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Abstract: - This work provides some basic concepts how to represent basic or elementary Petri nets by building 
on previous work presented in [11],[12]. Here the three main types of matrices used for Petri net representation 
are the input, output and incidence matrices. These are defined and explained. Some toy examples are used as 
proof of concept. The main raison d’être for this paper is to show that matrices are suitable to provide 
alternative description of Petri nets from the traditional graphical approach that is normally used. It is clearly 
indicated that several properties can be inferred or derived from simple examination of these matrices. A few 
definitions and examples are used.  
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1 Introduction  
The existence of Petri nets in the past three decades 
has given rise to many major works and 
representation of these nets. Several variants on 
Petri nets have been created. These range from 
algebraic nets to more complex object oriented Petri 
nets and colored Petri nets.  

Ordinary Petri nets are a reduced form of colored 
Petri nets. These are the initial starting point for 
Petri net  theory and applications.  

Petri nets as described in [1]-[4] are graphical 
and mathematical formalisms sharing a dual 
identity. They have several properties. Petri nets are 
have been used for modelling concurrency in 
asynchronous, distributed, parallel, deterministic 
and other configurations. Petri nets are very useful 
for modelling and representing discrete interactive 
and concurrent behaviour. Their application can be 
extended to many modern systems that use several 
connectivity and configurable architectures. 

Petri nets represented graphically can be 
classified as bi-partite digraphs. In simplified terms 
the topographical structure of Petri nets is that these 
are composed of structured nodes and directed 
edges. If a Petri net is drawn several graphical 
layouts can be used to present the structure. 

Even though Petri nets look visually similar to 
other diagrammatic notations like UML 2 activity 
diagrams and flowcharts, they are intrinsically 
different. 

 There exists some form of equivalence between 
Petri nets and other graphical notational structures. 

There is a lack of knowledge how to combine Petri 
nets with certain formalisms and structures but a lot 
of research has been carried out in this area. There is 
a possible challenge how to find a common basis for 
this issue. Combining other structures and notations 
could be quite useful for creating other methods or 
approaches for software and system modelling 
especially in the near future as systems become 
more hybrid and complex [13]-[14]. 

A fundamental feature of Petri nets is that the 
structure of the net remains unaltered when the net 
is executed. It is only the token count in the various 
places of the net that changes [6]-[10]. Thus the 
structure of the Petri net does not depend on the 
marking of the net.  

Petri nets can be represented using equations, 
state equations or formal notations. Another 
possible way of representing Petri nets is using 
matrices. The matrices can be used to construct 
more concise forms of Petri nets. Well-formed and 
well behaved basic Petri nets are easily 
representable using matrices. The basic Petri net 
analysis methods and techniques rely on the 
principle that the Petri net has a given solution and 
is restricted, i.e. it has a limited state space. 

The properties are normally derived from the 
transition or place invariants that can cover parts or 
all of the net. Boundedness, safeness, liveness, 
reversibility, home states, coverability, reachability 
are main properties that allow for simple 
verification. These properties are related to Petri net 
execution and structure. These properties can be 
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obtained from the incidence matrix in conjunction 
with the marking vector and other values.  

Matrices are useful for representing the static 
structure of ordinary Petri nets. But the execution of 
the net requires some additional representation. 
Matrices are useful to represent that part of Petri 
nets that does not require changes. If higher order 
net structures are used then the properties pertaining 
to the higher order net cannot be represented using 
matrices, it is only the structural outline that is 
easily depicted. 

The most common matrices that are usable for 
Petri net representation are the incidence matrix and 
input and output matrices. The input and output 
matrices can depict certain details that are not 
visible in the incidence matrix. Matrix 
representation can be extended to depict the 
marking graph and executional cycles. 

The input flow, output flow matrices and the  
incidence matrix have special properties that can be 
used for different forms of analysis. 

Even simple examination of these matrices can 
yield surprisingly useful information about the 
structural properties of the net. 
 
 
2 Motivation 
Petri nets are very interesting graphical and 
mathematical formalisms [17].  A lot of literature 
has been written about their formalisation and 
representation using complex notations. Sometimes 
the most fundamental principles are overlooked. 
From the static representation of the net structure, 
the behaviour and other underlying properties of the 
net can be inferred. Ordinary Petri nets can offer 
non-trivial modelling solutions for diverse problem 
classes. Unfortunately the more complex the system 
the more difficult it becomes to predict its dynamic 
behaviour [15]-[16]. However, there are still some 
basic properties of the Petri net are valid for 
analysis.  

The main reason for this work is to explain the 
importance of Petri net representation using 
matrices. This key property of Petri nets is very 
often ignored or underrated.  

Matrices have interesting mathematical 
properties that can be used for further analysis. 
Matrices can be used to find alternative 
combinations and configurations. The matrices can 
be used to prove that two nets are similar or 
dissimilar. The one property of a Petri net that is 
simple to construct include the inflow and outflow 
matrices of the net. The principle of the incidence 

matrix which is derived from the input and output 
matrices is analogous to the construction of 
adjacency matrices for directed graphs.  

The matrices for Petri nets can be constructed for 
very large nets. Obviously the matrices allow for 
simpler and more compacted representation. 

 Certain fundamental properties can be 
intuitionally inferred just at a glance. Many complex 
structures can be reduced to a simpler form. This is 
an important point. 
 
 
3 A Few Fundamental Definitions and 
Properties 
The basic definitions and properties presented are 
derived from Petri net theory and previous work 
presented in [11] and [12]. 
 
 
3.1 Definition of an Ordinary Petri Net 
An ordinary Petri net is defined as bi-partite 
digraph, with two vertice types.  A Petri net is a four 
tuple set, PN = (P,T,F,W).  P is a finite non empty 
set of places P= {p1,p2,p3,…,pn}. T is a finite non 
empty net of transitions T= {t1,t2,t3,…,tn}. F is a 
finite non empty set of flows from a place to a 
transition and vice-versa, given as 

)(){( TxPPxTF ∪⊆ . Normally (PxT) represents 
the input arcs also denoted as I and (TxP) represent 
the output arcs denoted as O.  
 W is a weight function or marking value for the 

tokens at a place p, given as  },...,3,2,1{: nPW → . 
Places and transitions are disjoint i.e. φ=∪TP   and 

φ=∪ PT . Nodes are not isolated. The Petri net can 
have an initial marking or have no marking at all. 
The initial marking is normally given as Mo. The 
arc weights must have a value of 1. I.e. they can 
remove or place exactly 1 token. 
 
 
3.2 Differences between Ordinary and Non-
Ordinary Nets 
A Petri net is ordinary iff, 

 and . This 
implies that all arcs weights are defined as having a 
multiplicity or value of 1. This fundamental 
property is directly observable from the input flow 
matrix and the output flow matrix. If the arc values 
are one, then the elements in the matrices will be  
only 1 or 0. If there are no entries > 1 in both 
matrices then the Petri net is ordinary. If

 or . If there is 

1),(,, ≤∈∈∀ tpITtPp 1),( ≤tpO

1),(;)( >∃ ∈ tpIPp 1),(;)( >∃ ∈ tpOPp
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an entry or value > 1 then it is defined as a non-
ordinary net.  Again this property is observable from 
the matrices. I.e. if there exists an element value > 1 
then the net is non-ordinary.  
 
 
3.3 Properties of Nodes 
A node in an ordinary Petri net refers to either a 
place or a transition, y is a node iff y . The 
input set or pre set of a transition t implies the set of 
all input places to t. This can be written as 

. The output set or 
post set of t is the set of all output places from t. 
This can be written as 

. An elementary 
path in the Petri net is identified as a sequence of 

nodes: ; where n  

and  arc( ) for i  if n>1 and 

. This implies that i=j where  
possibly defining a self-loop, elementary loop or a 
circuit. 
The nodes of Petri nets are of two types only. Either 
i) place or ii) transition type. This restricts the 
structure of the net. 
 
 
3.4 Petri Execution via Vector and Matrix 
Equations 
Transition firing can be simply represented and 
simulated in the ordinary Petri net as M1 = M0 + Cf . 
M0 is the initial marking vector and f is the firing 
vector, i.e. which transition is to fire. M1 is the  new 
resultant marking.  The initial marking vector  M0   
represents the initial state of the net. C is the 
incidence matrix. This shows how the state equation 
of the Petri net is also based on matrices. The result 
of transition firing has no effect on C it is only the 
marking vector that is updated.  
 
 
3.5 Input, Output and Incidence Matrices 
A simple way to represent the structure of Petri nets 
using mathematical notations is to use input/output 
matrices. 

Unless the physical structure of the Petri net is 
altered these matrices should remain fixed or 
unchanged. Structural information of the net is 
captured or encoded in the input and output 
matrices. The input matrices captures all the place 
inputs to all the transitions whilst the output 

matrices captures all the outputs from the transitions 
to places. 

The incidence matrix can be constructed from 
the input and output matrices. The input /output 
matrices are constructible for almost every type of 
net independently whether it is live or not. I.e. the 
tokens are not considered at all. Firing the net has 
no effect on the incidence matrix.  

The incidence matrix contains important 
structural information about a Petri net, i.e. the 
connections from places to transitions and vice-
versa, along with all the number of transitions are 
represented in the incidence matrix. 

The incidence matrix can be created for a Petri 
net independently if the net is live or not or if there 
are other issues. 

The incidence matrix could contain less 
information than the input and output matrices for 
the simple reason that some entries could cancel 
each other out resulting in a final value of zero. 
 
 
3.6 Definitions of Input, Output and 
Incidence Matrices 

The Iij matrix is a matrix that contains the 
complete set of input flows from places to 

transitions. It can be given as . 
The values are non-negative.  

The Oij matrix is the complete set of output flows 

from transitions to places. I.e. . 
Again these values are non-negative.  

The incidence matrix Cij also denoted simply as 
C is composed of the difference between the output 
flow matrix Oij and the input flow matrix Ii..  
Therefore the incidence matrix is given as Cij = Oij – 
Iij. The incidence matrix representation can also be 

written as , where if 

 else it is zero and  if 
else it is zero and W(i,j)= weight of an arc from 

 or . Simply  represents the output 

of transitions to places and  represents the input 
of places to transitions. The incidence matrix may 
contain negative values unlike the input and output 
matrices.  

To have the complete picture of the Petri net, the 
input flow matrix and the output flow matrix have to 
be jointly examined. This is because in the final 
incidence matrix Cij it is possible to end up with 
flows that cancel each other out. E.g. if input and 
output flows  cancel each other out, then in the 

TP ∪∈

}0),(:{ ≠∩∈=• tpIPppt

}0),(:{ ≠∩∈=• ptOPppt

naaa ,.......,, 21 1≥

∃ 1, +ii aa 1−∈ nN ji aa =

},...,2,1{ nNn =

)),(:{ Ftptp ∈=•

)),(:{ Fpttp ∈=•

−+ −= ijijij CCC ),( jiWCij =
+

ij Pt •∈ ),( jiWCij =
− •∈ ij Pt

ji → ij → +
ijC
−
ijC
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incidence matrix there would be a zero value that 
would not indicate anything of use. 

The address of the element in the matrix are 
determined by the values i,j. where i represents the 
row number, i.e. the place row and j represents the 
column, i.e. the transition column. 

The idea of the input, output and incidence 
matrix is given below.  In this example the actual 
values for the arc weights have been substituted by 
letter values. 

 
0 0 0

0 0 0
0 0 0
0 0 0

a
c

I
e

g

 
 
 =
 
 
 

 

0 0 0
0 0 0

0 0 0
0 0 0

h
b

O
d

f

 
 
 =
 
 
 

 

 
 

C O I= −          

0 0
0 0

0 0
0 0

a h
b c

C
d e

f g

− 
 − =
 −
 − 

 

 
 
4 Problem Statement 
The problem that this work deals with is the concept 
or idea that matrices can be used to represent 
ordinary Petri nets. Additionally several properties 
related to structure and behavior can be simply 
inferred. The matrices allow for a different and 
more compact form of representation.  

 
 
 

5 Problem Solutions and Additional 
Definitions 

 
 

5.1 Dimensions of Matrices and Petri Net 
Size 
The matrix dimensions represent the size of the Petri 
net and vice-versa. E.g. a Petri net having 20 places 
and 24 transitions would be represented via a 20x24 
matrices irrespectively of the connections in the net 
structure (the input and output arcs do not in any 
way affect the size of the matrix). Similar properties 
related to the matrix dimensions hold for the input 
and output matrices. 

The dimensions of the matrices can be used to 
compare the properties of two or more Petri nets. 

E.g. if the dimensions of the incidence matrices for 
two Petri nets are 10x20 and 10x7. This implies that 
both Petri nets have the same number of places only. 
If there are two incidence matrices 7x10 and 5x10 
this implies that both Petri nets have 10 transitions 
and varying amount of places.  

 

t1 t2

p1
a b

c

d

e

f
p2 p3

 Fig. 1. A basic Petri net. 
 

5.2 Ordinary Petri Net Example and its 
Matrices 

The corresponding incidence matrix for fig. 1 is 
given below: 

 

 
 

If the arc weights have a value of one the 3x2 
incidence matrix depicted below is constructed.  

 

 
 
  It is evident that (f-e) cancel each other out so 

the input and output matrices can carry more 
structural information about the net than the 
incidence matrix.  This example is just a simple toy 
example. The missing information can become more 
pronounced given nets of larger dimensions. 

 

 
 
Fig. 2. A Petri Net with Square input, output and 
Incidence matrices. 
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5.3 The Special Case of Square Matrices 
This is a special case of the incidence matrix or 
input/ output matrix. This is only possible when the 
number of places and the number of transitions of 
the Petri net are equal. For this to be possible the 
Petri net must be constructed keeping these 
principles in mind. However there are instances 
where these properties could result automatically. 
 
 
5.4 Incidence Matrix Parallel Rows 
The parallel rows of the incidence matrix show that 
places are parallel to each other.  

These features or attributes are not necessary 
directly visible from the net itself as the drawing of 
the net might not be so clear due to issues with the 
layout. Having parallel places implies that there 
could be parallel states occurring during the 
execution or static state of the net. 

 
 
5.5 Incidence Matrix Parallel Columns 

The parallel columns of the incidence matrix also 
indicate that the transitions occur in parallel. 

 
 

5.6 Concurrent Transitions 
From the incidence matrix of a Petri net that is 
properly labelled, it is possible to deduce if 
transitions could occur concurrently. Note that this 
just indicates the possibility of this taking place. It 
does not imply the actual behaviour which is non 
deterministic.  

 
 

5.7 Different Petri Nets having Identical 
Dimensions 
Definition 1:  If two Petri nets have incidence 
matrices with identical dimensions it follows by 
definition that the Petri nets must have an identical 
number of places and an identical number of 
transitions. The number of connections can differ. 
The sum of these two incidence matrices is possible. 
This implies that if two Petri nets have incidence 
matrices with identical dimensions it is possible to 
add these incidence matrices together. A better way 
would be to sum the input and output matrices for 
both nets and create new ones and then derive the 
incidence matrices. The result of adding these 
matrices together is the creation of new nets. I.e. the 
different nets are combined into one. E.g. if we have 
A1 and A2 and the orders for A1,A2 are identical 
Mo= M1 then A1 can be added to A2 or vice-versa. 
 

Definition 2: From definition 1, it holds that if two 
nets are identical their arcs can be summed together. 
Converting this net into the incidence matrix should 
yield the same value as summing the incidence 
matrices of the individual identical nets.  

 
 

5.8 Difference of Incidence Matrices of Petri 
Nets having the Same Number of Places and 
Transitions 
This is possible but the result could be a net with 
dangling nodes. I.e. it is possible to have a result of 
unconnected nodes.  The definitions for doing this 
can be based on the definitions previously given 
which obviously need amendment. 
 
 
5.9 Petri nets having a Non Identical 
Number of Transitions and Places 
Given a Petri net where the no. of places≠  no. of 
transitions. I.e. the number of transitions and places 
is not equal, then there cannot be an incidence 
matrix that is square. Hence there cannot be a 
symmetric matrix.  

 
 

5.10  Square Incidence Matrices Definition 
Deduction: If there exists a Petri net having the 
same amount of places and transitions. i.e. no. of 
places = no. of transitions and properly labelled in 
sequence, the incidence matrix will be a square 
matrix that is possibly symmetric. Where 

TA A= . 
An example of a Petri net square matrix is shown in 
fig. 2. 

 
5.11 Decomposing the Matrices into Row and 
Column Vectors 
The incidence matrix of the Petri net can be easily 
decomposed or separated into column and row 
vectors. This is easier to do if there are several 
unconnected subnets. This is explained in [11] and 
[12]. 

 
 

6 Some Toy Examples and Results 
For the following examples it has been assumed that 
the matrices are created from respective Petri nets 
and the row and columns follow ordered labelling. 
Rows represent places (p1,p2,...,pn) whilst columns 
represent transitions (t1,t2,...tn). It is assumed that 
the labelling of the places and transitions is properly 
ordered and sequential for the examples given 
below. I.e. P1,P2,…,Pn and T1,T2,…,Tn.  

WSEAS TRANSACTIONS on COMPUTERS Anthony Spiteri Staines

E-ISSN: 2224-2872 15 Volume 18, 2019



 
 
6.1  Row and Column Vectors 

The following square incidence 
matrix implies that row vector       
[-1 0 0] has a place P1 
represented by this vector. There 
is an input transition t1 but no 

outputs are visible.  i.e. there are no transitions that 
output to place P1. For P2 the row vector is [1 1 -1]. 
This implies that place P2 acts as an input to 
transition T3 and this would be via an input arc 
having a weight value of 1 that connects P2 and T3. 
Place P2 receives output from T1 and T2. This is 
indicated by the vector.  

 
A column vector  implies that transition t1 
has an input place p1 and an output place 
p2.  The column vector depicts a similar 
analogy to the row vector. Similar properties 

can be inferred.  
The row vector can be defined and called a place 

vector and the column vector can be defined and 
called a transition vector. 

 
 
6.2  Concurrency and Parallelism 

The following 3x3 square 
incidence matrix implies that 
out of three transitions two are 
parallel or concurrent.  The 
following matrix implies that 

three transitions are parallel or concurrent.  
 

This incidence matrix implies that 
place p1 has one input and one 
output. These could occur in 
parallel or concurrently.  Place p2 
has two outputs that must occur 

in parallel.  
 

Implies that e.g. t1 outputs to 
places p2/p3 concurrently for 
sure. 

 
 

Implies that t1 gets or awaits for 
input from p1 and p2 
concurrently 
 
 

 
 

6.3  Conflict and Choice 

If a row vector ni  of the incidence 
matrix   has > 1 negative values 
then it implies that a place 

represented by the row connects to more than one 
transition. So to explain in simpler terms a place is 
shared between two or more transitions. Thus there 
is the possibility for conflict or choice arising. 

Many of the findings can be simply inferred just 
by examining the row and column vectors as 
described here. 
 

p1

t1

p2

t2 t3

p3
b

c

d f

ea

pn

tn

n1

n2

 Fig. 3. Separate Petri nets with a Repeated Pattern 
and Similar Dimensions 

 
6.4  Direct Sum of Square Subnet Matrices 
for Identical Dimensions   
Considering fig. 3. There is a repeated pattern. 
There is the possibility of having several subnets 
each having a separate square incidence matrix. The 
incidence matrix for this pattern is given below. 

 
( ) 0 0 0 0 ..

0 ( ) 0 0 0 ..
0 0 ( ) 0 0 ..
0 0 0 .. 0 ..
0 0 0 0 .. ..
.. .. .. .. .. ( 2 1)

b a
d c

f e
C

n n

− 
 − 
 −

=  
 
 
 

− 
 

In this particular example if the weight values of 
the input arcs and output arcs are identical the result 
of the incidence matrix would be a zero matrix.  

There is also the possibility of having an identity 
matrix.  

If there are nets that are unconnected or broken 
down into sub-components, and if the number of 
places and the number of transitions for the net are 
equal, i.e. the nets incidence matrices can be 
represented using  square matrices A1 , A2 ,……, An 

of order m1 ,m2,……., mn where m1 = m2 =,….,= mn. 

It is possible to create a generalized ordered matrix 
A through the direct sum of A1 , A2 ,……, An.  The 
values A1 , A2 ,……, An  are the diagonal values in 
A.  This can only be done if nets A1 , A2 ,……, An 
are completely unconnected. 
 
 
6.5  Incidence Matrices with Fractions 

















−
−

−

010
111

001















−

0
1
1

1 1 1
1 1 1
1 1 1

− 
 − 
 − 

















−
−

−

010
111

001

















−
−

−

100
111
011

















−
−

−−

111
101
011









−−

−−
111
111
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The fractional Petri net in fig. 4 probably deviates 
from the definition of ordinary. The Petri net in fig.4 
indicates that the input value is 0.25 or one fourth of 
a token.  The incidence matrix is represented as the 

vector.

1 2
1

− 
 
   

 
1/2 1

p1 p2

t1

 
Fig. 4.  Petri Net with fractional input 

 
7 Discussion 
These Petri net matrices have important uses for 
finding transition and place invariants as is already 
done in general Petri net theory. However several 
other uses for these nets can be identified. E.g. they 
could be used for verification of concurrency and 
reliability issues of the nets. The matrices can be 
considered to be fundamental properties of Petri 
nets and also the counterpart representation of the 
Petri net. Many different definitions related to Petri 
nets are used in literature. E.g. ordinary or non- 
ordinary nets. However such definitions are 
subjective in the sense that they pertain to fixed 
Petri net classes. It is possible to create new 
definitions or find new names for these properties.  

As has been done in previous work [11]-[12] it is 
possible to invert the matrices and find several other 
properties that have not been discussed here.  

In real life scenarios these matrices represent 
patterns of behavior and organization. The matrices 
are a concise and direct way of representing the 
Petri net more formally and mathematically from 
just using a simple drawing.  

The ideas of using vectors and fractional values 
shows that even simple matrices can exhibit several 
types of behavior that are not immediately obvious. 
This work can be extended to different areas of Petri 
net research and can include other types of nets. 

Unfortunately for analysis sake each Petri net has 
to be understood in isolation. Just a simple 
modification of the input or output arcs of the Petri 
net can result in a totally new independent 
configuration which implies that a previous 
condition or result would not necessarily hold true. 
Modifying the basic structure of the net like adding 
new places and transitions will create completely 
different configurations. 

It must be considered that more work had to be 
carried out in this area. The reasons are that only the 
static composition of the net has been represented. 
To fully represent a Petri net the functional part of 

the Petri net needs representation. This work has 
limited itself to represent the static structure only. 
For higher order nets more information has to be 
stored. However if the structure of the nets 
described are modified by adding arc weights > 1, 
the concepts presented here can be easily applied.  
The net in fig. 4 is probably a non-ordinary Petri 
net. It can be represented statically using matrices. 

It must be pointed out that the behavior in Petri 
nets and transition firing even though enabled could 
never happen because even if an event is enabled 
this does not automatically imply that the event 
must occur.  The problem of non-determinism exists 
even in ordinary Petri nets.  

 
 
 

8 Concluding Comments 
This work demonstrates the importance of using 
matrices for Petri net representation and for 
understanding and analyzing important properties. It 
is hoped that in the future more work is done in this 
direction. 

Pictures are the traditional means for 
communicating and explaining this between systems 
and persons. Normally much attention is paid to the 
graphical or pictorial part. Petr nets can be used to 
serve both ends.  
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