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Abstract: - In this paper, we propose a diversity measure for random forests simplification using both SFS and 
SBE paths. This is performed in two stages: 1) we use first an overproduce method which generates a large 
number of trees; 2) We use SFS and SBE paths combined with diversity measurement to reduce the initial 
ensemble of trees. The proposed method is applied to UCI Repository data sets. A comparative study of the two 
types of paths with a performance-based pruning method is given. The results are encouraging and allow 
obtaining ensembles of reduced sizes exceeding, in some cases, the performances of the initial forest and the 
method used for comparison. 
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1 Introduction 
Random forests [1] use bagging [2] to generate 
CART trees [3]. Bagging allows random selection 
of a subset of training data (bootstrap) for 
generating each tree in the forest. Bootstraps are 
built using random draws with delivery to the 
original learning set. 

A random selection of variables (or Random 
feature selection) is added to the bagging. This 
selection allows choosing a subset of variables for 
the partition at each node; a fixed number of K 
characteristics is chosen randomly and from which 
are chosen those which optimize the partitioning. 

To be efficient, a forest must be composed of 
trees very different from each other. In [1] the 
author introduces the correlation between two trees 
and shows that the reduction of this correlation 
induces a decrease in the prediction error. The 
author also brings in the strength of a tree (a quality 
measure of an individual tree) and shows that the 
prediction error decreases as this power increases. 
The Breiman’s prediction error increase seems 
rather rough, but the ideas it conveys are very 
important to understand random forests: a forest of 
individual efficient and different trees is an 
efficient forest. 

A large number of trees forming the forest have 
also the effect to reduce the variability of the global 
predictor. In his paper [1] Breiman has shown that 
beyond a certain number of trees the error in 
generalization tends to its maximum, which shows 
that a large number of trees in a forest does not 
make it more efficient. 

In this direction, several studies try to limit the 
number of trees in a random forest by trying to find 
the optimal ensemble of the forest. This process is 
called "Random Forest Pruning". 

The pruning of a random forest is an additional 
step which aims to reduce the number of 
constitutive trees. This allows saving the storage 
space and reducing the prediction time while 
aggregating or combining all the generated trees. In 
a regression case, aggregating the predictions of q 
predictors consists in averaging them: given q 
models, each of them provides a response ŷl and, 

then the final prediction is 
=

q

lq 1

1
ŷl. In the case of 

classification, aggregation consists in making a 
majority vote among the classes provided by each 
predictor. 

The goal of this research is to simplify a random 
forest using a diversity measure and two research 
strategies: Sequential Forward Selection (SFS) and 
Sequential Backward Elimination (SBE). The 
measure maximizes the chances of choosing trees 
that disagree with the classifying of an instance. 
SFS begins with an empty ensemble and adds the 
trees one by one to optimize the measure, while 
SBE starts with the entire forest and eliminates, one 
by one, the trees affecting the ensemble negatively. 

The experiments are performed out on 
benchmarks of the UCI Repository [4]. A 
comparative study is carried out between the initial 
forest composed of all the trees, the pruning 
method based on the ensemble performance and 
that proposed by Bernard and his colleagues [5] 
also using the SFS and SBE paths, based on two 
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criteria: performance and size of the obtained 
ensembles. 

The rest of the paper is organized as follows: In 
section 2, we give some preliminaries on random 
forests, sequential forward selection, and sequential 
backward elimination. Section 3 presents related 
work that led to the discovery of forests as well as 
the areas of application in which the approach was 
applied. In section 4 we describe our proposal for 
random forest pruning. In section 6 the experiments 
results are presented. Finally in the last section we 
conclude and give some future work. 

 
 

2 Preliminaries 
 

2.1 Random Forests 
In [1] the author gives the following definition of a 
random forest: Let {ĥ (.,Ө1), ..., ĥ (., Өq)} be a 
collection of predictors using trees, where (Ө1, ..., 
Өq) is a sequence of random variables, independent 
of the learning sample Ωn. The predictor of random 
forests is obtained by aggregating this collection of 
predictors. 

Random forests RI (Random Input) are an 
implementation of random forests [6] which the 
corresponding general algorithm is as follows: 
 
Algorithm RI: 
Input:  

Ωn: A learning sample comprising n examples and 

p variables, 

m: a subset of variables to choose at each step; 

Output: 

T = Number of trees to build; 

Begin 

To build each tree: 

Create a sample ΩB of Ωn 

Create a non-pruned CART tree; 

At each node of the tree, choose randomly m 

variables from which the test variable will be 

chosen; 

End. 

 
 
2.2 Sequential Forward Selection 
A Sequential Forward Selection (SFS) path is used 
to find a sub-optimal solution, because the 
sequential process used by this method makes each 
iteration dependent on the previous one and, 
therefore, all the possible solutions are not 
explored. However, this course method has the 
advantage of being simple and fast. Its principle is 
simple: the process starts from an empty set and 

add progressively the models that maximize the 
evaluation function (the entropy function here). The 
models are added if they belong to the 
neighborhood of the current ensemble of trees. The 
process stops when there are no trees to add or 
there is no improvement in the evaluation function. 

Given an ensemble of 4 trees {T1, T2, T3, T4}, 
a function fE to maximize and a current ensemble S, 
a SFS selection from this ensemble is shown in Fig. 
1: 

 
Fig. 1: SFS path for an ensemble composed of 4 

trees 
 

The neighborhood of the subset S = {T2} is the 
subset augmented with one tree among the 
remaining trees neighborhood S={{T2, T1}, {T2, 
T3}, {T2, T4}}. 

The following algorithm shows the steps to 
perform a forward selection: 
 
Algorithm SFS ; 

Input: 

F: Ensemble of classifiers F={tt, t=1…T}, fE : 

Evaluation function, Evaluation set: E={(xi,yi), 

i=1…n} of training examples with their classes; 

Output: 

S: sub ensemble of F; 

Begin 

S:=Ф; 

While Sub ≠ F do 

tt:= argmaxfE(S,t,E); 

� ∈ � � �; 

� ≔ � ∪ ��	
; 

End While; 

End. 

 
 
2.3 Sequential Backward Elimination 
A Sequential Backward Elimination (SBE) path has 
the same properties as a SBS one (search is done 
locally) but first operates by initializing the search 
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ensemble by all the trees in the ensemble (Fig. 2). 
Then, the algorithm iteratively eliminates trees that 
negatively affect the ensemble (i.e., decrease the 
evaluation function value). As with SFS, the 
process stops when there is no improvement in the 
evaluation function 

 
Fig. 2: SBE path for an ensemble composed of 4 

trees 
 
Algorithm SBE ; 

Input: 

 F: Ensemble of classifiers F={tt, t=1…T}, fE : 

Evaluation function, Evaluation set: E={(xi,yi), 

i=1…n} of training examples with their classes; 

Output: 

S: sub ensemble of F; 

Begin 

S:=F; 

While Sub ≠ Ф do 

tt:= argmaxfE(S,t,E); 

� ∈ � 

� ≔ � � ��	
; 

End While; 

End. 

 
 

3 Related Work 
Several decision tree ensemble methods have 
emerged. They have been successfully applied 
to various applications. Early work addressing 
issues related to the synthesis results of 
multiple trees [7] [8] shows that a large 
improvement in accuracy can be achieved by 
using the same training sample to generate a 
combination of binary decision trees 
(generated by selection criteria for different 
variables) and combining them using the 
Dempster and Shafer model [9] [10]. The 
approach is applied in the field of character 
recognition. 

The random draw of variables to cut a node had 
been used by [1] in image recognition problems for 
random feature selection or random trees. They 
introduce a disturbance in the choices of the 
internal partitions, by preselecting randomly at each 
node, a subset of variables to choose the optimal 
partition. 

Based on the work presented in [11], Breiman 
[1] introduces Random Forest (RF). Since their 
appearance, forests have been used in a wide 
variety of fields of application, particularly in the 
medical field.  

The number of trees in the forest is increased 
without over-learning risk [1]. Trees are added 
arbitrarily to the forest; so there is no guarantee that 
all the trees will cooperate well. In addition, a large 
number of trees results in increased learning time, 
storage resources, and prediction time required for 
querying all the forest trees. Forest pruning is 
important for two reasons: 1) efficiency: reduced 
response time and storage resources; and 2) great 
performance in prediction. 

The pruning methods of random forests can be 
classified into two categories: static and dynamic. 
Static methods generate a fix number of trees then 
select the ones that will be part of the random 
forest, while dynamic methods generate trees that 
will be directly included in the forest using a 
certain criterion. 

For the static approach, Latinne [12] proposes to 
use a direct and non-parametric comparison test. 
The McNemar test [13] allows deciding whether to 
include a tree in an ensemble or not. The process 
systematically determines a minimum number of 
models to combine for a given database. Knowing 
the minimum size of the classifier ensemble that 
gives the best accuracy allows saving time and 
storage space especially for large data sizes and 
real-time applications. 

In order to reduce the number of trees in the 
forest while maintaining its precision, Bernard and 
his colleagues [5] proposed methods of tree 
selection after the construction of the forest. The 
authors show that better subsets of decision trees 
can be obtained by using the sub-optimal methods 
of selecting SFS (Sequential Forward Selection) 
and SBS (Sequential Backward Selection) 
classifiers where adding or removing models is 
based on the performance measure. 

In [14] the authors introduce a pruning 
algorithm based on margin optimization that can 
reduce the size and increase the performance of a 
random forest ensemble. The proposed algorithm 
takes into account the distribution of the forest 
margin on the learning ensemble. To this end, four 
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different metrics based on the margin distribution 
are used to evaluate the generalization capacity of 
subsets and the importance of individual classifiers. 
Once the forest is built, the trees are ordered 
according to the margin metrics. Finally, ensembles 
with decreasing sizes are constructed by recursively 
removing the least important trees one at a time. 

In [15] the authors propose to prune a random 
forest (RF) for limited sources prediction. Initially 
an RF random forest is constructed then pruned to 
optimize the cost and accuracy of the expected 
features. The forest pruning program encompasses 
linear constraints that favor the reuse of features. 
The total uni-modularity of the constraints is set to 
prove that the corresponding LP relaxation solves 
the original whole program. Connections to 
combinatorial optimization are finally exploited 
and an efficient primal-dual algorithm adaptable to 
large scale data is developed.  

In [16] the authors use statistical analyzes of 
basic classifiers to ensemble pruning without 
compromising the classification accuracy. Learning 
the statistics of the entire forest in addition to the 
information available in the dataset can reveal the 
optimal thresholds that should be used to prune an 
ensemble model. 

In [17] the authors propose an ensemble 
selection technique that provides a small size and a 
great accuracy. They use a genetic algorithm for 
which the initial population is composed of 
individual trees with high performance to improve 
the result of the algorithm. 

In [18] the authors propose a new forest 
simplification strategy by assessing the importance 
of tree branches against the complete ensemble. 
This importance is evaluated considering the 
ensemble performance as well as the diversity of 
the elements composing the whole. The proposed 
metric is used to evaluate how well the ensemble 
accuracy can be improved when a branch is pruned. 

For the dynamic approach, which consists in 
generating trees gradually satisfying a certain 
criterion, several works have also been proposed, 
namely in [19] which proposes the development of 
a method which automatically determines the 
number of trees to include in a forest during the 
generation process. The method is based on the use 
of an online adjustment procedure and is evaluated 
using conventional random forests and its variants 
as ensemble methods. Initially the ensemble 
contains ten trees. At each iteration, a new tree is 
added and tested if it allows a better fit. To select 
the best fit, eight polynomials are used. The end of 
the iterative process is based on predefined 
thresholds for the adjusted value and accuracy. 

In [20] the authors propose to add trees 
independently. A tree is added based on the 
evaluation of the current sub-forest using adaptive 
approach. A tree is initially generated, then, to 
generate the next tree, the weights of the 
individuals of the learning sample are modified. 
These weights are incremented for misclassified 
instances and decremented for those that are well 
ranked. The trees generated are thus dependent on 
each other. 

In [21] the authors develop three heuristics to 
improve learning by random forest. The first is to 
use disjointed data partitions to learn basic trees, 
then to reduce the depth of trees without using 
repetitive variables, and finally to select reduced 
subsets of attributes for cutting at each node of each 
tree. 
 
 

4 The Measure for Random Forest 

Pruning 
We propose a static method of random forest 
pruning which consists in generating the whole 
forest in what we call “an overproduce phase”. 
Then we will eliminate trees that negatively 
influence performance (Fig. 3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Generating steps of an ensemble from 
an initial random forest 
 

The forest ensemble is generated. A first 
ensemble containing a single tree chosen randomly 
is created. A diversity-based evaluation function is 
calculated: if its value is improved, we continue to 
add trees in the ensemble otherwise we stop and 
choose the current ensemble. 

The key idea in this approach is to generate 
only trees that have maximum diversity (they 
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are less correlated with each other). This is 
based on the principle that the error of 
generalization of the random forest reduces 
wile diversity increases among the trees. 

Let ΩV be a sample of individuals with their 
labels (classes), |ΩV|=n, ΩV={v1,…,vn}, and 
ΩV={v1,…,vn}. Each individual vj is described by m 
variables denoted x1j, ...,xmj. Let Ci be a classifier 
belonging to the classifiers ensemble 
{C1,…,Ci,…,CT} represented by a n-dimensional 
binary vector yi=(y1i,...,yni)

T such that yji=1if the 
classifier Ci recognize the individual vj and 0 
otherwise. The entropy function fE measures the 
diversity within an ensemble (forest) [22]. Given an 
individual �� ∈ Ω� , if half of the classifiers T/2 

doesn’t misclassify xj then the other half T-T/2 
misclassifies it necessarily and vice versa. In this 
case, we speak of maximum diversity. 

We note nc(xj) the number of classifiers of T 

which correctly classify xj, ������ = ∑ ������� . The 

entropy measure fE is written as: 

�� = 1
� � 1

� � �
2

 

���
min �������, � � ������
 

�� ∈ [0,1] where 1 indicates a very large diversity 
and 0 a lack of diversity. Thus, the goal is to 
maximize the fE function 
 
 

5 Experiments and results 
In this section, we describe information about the 
datasets used to carry out our experiments. We test 
9 benchmarks of UCI Repository [4][23] presented 
in Table 1. The value of the parameter k is fixed to 

√* [24] (m represents the number of descriptors). 
 
Table1: Datasets description and the used values of 

the parameter k 

 
The datasets are split into two samples: a sample 

for learning and pruning denoted ΩL (80% of the 

initial sample size), and a test sample to compute 
the performance in generalization or the rate of 
success (20% remaining). 

An initial set of 300 trees is generated first 
composing the Random Forest (RF). The pruning 
methods are then applied to RF ensemble in order 
to eliminate irrelevant trees based on the fE 
function. 

The comparison is made between the proposed 
methods SFSfE, SBEfE, the SFSP and SBEP methods, 
based on performance, proposed in [5] and the 
initial RF against two criteria: success rate in 
generalization using the test sample ΩT and the 
ensembles size obtained after pruning. 
 

Table 2: Success Rates of ensembles obtained by 
SFSfE, SBEfE, SFSP, SBEP and RF for all the 

datasets 

 
From Table 2, we note that the pruning methods 

SFSfE, SBEfE, SFSP, and SBEP have better accuracy 
performance compared to the RF forest by 
improving it with 3.02%, 2.87%, 2.85%, and 2.15% 
respectively. SFSfE is better than all other methods 
in 5 cases with a minimum improvement of 0.05% 
and a maximum improvement of 5.26%. SFSp is 
the best in 4 cases with a minimum improvement of 
0.02% and a maximum improvement of 5.35%. 
Over all the 9 datasets, SFSfE comes in first place 
with an average success rate of 0.499, SBEfE in 
second position with 0.9484 followed by SFSp and 
SBEp with average rates of 0.9412 and 0.9196 
respectively. 

The results of the comparative study based on 
the ensembles size obtained by the four pruning 
methods are given in Table 3: 
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Table 3: Ensembles sizes obtained by SFSfE, SBEfE, 
SFSP and SBEP for all datasets 

 
Of the 9 data sets, SBEfE and SBEp reduce the 

size of the forest significantly compared to SFSfE 
and SFSp. SBEfE gives better size reductions of the 
ensembles obtained in 5 out of 9 cases with a 
maximum reduction of 294 trees for Segment and a 
minimum of 246 trees for townorm. SBep is in 
second position with 4 cases with a maximum 
reduction of 291 trees for Vehicle and a minimum 
of 230 trees for Letter. Finally, compared to the 
initial forest RF over 9 data sets, the four methods 
reduce the ensembles size obtained in all the 
datasets with average reductions of 88.52%, 
87.89%, 83.75%, and 82.41% for SBEfE, SBEp , 
SFSfE, and SFSp respectively. 

To better analyze the data, we use the 
comparison approach proposed by [25] which 
consists to assign a rank to each compared method. 
We make 4 comparisons based on the rank of each 
method for each dataset. The comparative studies 
will focus on the change impact of the evaluation 
measure for a given path (Table 4 and Table 5) and 
that of the path method (Table 6 and Table 7). 
 

Table 4: Ranking SFSfE and SFSP 

 

Table 5: Ranking SBEfE and SBEP 

 
Comparing the diversity and performance 

measures, we find that: 
- with SFS path (Table 4), SFSfE is better 

than SFSp un relation to the success rate 
(or size of the generated subsets) with an 
average rank of 1.44 ( resp., 1.11), i.e. a 
difference of 1.56 (resp.0.67); 

- with SBE (Table 5), SBEfE is better than 
SBEp in relation to success rate with an 
average rank of 1.33 against 1.44, i.e. a 
difference of 0.11, and jn relation to the 
generated ensembles size with a mean rank 
of 1.44 against 1.56, i.e. a difference of 
0.12. 

The use of a diversity-based measure allows 
obtaining smaller ensembles with better 
performance compared to a performance-based 
measure. 
 

Table 6: Ranking SFSfE and SBEfE 
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Table 7: Ranking SFSP and SBEP 

 
Comparing path strategies, we find that: 
- with diversity measure (Table 6), SFS 

method allows obtaining ensembles with 
better performances compared to SBE with 
an average rank of 1 against 1.89, i.e. a 
difference of 0.89. In contrast, SBE obtains 
smaller size ensembles with an average 
rank of 1 (the smallest average rank). 

- With performance-based measure (Table 
7), SFS has better success rate than SBE 
with a difference of 0.78 and SBE better 
obtained ensembles size compared to SFS. 

Both SFS and SBE methods allow suboptimal 
searches and reduce the ensembles size but SFS the 
ensembles obtained with SFS path have smaller 
sizes and are more efficient than SBE. The time 
complexity of the SFS and SBE methods to cross 
the ensembles space is O (t2g (T, N)): g (T, N) 
corresponds to the evaluation function complexity, 
T is the ensemble or forest size, N is the sample 
size used for pruning and t is the set of trees added 
or removed during the selection process. 

 
 

6 Conclusion  
To be efficient a forest must be composed of trees 
very different from each other. (Breiman, 2001) 
introduced the correlation between two trees and 
showed that reducing this correlation involves 
prediction error reducing. He had also introduced 
the power of a tree (a quality measure of an 
individual tree) and showed that prediction error 
decreases as this power increases. 

The increase of the number of trees composing 
the forest decreases the variability of the global 
predictor; which involves performance degradation. 
Forest pruning methods have been proposed to 
address this problem. 

In this paper, we used a diversity measure to 
simplify a random forest ensemble. The 
measurement employs two search strategies: SFS 

path (Sequential Forward Selection) and SBE path 
(Sequential Backward Elimination). The method is 
compared with that proposed by Bernard and his 
colleagues [5] which is based on the performance 
and uses the two types of paths. These search 
strategies are compared to show which one 
explores better the search space. 

The experimental results show the measure 
effectiveness to search ensembles of reduced size 
and performances equal or sometimes exceeding 
those of the initial forest ensemble as well as the 
methods proposed in [5] using accuracy as 
measurement.  

Diversity allows obtaining reduced sizes and 
more efficient ensembles compared to the method 
using performance. Regarding the path strategies, 
SFS allows obtaining less reduced sizes and more 
powerful ensembles compared to SBE. 

In future work, in order to improve the 
performances, we propose to search optimal 
ensembles of trees using for example optimal 
methods such as Branch and Bound method [26] or 
near optimal methods such as Genetic Algorithms. 
We will also apply the measure (based on diversity 
and accuracy simultaneously) in bagging ensembles 
[27][28] for forest pruning. Finally, we plan to 
experiment our approach in the field of digestive 
diseases detection. 
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