
that streamlines the SHM HBAN architecture and 
steps of installation recommended by IHM-UCM.  

3.3.1.1 User Identification from MAC and IMEI 
Addresses 
A two-tier mechanism for occupant counters has 
been employed as an occupant space called ��. �� is 
a sum of number of Medium Access Control (MAC) 
addresses registered in wireless routers (as every PC 
or smartphone has a WiFi card or a LAN card that has 
MAC address) plus International Mobile Equipment 
Identifier (IMEI), that every smartphone has as a de 
facto de jure for Electronic Industry 
Association/Telecommunication Industry 
Association (EIA/TIA) approved standards given as: 

�� 	= 	�(���) 	+ 	�(����) (8) 

3.3.1.3 Network Attendance Count 
For permanent inhabitants or occupants’ biometric 
access counter � is defined in terms of �� as: 

�� 	= 	�� (9) 

Thus � is summed up as: 

�	 = 	�� 	+	�� (10) 

The BIM model is the second parameter value of 
information ������ that has all the definitions i.e. 
floors ����, beams ����, columns ����, stairs ����, 
rooms ����, halls ����, galleries ����, joints ����, 
trusses ����, payloads ����, areas ���� and volumes 
����. ������ is a sum of functions of joints, trusses, 
payloads and volumes [22]. 

������ = 	�(����) 	+ �(����) 	
+ 	�(����) 	+ 	�(����) 

(11) 
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The applied physical fitness function [23] parameter 
called ���� depends on tilt ����, structural strain 
��/����, vibration ����, temperature ����, stress 
����, wind effect ����, groundwater level ����, 
humidity ����, moisture ���� and composite 
material stability constant ���.  

���� 	= 	�(����) + 	� �
��

����
�	+ 	�(����)

+ 	�(����) + �(����)
+ 	�(����) + 	�(����)
+ 	�(����) + 	�(����)
+ �(���) 

(12) 

3.3.1.3 Final Population Count 
Finally, the total population count along with the 
SHM location parameter can be used to train the ML-
based algorithm to generate real-time SHM-based 
devices location so that to mitigate the risk and give 
early warnings. It will also help to cover a wide area 
of structures and pinpoint any landmark changes 
which can affect the integrity of the buildings. In the 
results section, it can be clearly seen that each 
location where SHM nodes are installed, the 
population is being monitored along with the focus 
towards the structure health. 
 
3.4 SDG-11 Map Generator  
Two core analysis mechanisms used for IHM-SDG11 
implementation and performance analytics were 
Wireshark 3.0 and Python IDLE 2.7 with the 
following libraries: 
• NetworkX, Scipy, and Numpy were utilized to 

solve the graph structures in geo-spatial 
computations.   

• Basemap-Matplotlib, network2tikz, and pysocks 
to plot the geo-analytics of IHM-SDG11 
performance analysis and operations.  

 

4 A Case Study on Qatar University 
Deployed IHM 
The IHM deployment at Qatar University, Doha in 
Qatar was chosen as a case study in IHM-SDG11 as 
exhibited in figure 10. Three unique SHM systems 
were customized with SDG11-ASSP nodes and 
SDG11-OSB to constitute on IHM-SDG11 system 
architecture. The three 1 km apart unique locations, 
namely, B09 Lab, QU Bridge and Research Complex 
H10 with geometric variables monitoring capabilities 
for 6 months. The QU Bridge had maximum human 
movement (pedestrians and vehicles), the H10 had 
construction sites in its vicinity thus incurring various 
vibrations and B09. The B09 lab was our 

benchmarking or standard facility where we had the 
SHM Test bench having eight nodes.  
 

 

Fig 10. Case Study: QU SHM Sites Deployment 
Details. 

 
In figure The IHM-SDG11 system details for these 
locations are: 
• QU bridge SHM Site (SHM-BS) System with 4 

SDG11-ASSP-ZRC SSNs (in cyan). 
• H10 SHM site (SHM-RC) with 4 SDG11-ASSP-

ZRC SSNs (in green). 
• B09 Lab site (SHM-LB) with 4 SHM-ASSP 

ZRC-SSNs and 10 SHM-ASSP-ZRC-CSNs (in 
yellow). 

The entire deployment plan for case study QU is 
shown in Figure 11a, 11b and 11c; published in our 
earlier papers was uploading data to Thingspeak IoT 
platform by Mathworks. The details of each system 
as per SDG11-ASSP is given in figure 10. The cost 
and criticality of structures was the driving force 
behind these three deployments. The B09 Lab, QU 
Bridge, H10 were the most active area having 
maximum dynamics in population movements and 
significance in structural topologies.  
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a. H10 SHM site 

 

 

 

10 CSNs on SHM Stand 5 SSNs on Table 
b. B09 Lab SHM site 

 

OSB and an SSN  SSN  

ODU  IDU  

c. QU Bridge Site 
Fig 11. Details of QU IHM Deployment 

 
 Figure 11 exhibited the details of SDG11-ASSP 
based customized deployment of the IHM system. 
Raspberry Pi 3 was used as an out-surface board 
(OSB), i.e., SHM-UCM-TNC. All CSNs and SSNs 
were SDG11-ASSP-ZRCs nodes. The 2km+ WiFi 
range extenders from CISCO were indoor data unit 
(IDU) and outdoor data unit (ODU). This system 
encompassed practical limitations that inherently was 
considered in our UCM. 
 

5 Results and Discussion 
The chosen case study was SHM customization and 
enrichment with SDG11-ASSPs as well as a full-
scale ISM-SDG11 framework for Qatar University 
nascent from GAN [1] based SHM-UCM. The results 
of MO-IEA were sequential in nature for SDG11-
ASSP nodes. First computation was a runtime 
Variable Occupancy Model (VoM) map based on the 
probability density function of occupancy O given in 
(1) and (6).  

  

 

Fig 12. SHM Building Evaluation Graph 

 
The PDF in equation forecasted the occupancy by 
adopting the historical data of O, α and M exhibited 
in figure 13.  

 
Fig 13. SHM Building Evaluation Graph 

 
In figure 13, MO-IEA utilized the 8 zones created 

using the real attendance and predicted attendance to 
generate the expected 4 zones needed for CILM and 
ISMSTATE(Loc). The PDF contributed to the safety 
of occupants given in Figure 14. 
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Fig 14. SHM Building Evaluation Graph  

 
In figure 13, MO-IEA utilized the 8 zones created 
using the real MAC and IMEI presence to generate 
the expected 4 needed for CILM and 
ISMSTATE(Loc). The PDF contributed to the safety 
of occupants given in Figure 14. 

 
Fig 15. ISM-SDG11 Evaluation Graph by MO-IEA 

Figure 15 shown the cumulative fitness percentage of 
structures in Zone 1 to 8. Two colors of needles are 
visible in Fig 8. Golden needle shows maximum 
overshoots or SHM with maximum utilization of 
structure and black needle shows that below 50% of 
sensors in SHM have almost constant values. Plots in 
Fig 8 results are very realistic being the fact both H10 
and H08 have maximum flow of occupants’ thus 
maximum vibrations, the maximum change in 
pressure, humidity and temperature. C07 has 20% of 
sensors publishing values. H10 and H08 are the fittest 
of structures reflected by SHM. 

 
Fig 16. ISM-SDG11 Evaluation Graph by MO-IEA 

In Fig 16, it can be clearly seen what is shown in Fig 
14 that red color reading presents unfit conditions for 
structures health, whereas the green color presents 
the fittest building. The results in Figure 17 were 
totally dependent on our previous work [1, 2] as well 
as equations (4), (5) and (6).  
 

   

a. QU Case Study b. SHM-UCM c. MO-IEA Filter 
for IHM-SDG11 

Fig 17. SHM Building Evaluation Graph 
 
The final step was geo-spatial plot generation for 
SDG-11 based on ISM-SDG11 implemented on 
IHM-SDG11 using SDG11-ASSPs from MO-IEA. 
The ISM-SDG11 estimated the SDG11 region by 
subtracting Figure 16(b) from Figure 16(a) as well as 
applying equations (5) and (6) defined in section 3.1. 
Figure 16(a) was the actual view without application 
of the QU IHM site as acquired from Google Earth. 
In figure 16(b), we have used a machine learning 
algorithm MOSPA for urban scale geo-informatics 
and SHM analytics presented in [2] as an applied 
algorithm for testing. Maximum cost leads to 
maximum resilience needed. In figure 16(c) the MO-
IEA was applied as core contribution in IMS-SDG11 
the area with active SDG-11 achievement is visible 
whereas area without SDG11 and in the phase of 
recovery is exhibited in dark. Cost refers to the real-
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time damage estimated and predicted lifetime 
damage of structures and human resource. 

Fig 18. Cost CILM Contribution of MO-IEA in ISM-
SDG11  
 
Figure 18 is a footprint of contribution rendered by 
ISM-SDG11. The comparison of total cost by EPC 
firm at the time of construction just as a round-off 
reference with MOSPA and MO-IEA is also 
presented to understand the significance of MO-IEA 
as a core element of ISM-SG11. A number of more 
algorithms can be designed and implemented in the 
future for SDG11 reference architectures.   

4 Conclusion 
An infrastructure sustainability model for 
sustainability development goal 11 was designed 
with novel SDG11 focused multi-sensor nodes and 
multi-objective life-cycle sustainability algorithm. 
Real-time decision making was made possible by 
critical computations of real-time anomalies vectors 
from SDG11 specific nodes. The human safety was 
incorporated in the structural integrity to refine a 
collaborative model for state agencies. The first 
variable was the SDG11 node obtained from a 
variable occupancy model and the rest from ISM as a 
sequence of cost computations. A case study was 
conducted on Qatar University buildings to test the 
proposed framework. An SHM utility computing 
model based on geographical area networks for real-
time decision making for a geospatial cluster has 
been proposed.  
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