
Optimizing the Performance of Text File Compression Using

a Combination of the Burrows-Wheeler Transform (BWT), Move-to-Front

(MTF) and Shannon-Fano Algorithms

YAYUK ANGGRAINI1, TEDDY MANTORO1,2, MEDIA A. AYU2
1Faculty of Science and Technology, Universitas Budi Luhur, Jakarta, Indonesia.

2Faculty of Engineering and Technology, Sampoerna University, Jakarta, Indonesia
1anggrainie@gmail.com, 2{teddy.mantoro, media.ayu}@sampoernauniversity.ac.id

Abstract— Compression in Information Technology is the way to minimize the file size. Performance of compression algorithm is

measured by the speed of process and the compression ratio. The compression time will effect on memory allocation and CPU

performance, while the low compression ratio will weakens the ability of the algorithm to compress the data. Huffman and Shannon-

Fano are two compression algorithms have same ways to work, but both produced a different performance. The test results concluded

that the Shannon-Fano performance has a percentage of 1,56% lower than Huffman. This problem can be solved by adding a

reversible transformation algorithm to the data source. Burrows-Wheeler Transform (BWT) produces output that is more easily to

be processed at a later stage, and Move-to-front (MTF) is an algorithm to transform the data unifying and reduce redundancies. This

study discusses a combination of BWT + MTF + Shannon-Fano algorithm and compare it with other algorithms (Shannon-Fano,

Huffman and LZ77) which were applied on text files. The test results have shown that the combination of BWT + MTF + Shannon-

Fano has the most efficient compression ratio, which is 60.89% higher at around 0.37% compared to LZ77. On compression time

aspect, LZ77 is the slowest, approximately 39391,11 ms, while a combination of BWT + MTF + Shannon-Fano performs at

approximately 1237,95 ms. This study concluded that the combination of BWT + MTF + Shannon-Fano algorithm performs as the
most optimal algorithm in compression time (speed) and compression ratio (size).

Keyword : BWT, MTF, Shannon-Fano, Huffman, LZ77, text files, compression algorithm optimization.

I. INTRODUCTION

Information technology can be considered as a tool to
create, modify, store and disseminate information. These
processes produce files, where the amount of information
affects the size of the file. The larger the size of the file, then
the greater storage space and transmission medium are
required. This can be overcome by the utilization of file
compression. Data compression is the process of converting
an input data stream (stream or the original raw data) into
another data stream (the output, the bitstream or compressed
stream) that has a smaller size [1]. Performance of
compression algorithm is measured by the speed of process
(compression time) and the size (compression ratio). The
speed of process will give an effect on memory allocation and
CPU performance, while the low compression ratio will
weakens the ability of the algorithm to compress the data. In
the case of the selection of unappropriate algorithm, it will
lower the compression ratio and improve the execution time.
Comparative study on a single algorithm, such as Huffman
algorithm being the most efficient compression algorithm [2],

[3], [4], [5] while the Shannon-Fano always afterwards, even
though both have the similar way of compressing, but not
making both produce the same performance.

 One approach to achieve a better compression ratio is to
develop a different compression algorithm [6], analyzing the
process and the result and improve it using any possible idea.
One of the alternative development approaches is by adding
the transformation reversible on the data source, so that
enhance the capabilities of existing algorithms to increase the
compression performance. In this case, the transformation
must be perfectly reversible, which means, it determines to
keep the lossless nature [6] of the chosen method. Burrows-

Wheeler algorithm (BW) is a lossless data compression
scheme and also known as block-sorting which is one of the
textual data transformation algorithm that is best in terms of
speed and compression ratio until today [7]. The
transformation does not process the data entries in the queue,
but rather the process directly one block of text as a unit [8].
This application generated a new form and still contain the
same characters so that the chance of finding the same
character will be increased. The idea is to apply a
transformation that is reversible to a block of text and forming
a new block that contains the same characters, but are easier to
be compressed with a simple compression algorithm [8], as
MTF (Move-to-Front). MTF is a transformation algorithm
which does not perform data compression but may help
reduce redundancies, such as the result of the BWT
transformation [9]. The basic idea of this method is to
maintain the alphabet A of symbols as a list where frequently
occurring symbols are located near the front [1]. The study in
[8], [10], [7], [11], [12] were concluded that the combination
between BWT with MTF was able to increase the
compression ratio with increasing compression time.

This study makes the weakness on the Shannon-Fano and
excess on the MTF and BWT combination as the reason for
the addition of the transformation of the BWT + MTF on
Shannon-Fano coding to improve the compression
performance. To know the efficiency of the transformation
compression process, it needs to compare the performance
between the algorithms Shannon-Fano, Huffman and LZ77
algorithms combinations and BWT + MTF + Shannon-Fano.

WSEAS TRANSACTIONS on COMPUTERS Yayuk Anggraini, Teddy Mantoro, Media A. Ayu

E-ISSN: 2224-2872 227 Volume 17, 2018

II. RELATED WORK

A. Literature Review

1) Compression

Data compression is the science (and art) of

representing information in a compact form [13]. Data

compression is the process of converting an input data

stream (stream or the original raw data) into another data

stream (the output, the bitstream or compressed stream)

that has a smaller size. A stream is either a file or a

buffer in memory [1]. The data, in the context of data
compression, covers all forms of digital information that

can be processed by a computer program. The form of

such information can be broadly classified as text, sound,

pictures and video.

Any compression algorithm will not work unless a

means of decompression is also provided due to the

nature of data compression [13].

Figure 1. Compressor and decompressor.

Based on the behavior of the resulting output and

outcomes, data compression techniques can be divided

into two major categories, namely:

 Lossless Compression

A compression approach is lossless only if it is
possible to exactly reconstruct the original data form

the compression version. There is no loss of any

information during the compression process. Lossless

compression is called reversible compression since the

original data may be recovered perfectly by

decompression [13], so the match is applied on a

database file, text, medicaly image or photo satellite.

Figure 2. Lossless Compression Algorithm[13]

 Lossy Compression

Lossy compression is called irreversible

compression since it is impossible to recover the

original data exactly by decompression [13]. This

compression is applied to the sound files, pictures or

videos.

Figure 3. Lossy compression algorithms[13].

2) Shannon-Fano Algorithm

Widiartha [14] and Josua Marinus Silaen [4] in his

study, presents the coding technique developed by two

people in two different processes, i.e. Cloude Shannon at

Bell Laboratory and R.M. Fano at MIT, but because it

has a resemblance of the working process then finally

this technique is named from the combined of their

name. This algorithm is the basic information theory

algorithm which is simple and easy to implement [2].

The process of encoding can be done by following

the example of string “FARHANNAH”. Then do step 1

and 2, resulting in a Table 1 as below:
Table 1. The frequency of the symbol in descending

Symbol A H N F R

Total 3 2 2 1 1

After that continued with the creation of a table of

codeword Shannon-Fano as below, the steps to make this

table simply by following steps 3 and 4.

Table 2. Codeword Shannon-Fano
Symbol Count step1 step2 step3 code

A 3 0 0

2
H 2 0 1

2

N 2 1 0

2

F 1 1 1 0 3
R 1 1 1 1 3

 The table then generate the Shannon-Fano tree is as

below:

Figure 4. Shannon-Fano Tree

To test the performance of the Shannon-Fanno

needed a table containing the results of the performance

of the Shannon-Fano, i.e. as follows:

Table 3. Shannon-Fano’s performance result

Symbol Count code word # of bits used

A 3 00 6

H 2 01 4

N 2 10 4

F 1 110 3

R 1 111 3

From the table above, note that for the string

"FARHANNAH" can be written in binary code 110 00

111 01 00 10 10 00 01 so when encoded into
hexadecimal numbers the result is C74A1. Where the

total bits needed to write the string "FARHANNAH"

after it is compressed using the formula:

 [2]

 = (3*2)+(2*2)+(2*2)+(1*3)+(1*3)

 = 20
Total bits needed after compression is 20 bits, it is

more significant in comparison with the needs before

compressed, amounting to 72 bits. From the above

WSEAS TRANSACTIONS on COMPUTERS Yayuk Anggraini, Teddy Mantoro, Media A. Ayu

E-ISSN: 2224-2872 228 Volume 17, 2018

calculation, then the resulting compression ratio of

72,22%.

3) Huffman Algorithm

Huffman algorithm was originally introduced by

David Huffnan in 1952, where this method is the most

popular method in the compression of text. Huffman

compression method analyzes in advance against the

input string, then it will be processed in the next

compression. Huffman tree is created in which a binary

tree with optimal replacement code for symbols with a

higher probability of occurrence [15]. This algorithm

resolves the goal by allowing the symbol length varies.
Short code representing a symbol that is often used, and

the longer the symbols used to represent that rarely

appear in the string[16].

The process of encoding can be done by following

the example of the string "FARHANNAH" by making

the following frequency table:

Table 4. Character frequencies

Symbol F A R H N

Total 1 3 1 2 2

The table above will become fundamental in the

creation of a full binary tree. In a study conducted
Yellamma and Challa [2]. They present a different way

of representing the process of encoding by using the

table of possibilities. The following table can be poured

with the different examples:

Table 5. The frequency of the symbol in ascending

 Below is the formation of a Huffman tree is

retrieved from the table above each symbol emergence

prediction:

Figure 5. Huffman tree

 The resulting code from Huffman algorithm can be

calculated the average length per character code. The
following is an example of the calculations:

Table 6. Huffman’s performance result

Char count Probably codeword code # of bits used

F 1 0.111 011 3 3

R 1 0.111 010 3 3

H 2 0.222 00 2 4

N 2 0.222 10 2 4

A 3 0.333 11 2 6

The resulting code from the table above for the

string "FARHANNAH" is the 001 11 010 00 11 10 10 11

00 , so if encoded in numbers hexadesimal becomes

3A39C. Where the total bits needed to write the string

"FARHANNAH" after it is compressed using the

formula:

[2]

 = (1*3)+(1*3)+(2*2)+(2*2)+(3*2)
 = 20

Total bits needed after compression is 20 bits, it is

more significant in comparison with the needs before

compressed, amounting to 72 bits. From the above

calculation, then the resulting compression ratio of

72,22%.

4) LZ77

Lempel-Ziv 77 algorithm (LZ77), also known as

LZ1, published in a paper by Abraham Lempel and

Jacob Ziv in 1977. This algorithm is lossless algorithm

type. LZ77 algorithm is called 'sliding windows', or

running windows. This window is divided into two parts,
the first part is called the history buffer (H), or search the

buffer, containing part of the input characters already

encoded. The second window is the look-ahead buffer

(L), containing most of the input character will be

encoded. Later in its implementation, the history buffer

will have a length of a few thousand bytes, and the

lookahead buffer length is only tens of bytes [1].

Figure 6. Compression windows of LZ77 [13]

Examples of the application of the making of the

token on the LZ77 sequence string

“Data_ini_representasi-
input_dari_pergeseran_input_pertama_kali_dilakukan”.

Suppose the sequence has been made on the process of

compression to a string

“Data_ini_representasi_input_dari_pergeseran”. In other

words, a sequence of strings that are in the history buffer,

the remaining rows will be in the lookahead buffer and

data input. Note in the Figure 7, which is the view from

the window of LZ77 are applied.

Figure 7. Compression windows of LZ77 [15]

From Figure 7, to be exact on lookahead buffer,

there are patterns with a history buffer along the 7

characters, that is a sequence of strings “_input_”. This

requires that the issue of the value of the token of the

specified patterns. Its format will be written like this

(22.7, p) of 22 space be offset value, 7 is the length of the

pattern and p is the character mismatch. Then do shift

window to look like below:

WSEAS TRANSACTIONS on COMPUTERS Yayuk Anggraini, Teddy Mantoro, Media A. Ayu

E-ISSN: 2224-2872 229 Volume 17, 2018

Figure 8. Shifting LZ77’s window compression [15]

 From figure 7 above looks history buffer and the

lookahead buffer shifted along the token pattern found. In

the lookahead buffer filled up again as much space, by

taking the data from the rest of the input. After that the

process of the formation of the token is continued again,

by looking at figure 8 and generate tokens (17, 2, t). After

that do a shift and the formation of the lookahead buffer

until the token contains the end off the file.

5) BWT

Burrows-Wheeler algorithm was introduced in 1994

by Michael Burrows and David Wheeler [8] in a study
entitled "A Block-sorting Lossless Data Compression

Algorithm". Presented in this study is a data compression

algorithm based on a transformation where the bottom

line is the discussion method BWT.

Examples to do encoding in the string

"FARHANNAH", a step of BTW, as in [13], can be

described as follows:

 The rotation (cyclic shift) process on the string S =

"FARHANNAH" as much as N-1 times, so that the

berordo matrix NxN obtained:

N 0 1 2 3 4 5 6 7 8

0 F A R H A N N A H

1 A R H A N N A H F

2 R H A N N A H F A

3 H A N N A H F A R

4 A N N A H F A R H

5 N N A H F A R H A

6 N A H F A R H A N

7 A H F A R H A N N

8 H F A R H A N N A

Figure 9. Matrix of “FARHANNAH”

 Sort the results matrix of the rotation in

lexicographic matrix rows on:

Figure 10. Matrix, the string "FARHANNAH" after

sorted in lexicographi.

 Based on the above image retrieved string L formed

from the last character in each row of the matrix,
and the index I stating the position of the original

string, so that the results of encoding of string S =

"FARHANNAH" stated in (L, I) is (NHFHRANAA,

3).

Figure 11. The results matrix encoding string

"FARHANNAH".

The process of decoding BWT, requires a pair (L, I)

that is used to create the string S along the N character,

the following steps:

 Establish the first character of rotation

These measures form the first column of the matrix

F M, where the formation of matrix F can be done

with a sort of character string L = "NHFHRANAA"
so that the retrieved F = "AAAFHHNNR".

 Reshaping the string S.

This stage contains the step to the re-establishment

of a string S according couple (L, I) =

(NHFHRANAA, 3) and F = string

"AAAFHHNNR". The index I is the key to

reshaping the string S, because the index I as the

first character of the string pointer S.

Figure 12. The process of the formation of string S

based on a string of L, F and index I.
This process produces one vector transformation T

where each element indicates the mapping from

string to string element F L on an ongoing basis.

This is done continuously until the entire element is

successfully mapped, so then this process produces a

string S that rearrange.

6) MTF

MTF is a transformation algorithm which does not

perform data compression but may help reduce

redundancies, such as the result of the BWT

transformation [9]. The basic idea of this method is to

maintain the alphabet A of symbols as a list where

frequently occurring symbols are located near the front
[1].

In the encoding process, the technique used is to

encode a stream of symbols based on code adaptation. A

symbols “s” is encoded as the number of symbol that

precede it in this list. Thus if A =(t,h,e,s,..) and the next

symbol in the input stream to be encoded is “e”, it will
L

I

WSEAS TRANSACTIONS on COMPUTERS Yayuk Anggraini, Teddy Mantoro, Media A. Ayu

E-ISSN: 2224-2872 230 Volume 17, 2018

be encoded as 2, since it is preceded by two symbols.

After symbol “s” is encoded, it is moved to the front of

list A. Thus, after encoding “e’’, the alphabet is modified

to A=(e,t,h,s,..) [1].

To represent annotations, taken the example list

alphabetical order A to be used as a reference in coding,

i.e. A = (A, F, H, N, R) and the input stream is

"FARHANNAH". The following table is an illustration

of the process of encoding takes place.

Table 7. MTF encoding process

String
Symbol

Encode
0 1 2 3 4

FARHANNAH A F H N R

ARHANNAH F A H N R 1

RHANNAH A F H N R 11

HANNAH R A F H N 114

ANNAH H R A F N 1143

NNAH A H R F N 11432

NAH N A H R F 114324

AH N A H R F 1143240

H A N H R F 11432401

 H A N R F 114324012

Based on that table, the result is C=(114324012).

B. Combination of Compression Algorithms

The combination of BWT + Distance Coding (DC) +

Fibonacci Coding was proposed by [7] which implemented

on a text file. The advantages of DC from MTF was its ability

to reduce the length of the input; however the drawback is

that it generates a huge alphabet. Fibonacci very well adapt to

DC for FC is a universal code.

The study on performing testing of the LZW compression

algorithm, Huffman, a Fixed-Length Code (FLC), and

combined FLC + Huffman (HFLC) on the United Kingdom

speaking text file types, from the Calgary Corpus and some
private sources researchers [17]. The result of the LZW

compression algorithm being the most efficient in this study.

The compression techniques was studied and tested based

on dictionary and statistical-based text files [18]. The

statistical based compression technique that were examined,

among others, Arithmetic, Adaptive Huffman, Huffman,

Shnnon-fano. As for the dictionary-based compression

technique, namely: LRE, LZB, LZ77, LZH, LZSS, LZW,

LZFG, LZR, LZC, LZT. The results obtained have the most

efficient level of Arithmetic to statistical compression

techniques, followed by adaptive Huffman, then Huffman,
and Shannon-fano and RLE. The dictionary-based

compression technique, LZB exceed LZ77, LZH, LZSS,

LZR.

The analysis algorithm for transformation of Length-

Preserving Transform Index (LIPT) and its derivatives as

well as Star-New Transform (StarNT) was studied in [6]. All

of the transformations are then combined with Bzip2, Gzip,

PPMD. The result is LIPT + Bzip2 is much faster in

performance time. StarNT works better than LIPT when

applied with the backend compressor.

The application of reversible transformations to the

source file before applying compression algorithms was

studies in [19]. Careful transformation algorithm is

Reinforced Intelegent Dictionary Base Encoding (RIDBE).

Then the proposed algorithm combination i. e. RIDBE +

BWT + MTF + RLE + Arithmetic. The result is a significant

increase in text data compression.

The analysis of benefits/advantages and influence in

lossless compression using BWT transformation algorithm
Intelegent Dictionary Based Encoding (IDBE), Enhance

Intelegent Dictionary Based Encoding (EIDBE) and

Improved Intelegent Dictionary Based Encoding (IIDBE) as a

method of preprocessing in text files obtained from the

Calgary corpus [20]. These combinations were tested with

the following algorithms: PKZIP, BWA, *-enc+ BWA,

IDBE+ BWA, EIDBE + BWA and IIDBE + BWA. The

result is interesting, it significantly increases the compression

of text data. IIDBE indicates an increased of 18,32% more

over BWA and an increases of 8,55% compared to the BWA

+ *-encode, an increase of 2.28% over IDBE + BWA and an
increase about 1% more than IEDBE + BWA.

The compression algorithms of Shannon-Fano, Huffman,

LZW and LRE were also compered on text files as reported

in [2]. The results obtained that the Shannon-Fano

compression was resultingat nearly the same with Huffman

compression which save about 54,7% space.

The method of front-end and back-end in the process of

compression was studied in[21]. The front-end method

proposed to use an algorithm of transformation Star encoding

prior to compression by arithmetic, Huffman, PPM and BWA

on text files from the Calgary Corpus, in English language
patterns, and Spain, France, Germany as well. The results

show that the English language is the language that is most

sensitive to this algorithm which generates the highest

performance of 18% compared to coding arithmetic.

Insensitive language is Spain, as the lowest performance

improvements i.e. 0.21% on combined *-Enc. + PPM

algorithm.

Joint transformation algorithm with compression was

studied in [11]. The proposed algorithm combined the

following: Method1: BWT + RLE + MTF + RLE + Huffman,

Then, the authors develop Method2 = Dictionary + Method1.

Dictionary algorithm used is StarNT. While the comparison
algorithm are BWCA, Dicitionary Method1= Dictionary +

BWCA. The results obtained on average size of compressed

files showed that the method of Dictionary + BWCA had

high results (7.180,3 bytes) than Dictionary + Proposed

method (7453,1 byte) where the original file size of 15.452,3

byte.

The other research conduct a test in detail to the LZ77

algorithm, Huffman, a combination of LZ77 + Huffman and

Deflate on text files with a specific pattern[15]. The result of

this study is that a deflate algorithm which has the best

performance of Huffman, LZ77, LZ77 + Huffman, LZ77

WSEAS TRANSACTIONS on COMPUTERS Yayuk Anggraini, Teddy Mantoro, Media A. Ayu

E-ISSN: 2224-2872 231 Volume 17, 2018

static + dynamic Huffman, deflate compression ratio up to

38.84%.

To get accurate results, this study discusses a combination

of transformation statistical data compression algorithms

which used intensive hardware and software as required.

III. RESEARCH METHODOLOGY

A. Research methods

This study employed an experimental method on

combination of BWT + MTF + Shannon-Fano algorithms.

Then the result from the combined algorithm was compared

to a single compression algorithm, Shannon-Fano, Huffman

and LZ77. Each experiment was done using a text file as the

object file. Several experiments were conducted in the studyI

which ncludes the following:

 Experiment: Input

The parameters used in this study is the size of the file.

The file size is expressed in unit of bytes (consisting of 8

bits), the file types used are files with extension of txt,
doc, and rtf.

 Experiment: Process

In this part, process was done 3 times on each test sample

file for each algorithm, such as the combined algorithm of

BWT + MTF + Shannon-Fano and 3 single compression

algorithms, Shannon-Fano, Huffman and LZ77. This

process includes the encoding process (process text file

compression) and decoding (the process of reversing

compressed files to be back to its original state).

 Experiment: Output.

The output is the end result in a file with the extension in

accordance with the algorithm that is used. On the
implementation of the Shannon-Fano, it will generate the

file with .sf extention, Huffman with .huff extention,

LZ77 with .lz extention and the transformation of BWT +

MTF will generate a file with .bm extension, while the

combined algorithm of BWT + MTF + Shannon-Fano

will produce a file with .bms extension.

B. Data Collection

The data used as a sample in testing this compression

algorithm is a text file that has the extension of doc, txt, and

rtf. This study used 10-sample ASCII text files, 5 files are of

the Calgary Corpus, namely: bib, book2, news, and trans

progc. While 5 other files are the author's development file

contains the combination of other files from the files of the

Calgary Corpus, namely: test1, test2, …, test5.

Tabel 8. File sample

No File Name
Size(Bytes)

.txt .doc .rtf

1 Bib 111261 247808 251932

2 book2 610856 921088 1318946

3 News 377109 583680 824165

4 Progc 39611 89088 136903

5 Trans 93695 165888 254746

6 Test1 3132450 4514816 6298394

7 Test2 1131199 1708032 2395628

8 Test3 1475157 2232320 3141306

9 Test4 1879470 2717184 3818931

10 Test5 3871680 5641728 7428047

C. Analysis Techniques

Several methods of analysis were applied in this study.

The first analysis techniques is an analysis process on how it

works as well as the analysis of algorithms on the 5 types of

compression algorithms used, i.e., BWT, MTF, Shannon-

Fano, Huffman and LZ77. The second is the technique of

analysis of processes/procedures as well as the analysis of the

algorithm from a combination of algorithms that will be

examined, the combination of these algorithms is BWT +

MTF + Shannon-Fano. The third is the last analysis of the

test process i.e. the data measurement from the sample files

provided to conduct a performance evaluation of algorithms.

Each test group consists of 10 different files and has the
following variables:

 File Size

The size of the files used in this research is expressed in

units of bytes. The size of each file is recorded based on

the name that goes through the use and analysis of the

size of the file which made up of two sizes, i.e. the size of

the original file size and the size after the compression.

 Ratio

Calculation of the ratio is the result of a reduction of 100

with the quotient of the compressed file size of original

size then the result is multiplied by 100.

 Runtime/ compression time

Compression time is the time to do the compression

algorithm on each symbol or character (byte) in the

original file which is expressed in units of
milliseconds/millisecond (m/s). The time retrieved from

early time calculation end time reduced compression

compression on a specific allocation memory.

In summary, the data analysis techniques used in this

research can be seen from the diagram depicted in Figure 13

WSEAS TRANSACTIONS on COMPUTERS Yayuk Anggraini, Teddy Mantoro, Media A. Ayu

E-ISSN: 2224-2872 232 Volume 17, 2018

1st Group
Testing on txt files

2nd Group
Testing on doc files

3rd Group
Testing on rtf files

Shannon-Fano

Huffman

LZ77

Resulti:
- File size
- Ratio
- Runtime

Resulti:
- File size
- Ratio
- Runtime

Resulti:
- File size
- Ratio
- Runtime

Shannon-Fano

BWT + MTF
Bm file, result:
- File size
- runtime

Shannon-Fano

Huffman

LZ77

Shannon-Fano

BWT + MTF
Bm file, result:
- File size
- runtime

Shannon-Fano

Huffman

LZ77

Shannon-Fano

BWT + MTF
Bm file, result:
- File size
- runtime

Figure 13. Data analysis methods used in the study

IV. FINDINGS AND DISCUSSION

A. Findings from the Experiments

1) Files with extension .txt

Tabel 9. Comparison results of file size compression on txt

files

No File Name
File Size (bytes)

Shannon-Fano Huffman LZ77 BMS

1 bib.txt 73773 72862 52514 53924

2 book2.txt 375415 368420 319184 287850

3 news.txt 248532 246516 208406 197178

4 progc.txt 26321 26029 20608 17083

5 trans.txt 64196 63876 27577 36016

6 test1.txt 1941646 1908295 1601746 1463710

7 test2.txt 745249 724476 584611 547796

8 test3.txt 971274 960170 721654 695293

9 test4.txt 1165046 1145025 962410 878303

10 test5.txt 2568026 2548143 2086827 2005751

LZ77 gives the best result in compressing file trans.txt, the

original size is 93695 bytes, it compressed to 27577 bytes,

means the total reduction is 66118 bytes. The combination of

BWT + MTF + Shannon-Fano algorithm compressed to

36016 bytes. However on a file progc.txt, the result from

LZ77 is worst than the combination of BWT + MTF +

Shannon-Fano algorithm, i.e. 17083 bytes of size 39611

bytes. On average the smallest compressed file size by an

algorithm combination of BWT + MTF + Shannon-Fano, is

618290 bytes. While the Shannon-Fano algorithm and

Huffman are less performed compared to the other 2

algorithms .

Figure 14. Comparison of the original file size and

compression results

Tabel 10. Comparison of compression ratio on txt files

No File Name
Ratio (%)

Shannon-Fano Huffman LZ77 BMS

1 bib.txt 33.69 34.51 52.8 51.58

2 book2.txt 38.54 39.69 47.75 52.92

3 news.txt 34.1 34.63 44.74 52.2

4 progc.txt 33.55 34.29 47.97 56.92

5 trans.txt 31.48 31.48 70.57 61.6

6 test1.txt 38.02 39.08 48.87 53.32

7 test2.txt 34.12 35.96 48.32 51.62

8 test3.txt 34.16 34.91 51.08 52.91

9 test4.txt 38.01 39.08 48.79 53.31

10 test5.txt 33.67 34.19 46.1 48.24

LZ77 produced a ratio of 70.57 % to trans.txt file. On

average the combination of BWT + MTF + Shannon-Fano

has the highest compression ratio than LZ77, i.e. 53.46%

while the LZ77 is 50,7%. Huffman and Shannon-Fano has

shown a lower performance than the two previous algorithms,

but the average ratio of Huffman is better than Shannon-
Fano.

WSEAS TRANSACTIONS on COMPUTERS Yayuk Anggraini, Teddy Mantoro, Media A. Ayu

E-ISSN: 2224-2872 233 Volume 17, 2018

Figure 15. Comparison of compression ratio on txt files.

Tabel 11. Comparison of encoding time on txt files.

No File Name
Encoding time (ms)

Shannon-Fano Huffman LZ77 BMS

1 bib.txt 7.29 6.43 1328.58 52.17

2 book2.txt 33.42 33.55 13646.77 189.17

3 news.txt 22.56 21.75 10771.60 136.75

4 progc.txt 2.67 2.33 7035.95 22.92

5 trans.txt 5.94 5.39 604.29 53.20

6 test1.txt 101.09 103.45 71221.79 757.89

7 test2.txt 54.86 47.81 28403.74 300.12

8 test3.txt 52.52 63.20 35315.62 391.38

9 test4.txt 62.00 71.43 42336.95 462.79

10 test5.txt 127.38 120.02 119180.92 901.73

In the table above, it can be seen that the best time in

processing is held by Huffman on progc.txt i.e. 2.33 ms,

while Shannon Fano in the second position with 62 ms; the

difference of 9,43 ms from Huffman. This makes the

Shannon-Fano has the lowest compression process time in

average than all the other algorithms examined, followed by
Huffman, the combined algorithm of BWT + MTF +

Shannon-Fano and then LZ77 with the highest level of

processing time.

Figure 16. Comparison of encoding time on txt files.

2) Files with extension doc

Table 12. Comparison results file size compression on doc

files.

No File Name
File size (bytes)

Shannon-Fano Huffman LZ77 BMS

1 bib.doc 146056 140136 87784 88915

2 book2.doc 575005 561628 400654 365521

3 news.doc 373577 370978 262778 253185

4 progc.doc 52840 51003 33706 32764

5 trans.doc 103277 101823 46405 56551

6 test1.doc 2825994 2767716 1966967 1791126

7 test2.doc 1078407 1065326 736607 696555

8 test3.doc 1421340 1407421 921497 882182

9 test4.doc 1702945 1667211 1183438 1078525

10 test5.doc 3717773 3620930 2548398 2444488

Results in Table 12 show that for the bib.doc and trans.doc,

LZ77 produces smaller file size compared to the combined

algorithms. However in other files, a combination of BWT +

MTF + Shannon-Fano produces smaller files than that

produced by LZ77 with a difference of 49842 bytes.

Figure 17. Comparison of the original file size and

compression results on doc files

Tabel 13. Comparison of compression ratio on doc files.

No File Name

Ratio (%)

Shannon-Fano Huffman LZ77 BMS

1 bib.doc 41.06 43.45 64.58 64.15

2 book2.doc 37.57 39.03 56.5 60.36

3 news.doc 36 36.44 54.98 56.67

4 progc.doc 40.69 42.75 62.17 63.36

5 trans.doc 37.74 38.62 72.03 65.94

6 test1.doc 37.41 38.7 56.43 60.37

7 test2.doc 36.86 37.63 56.87 59.26

8 test3.doc 36.33 36.95 58.72 60.52

9 test4.doc 37.33 38.64 56.45 60.35

10 test5.doc 34.1 35.82 54.83 56.71

Data in Table 13 show that the highest compression ratio of
72,03% is produced by LZ77 on file trans.doc. For all

samples, the difference on compression ratio between LZ77

and the combined-algorithm reach up to 1.41%. While

Huffman and Shannon-Fano shows lower compression ratio

than LZ77 and combination-algorithm. Huffman algorithm

performs better than the Shannon-Fano, which shows a

difference of approximately 1.29%.

WSEAS TRANSACTIONS on COMPUTERS Yayuk Anggraini, Teddy Mantoro, Media A. Ayu

E-ISSN: 2224-2872 234 Volume 17, 2018

Figure 18. Comparison of compression ratio on doc files.

Tabel 14. Comparison of encoding time on doc files.

No File Name

Encoding time (ms)

Shannon-Fano Huffman LZ77 BMS

1 bib.doc 12.47 10.54 4653.81 630.49

2 book2.doc 37.37 42.31 21016.20 1278.98

3 news.doc 32.40 28.09 15674.75 1064.70

4 progc.doc 4.99 4.79 983.50 481.55

5 trans.doc 9.64 9.42 2312.74 509.33

6 test1.doc 138.93 140.73 107750.02 5143.49

7 test2.doc 67.29 69.51 43599.83 2262.86

8 test3.doc 89.83 85.54 55260.01 2914.48

9 test4.doc 104.38 97.10 64331.59 3150.51

10 test5.doc 170.96 186.17 167618.64 6340.34

The most efficient compression time generated by Huffman

is 4,79 ms, which is 0.2 ms faster than the Shannon-Fano on

the file progc.doc which is the smallest file. The combination
of BWT + MTF + Shannon-Fano takes longer than two

previous algorithms, about 481,55 ms, while the LZ77 is the

slowest, about 983,5 ms on the same file.

Figure 19. Comparison of encoding time on doc files.

3) Files with extension rtf

Table 15. Comparison results file size compression on rtf

files

No File Name

File Size (bytes)

Shannon-Fano Huffman LZ77 BMS

1 bib.rtf 170409 168342 83120 84540

2 book2.rtf 812038 7965597 391716 409287

3 news.rtf 536503 527205 265053 286081

4 progc.rtf 88434 86962 36250 38637

5 trans.rtf 167207 163537 46937 71624

6 test1.rtf 3840503 3743113 1830575 1950773

7 test2.rtf 1498529 1471264 683697 765308

8 test3.rtf 1981980 1942279 838231 974243

9 test4.rtf 2336876 2276659 1109844 1181813

10 test5.rtf 4745781 4661040 2363535 2620748

For all sample files with an extension .rtf, LZ77 shows better

performance compared to three other algorithms. The

combined algorithm of BWT + MTF + Shannon-Fano shows

bigger file size of 73410 bytes compared to LZ77, followed

by Huffman and Shannon-Fano.

Figure 20. Comparison of the original file size and

compression results on rtf files.

Table 16. Comparison of encoding time on rtf files.

No File Name
Ratio (%)

Shannon-Fano Huffman LZ77 BMS

1 bib.rtf 32.36 33.18 67.01 66.48

2 book2.rtf 38.43 39.6 70.3 69

3 news.rtf 34.9 36.03 67.84 65.32

4 progc.rtf 35.4 36.48 73.52 71.81

5 trans.rtf 34.36 35.8 81.57 71.91

6 test1.rtf 39.02 40.57 70.94 69.06

7 test2.rtf 37.45 38.59 71.46 68.09

8 test3.rtf 36.91 38.17 73.32 69.02

9 test4.rtf 38.81 40.38 70.94 69.08

10 test5.rtf 36.11 37.25 68.18 64.75

LZ77 shows the highest compression ratioa, which is 3.06%

higher than the combination of BWT + MTF + Shannon-

Fano. While Huffman and Shannon-Fano show compression

ratios less than 50%, where Huffman is a little of 1.23%

higher than the Shannon-Fano.

WSEAS TRANSACTIONS on COMPUTERS Yayuk Anggraini, Teddy Mantoro, Media A. Ayu

E-ISSN: 2224-2872 235 Volume 17, 2018

Figure 21. Comparison of compression ratio on rtf files.

Table 17. Comparison of encoding time on rtf files.

No File Name
Encoding time(ms)

Shannon-Fano Huffman LZ77 BMS

1 bib.rtf 13.52 13.16 3606.98 123.58

2 book2.rtf 62.33 56.35 16998.34 536.49

3 news.rtf 38.97 40.52 14278.82 336.97

4 progc.rtf 7.16 6.92 1385.31 99.08

5 trans.rtf 14.16 12.99 1902.15 160.24

6 test1.rtf 159.65 154.98 79325.66 2403.34

7 test2.rtf 89.30 84.13 32689.37 963.74

8 test3.rtf 105.35 109.84 39923.27 1295.60

9 test4.rtf 121.43 108.75 48026.79 1498.19

10 test5.rtf 203.41 207.29 130549.38 2676.35

LZ77 is the algorithm that consume the highest compression

time, which can be presented in Figure 22 which shows that

LZ77 compression time dominates the encoding time

compared to the other algorithms.

Figure 22. Comparison of encoding time on rtf files.

B. Results Analysis

1) File Size

Table 18. The average size of compressed files in
each test file type

Test

file

type

Average of file size (bytes)

Original Shannon-Fano Huffman LZ77 BMS

Txt 1272249 817947.8 806381.20 658553.7 618290.4

Doc 1882163 1199721.4 1175417.20 818823.4 768981.2

Rtf 2586900 1617826 1583699.80 764895.8 838305.4

Table 18 presents the result of compression process using

several compression alogorithm. The combination of BWT +

MTF + Shannon-Fano algorithm has shown better

prformance than LZ77, Huffman or Shannon-Fano for the

sample files used.

Figure 23. Graphic analysis of testing the size of the

compressed files for each file type sample test.

Table 19 presents the average file size of compressed sample

files on the overall test.

Table 19. The results of the analysis of compressed file size

testing

Type N
Average of file size (bytes)

Min Max Sum Avg

Original 30 39611 7428047 57413118 1913770.6

Shannon-Fano 30 26321 4745781 36354952 1211831.7

Huffman 30 26029 4661040 35654982 1188499.4

LZ77 30 20608 2548398 22422729 747424.3

BMS 30 17083 2620748 22255770 741859

Figure 24. presents the percentage of compressed file size on

the overall test files.

Figure 25. Analysis percentage of compressed file size

2) Compression Ratio

Table 20 The average compression ratio for each file type

test

Test file type
Average of ratio (%)

Shannon-Fano Huffman LZ77 BMS

Txt 34.934 35.78 50.699 53.462

Doc 37.509 38.80 59.356 60.769

WSEAS TRANSACTIONS on COMPUTERS Yayuk Anggraini, Teddy Mantoro, Media A. Ayu

E-ISSN: 2224-2872 236 Volume 17, 2018

rtf 36.375 37.61 71.508 68.452

Figure 26. Graph the average compression ratio.

For the testing on file types .txt and .doc the combination of

BWT + MTF + Shannon-Fano shows a higher compression

ratio than other algorithms, on testing file .rtf LZ77 performs

better. This makes the combined algorithm of BWT + MTF +
Shannon-Fano produce more efficient compression ratio than

LZ77, while Huffman and Shannon-Fano shows lower

performance, eventhough Huffman performs 1% higher

compare to the Shannon-Fano.

Table 21. Analysis of the compression ratio

Type N
Average of ratio compression (bytes)

Min Max Sum Avg

Shannon-Fano 30 31.48 41.06 1088.18 36.27

Huffman 30 31.48 43.45 1121.90 37.40

LZ77 30 44.74 81.57 1815.63 60.52

BMS 30 48.24 71.91 1826.83 60.89

Combination of BWT + MTF + Shannon-Fano has a 0.37%

higher compression ratio than the LZ77, while Huffman is 1,

2% higher than the Shannon-Fano.

Figure 27. Graph the percentage of compression ratio

analysis

3) Compression Time

Table 22. Average time compression on each type of sample

files.

Test file type
Average of compression time (ms)

Shannon-Fano Huffman LZ77 BMS

Txt 46.97 47.54 32984.62 326.81

Doc 66.83 67.42 48320.11 2377.67

rtf 81.53 79.49 36868.61 1009.36

LZ77 performs in a fairly high figure compared to the other

algorithms. The chart in Figure 28 shows the dominance of

the compression time of LZ77 compared to other algorithms.

Figure 28. Comparison of time compression on each type of

file.

Figure 29 shows that the LZ77 algorithm has the highest

compression time compared to others. Table 23 presents the

average compression time of all files.

Table 23. Average compression time on all sample files.

Type N
Average of compression time (ms)

Min Max Sum Avg

Shannon-Fano 30 2.67 203.41 1953.26 65.11

Huffman 30 2.33 207.29 1944.49 64.82

LZ77 30 604.29 167618.64 1181733.36 39391.11

BMS 30 22.92 6340.34 37138.44 1237.95

Figure 29. The percentage of compression time on all sample

files.

C. Research Implications

Table 24. Average analysis testing on all test files.
Aspect Shannon-Fano Huffman LZ77 BMS

File Size 63.32 62.10 39.06 38.76

Ratio 36.27 37.40 60.52 60.89

Compression time 65.11 64.82 39391.11 1237.95

Table 24 presents an overview of algorithms which their

lowest compression performance on each aspect. This

supports the previous research that the implementation of the

Shannon-Fano will result in less efficient compression

WSEAS TRANSACTIONS on COMPUTERS Yayuk Anggraini, Teddy Mantoro, Media A. Ayu

E-ISSN: 2224-2872 237 Volume 17, 2018

performance compared to the implementation of Huffman,

although both have the similar compression process.

Test analysis results show that the most efficient

compression ratio produced by the combined algorithm of

BWT + MTF + Shannon-Fano is 60,89%, while the LZ77 is

60,52%, and Huffman and Shannon-Fano produces a ratio of

less than 50%.

On the aspect of compression time, it has been known that

LZ77 needs a very long time to compress, which is about

39391,11 ms. It equals to more than 39 seconds, or about

0.65 minutes or approximately 96.63% slower than BMS.
This take a long time to process using a considerably good

hardware specifications used in this study. By using less

hardware specifications, it will take longer processing time.

The combination of BWT + MTF + Shannon-Fano takes

1237,95 ms or approximately 3.04% slower than Shannon-

Fano, 18% slower compared to the rest, and around 0,16%

slower compared to Huffman.

From compressed file size and ratio aspects, the

combination of BWT + MTF + Shannon-Fano and LZ77

show almost the same performance. However, the LZ77

compression time takes the longest. This aspect is important,
as the implementation of the algorithm must consider the

availability on hardware specification aspect, and speed will

also affected by the performance of the CPU and the size of

memory. Thus, the combination of BWT + MTF +

Shannon-Fano is considered as the most optimal algorithm in

this study.

V. CONCLUSION

The implementation of the Shannon-Fano for

compressing text file has shown less efficient compression

performance compared to Huffman compression, even-

though both have similat way of compression process. The

average of file size of Shannon-Fano is 63,32% higher than

Huffman (with a difference about 1.22%). This affects the

average compression ratio, where Shannon-Fano reach
36,27% lower than Huffman with 1.12% difference. The

average of compression time of Shannon-Fano is higher than

Huffman, which is 65,11 ms compared to 64,82 ms

repectively.

In conclusion, the most efficient compression ratio

produced by the combination of BWT + MTF + Shannon-

Fano which is 60,89%, compared to LZ77 with 60,52% of the

ratio. On the compression time, the LZ77 is the slowest, it

took about 39391,11 ms, while the combination of BWT +

MTF + Shannon-Fano algorithm takes 1237,95 ms. From all

aspects, the combination of BWT + MTF + Shannon-Fano
algorithm performs better compared to LZ77.

The following works can be considered as further studies

in the compression algorithm area:

 the next research work can explore the study by adding

other algorithms, such as RLE prior to implementation of

the Shannon-Fano.

 Implementation of the combination of BWT + MTF +

Shannon-Fano algorithm on different type of files, other

than text, such as images, audio and video.

REFERENCES

[1] D. Solomon, Data Compression, 4th ed. London: Spriger, 2007.

[2] P. Yellamma and N. Challa, “Performance Analysis Of Different

Data Compression Techniques On Text File,” Int. J. Eng. Res.

Technol., vol. 1, no. 8, (Oktober, pp. 1–6, 2012.

[3] B. Souley, P. Das, and S. Tanko, “A Comparative Analysis of Data

Compression Techniques,” Int. J. Appl. Sci., vol. 2, no. 10, (April,

pp. 63–82, 2014.

[4] J. M. Silaen, “Studi Perbandingan Algoritma Huffman dan

Shannon- Fano dalam Pemampatan File Teks,” Pelita Inform. Budi

Darma, vol. 7, no. 1, (Juli, pp. 60–66, 2014.

[5] K. Rastogi, K. Sengar, and M. T. Scholar, “Analysis and

Performance Comparison of Lossless Compression Techniques for

Text Data,” Int. J. Eng. Comput. Res., vol. 2, no. 1, pp. 16–19,

2014.

[6] P. Jeyanthi and V. Anuratha, “Analysis of Lossless Reversible

Transformation Algorithms to Enhance Data Compression,” J.

Glob. Res. Comput. Sci., vol. 3, no. 8, (Agustus, pp. 56–62, 2012.

[7] R. Bastys, “Fibonacci Coding Within the Burrows-Wheeler

Compression Scheme,” Electron. Electr. Eng., vol. 1, pp. 28–32,

2010.

[8] M. Burrows and D. Wheeler, “A Block-Sorting Lossless Data

Compression Algorithm,” Algorithm, Data Compression, no. 124,

p. 18, 1994.

[9] A. S. E. Campos, “Move to Front,” 1999. [Online]. Available:

http://www.arturocampos.com/ac_mtf.html. [Accessed: 15-Mar-

2017].

[10] M. Dipperstein, “Burrows-Wheeler Transform Discussion and

Implementation,” 2010. [Online]. Available:

http://michael.dipperstein.com/bwt/. [Accessed: 15-Mar-2017].

[11] R. R. Baruah, V. Deka, and M. P. Bhuyan, “Enhancing Dictionary

Based Preprocessing For Better Text Compression,” Int. J.

Comput. Technol., vol. 9, no. 1, (Maret, pp. 4–9, 2014.

[12] R. Râdescu, “Transform Methods Used in Lossless Compression

of Text Files,” Rom. J. Inf. Sci. Technol., vol. 12, no. 1,

(November, pp. 101–115, 2009.

[13] I. M. Pu, Fundamental Data Compression. London: Butterworth-

Heinemann, 2006.

[14] P. Widhiartha, “Pengantar Kompresi Data (Introduction to Data

Compression)” 2008, Available: http://www.ilmukomputer.org/

wp-content/uploads/2008/10/ widhiartha_kompresidata.pdf.

[Accessed: 1-Nov-2017].

[15] C. P. Nugraha and R. G. Santosa, “Perbandingan Metode LZ77,

Metode Huffman dan Metode Deflate Terhadap Kompresi Data

Teks,” Informatika, vol. 10, no. 2, pp. 80–91, 2014.

[16] M. Dipperstein, “Huffman Code Discussion and Implementation,”

2010. [Online]. Available:

http://michael.dipperstein.com/Huffman/index.html. [Accessed:

16-Apr-2017].

[17] H. Altarawneh and M. Altarawneh, “Data Compression

Techniques on Text Files: A Comparison Study,” Int. J. Comput.

Appl., vol. 26, no. 5, (Juli, pp. 42–54, 2011.

WSEAS TRANSACTIONS on COMPUTERS Yayuk Anggraini, Teddy Mantoro, Media A. Ayu

E-ISSN: 2224-2872 238 Volume 17, 2018

[18] S. Shanmugasundaram and R. Lourdusamy, “A Comparative Study

Of Text Compression Algorithms,” Int. J. Wisdom Based Comput.,

vol. 1, no. 4, (December, pp. 68–76, 2011.

[19] S. Senthil, S. J. Rexiline, and L. Robert, “RIDBE: A Lossless,

Reversible Text Transformation Scheme for Better Compression,”

Int. J. Comput. Appl., vol. 51, no. 12, (Agustus, pp. 35–40, 2012.

[20] P. Jeyanthi and V. Anuratha, “Bwt Based Lossless Reversible

Transformation Algorithms – An Analysis,” Int. J. Eng. Res. Appl.,

vol. 2, no. 5, (September-Oktober, pp. 807–814, 2012.

[21] E. C. Cankaya and O. Darwish, “Improving Compression

Performance with a Star Encoding Front End : A Linguistic

Comparison,” Proceedings of the International Conference on

Foundations of Computer Science (FCS); Athens : 1-7 2013.

WSEAS TRANSACTIONS on COMPUTERS Yayuk Anggraini, Teddy Mantoro, Media A. Ayu

E-ISSN: 2224-2872 239 Volume 17, 2018

