
A Study on Linear Complexity of p-ary Pseudo Random Sequences

Generated by pGSSG

ANTONIYA TASHEVA*, ZHANETA SAVOVA-TASHEVA**, BOYAN PETROV*

* Faculty of Computer Systems and Technologies

Technical University of Sofia

8 Kliment Ohridski blvd., Sofia

BULGARIA

atasheva@tu-sofia.bg

** Faculty of Artillery, Air Defense and Communication and Information Systems

National Military University

1 Karel Shkorpil Str., Shumen

BULGARIA

zh.savova@mail.bg

Abstract: - Nowadays, when fast-growing areas, such as IoT, automotive systems, sensor networks, healthcare,

distributed control systems, cyber-physical systems, and the smart grid, are widely used there is a need of

specific device design with a better balance between security, performance, and resource requirements for

resource-constrained environments. Because low linear complexity is undesirable for cryptographic

applications, there is a necessity for lightweight cryptographic stream ciphers development with high linear

complexity. Due to this reason a linear complexity of p-ary Generalized Self-Shrinking Generator (pGSSG),

which has very simple design and is suitable for lightweight stream cipher, is investigated in this paper.

Mathematically was shown that the extended Euclidean algorithm can be applied to find the linear complexity

of p-ary pseudorandom sequences. The conducted tests show that the pGSSG linear complexity is close to its

theoretical upper bound.

Key-Words: - Linear complexity, pseudo random sequences, pGSSG, extended Euclidean algorithm, pLFSR,

lightweight cryptography

1 Introduction
The last decade of the communications development

is characterized by the involvement of resource-

constrained devises that are interconnected and

through joint work provide advanced services to the

customers. Vast are the areas of application as

Internet of Things (IoT), sensor networks,

healthcare systems, cyber-physical systems, RFID

devices, the smart grid and more. Ensuring security

in these devices is critical task because they deliver

sensitive privacy information.

Lightweight cryptography is a subfield of

cryptography that aims to provide solutions tailored

for resource-constrained devices. [8]. Lightweight

cryptographic primitives, including block ciphers,

hash functions, message authentication codes and

stream ciphers [2, 5, 8], are not intended for a wide

range of applications and may impose limits on the

power of the attacker. [8].

Stream ciphers are typically fast and work on

only a few bits at a time. Because of that they are

with simple design, consume low power, and have

relatively low memory requirements. These features

make them an attractive choice for resource-

constrained devices and for applications where the

amount of data is either unknown, or continuous,

like network streams. Lightweight stream ciphers

are expected to provide confidentiality and data

integrity in such devices. Recently, International

Organization for Standardization [4] standardized

two stream ciphers for lightweight cryptography:

Trivium and Enocoro.

Thus, important current problem is the task to

find nonlinear lightweight cryptography generators

that generate sequences with good distribution and

statistical properties. Their security characteristics

like randomness and unpredictability of the

sequences must be assessed.

Recent studies on linear complexity have been

conducted over almost perfect binary and ternary

sequences. The authors show that the considered

sequences have high linear complexity [3]. Other

authors [16] research the linear complexity and

minimal polynomials of some generalized

cyclotomic sequences over GF(q). Randrianarisoa

presents in [11] a coding theory based on the linear

WSEAS TRANSACTIONS on COMPUTERS Antoniya Tasheva, Zhaneta Savova-Tasheva, Boyan Petrov

E-ISSN: 2224-2872 197 Volume 17, 2018

mailto:atasheva@tu-sofia.bg
mailto:zh.savova@mail.bg

complexity. He aims to design new code based

cryptographic systems and thus counts how many

finite sequences have linear complexity bounded by

some integer.

The linear complexity is used a measure of the

unpredictability of a sequence over a finite field. It

is the main measurement of the complexity of a

sequence and is a critical factor to investigating the

non-linearity introduced to pseudo-random sequence

generators due to the fact that each sequence can be

recovered by the Berlekamp-Massey algorithm [1,

6] if 2λ of consecutive values of its elements are

known.

Linear feedback shift registers (LFSR) have been

widely used for the generation of pseudo random

sequences as their output has long period, good

statistical and correlation properties, needed for

their practical application. Pseudorandom number

generators need to apply some nonlinear rules to

their LFSR in order to increase the linear

complexity of their output sequences.

This paper focuses on the p-ary Generalized

Self-Shrinking Generator (pGSSG) proposed in [13]

which has very simple design and is suitable for a

lightweight stream cipher.

The pGSSG architecture, given in Figure 1,

consists of a pLFSR register A, whose length will be

denoted by L. The feedbacks of the register are

constructed according to [14] with a chosen

primitive polynomial. The pGSSG selects a portion

of the output p-ary LFSR sequence by applying a

self-shrinking selection rule that chooses a single

p-ary digit in the pLSFR output p-tuple or discards

everything.

Fig. 1. p-ary Generalized Self-Shrinking Generator

This paper aims to evaluate the nonlinearity

introduced in the pGSSG schema by calculating the

linear complexity of its output sequences.

The paper is organized as follows. First, an

overview of the linear complexity theory is made.

Next, the extended Euclidean algorithm is explained

and an algorithm for evaluating the linear

complexity of p-ary sequences is formulated.

Section 4 shows the results for the evaluated

sequences and finally conclusions are made.

2 Linear Complexity Theory
The linear complexity of a sequence S can be

defined as the length of the shortest linear

recurrence relation satisfied by S. In engineering

terms, λS is 0 if S is the zero sequence and otherwise

it is the length of the shortest linear feedback shift

register LFSR that can generate S [9].

Linear complexity of a given sequence S can be

determined by using the Berlekamp-Massey

algorithm. The algorithm is efficient for sequences

with low linear complexity and hence such

sequences can easily be predicted. [9, 12, 17]

If the periodic sequence S is collated to the

power series S(x)

S(x) = s0 + s1x + … + sT–1x
T–1 + sTx

T + … (1)

and knowing the fact that si+T = si for every i ≥ 0, T

is the period of S, we can represent S(x) as:

S(x) = (s0 + s1x + … + sT–1x
T–1)(1 + xT + x2T + …). (2)

The second multiplier in (2) is a geometric

progression and its sum is

1 + xT + x2T + … = 1/(1 – xT). (3)

Therefore

𝑆(𝑥)

= (𝑠0 + 𝑠1𝑥 + … + 𝑠Т−1𝑥𝑇–1)(1 – 𝑥𝑇)–1

=
𝑆𝑇(𝑥)

1 − 𝑥𝑇
=

𝑆𝑇(𝑥)/ gcd(𝑆𝑇(𝑥), 1 − 𝑥𝑇)

(1 − 𝑥𝑇)/ gcd(𝑆𝑇(𝑥), 1 − 𝑥𝑇)
,

(4)

where ST(x) = s0 + s1x + …. + sT – 1x
T – 1 is a

polynomial with power lower than the period T. The

polynomial ST(x) is called generating function for

the sequence S.

Comparing the upper equation (4) with the

generating function of the pLFSR, (5) [14, 15]

𝑆(𝑥) = −
ℎ0(𝑥)

𝑞(𝑥)
, (5)

we can conclude that with accuracy to a constant the

feedback polynomial q(x) has the following form

𝑞(𝑥) =
1 − 𝑥𝑇

gcd(𝑆𝑇(𝑥), 1 − 𝑥𝑇)
. (6)

Thus, the linear complexity S is the power of the

polynomial
1−𝑥𝑇

gcd(𝑆𝑇(𝑥),1−𝑥𝑇)
.

In this case the following theorem is valid [7]

Theorem 1. If S = s0, s1, …, sТ–1, …. is a

sequence with period T over the field F, the linear

complexity of the sequence S is

𝜆𝑆 = 𝑇 − deg(gcd(𝑆𝑇(𝑥), 1 − 𝑥𝑇)). (7)

pLSFR A

Selection

rule

Clock i

api

a
pi+1

 a
pi+2

 … a
pi +(p-1)

p-ary output

WSEAS TRANSACTIONS on COMPUTERS Antoniya Tasheva, Zhaneta Savova-Tasheva, Boyan Petrov

E-ISSN: 2224-2872 198 Volume 17, 2018

3 Algorithm for Determining Linear

Complexity of a p-ary Sequence
In this paragraph, a mathematical algorithm will be

justified to determine linear complexity of a

sequence over GF(p) using the extended Euclid

algorithm.

3.1 Extended Euclidean Algorithm
The extended Euclidean algorithm is widely used in

the contemporary algebraic and communication

systems. It calculates the greatest common divisor

gcd(a, b) of two elements of the ring R and the

coefficients s and t such that
gcd(a, b) = as + bt. (8)

Let |a| > |b|, by consecutive execution of the

division algorithm one can receive the following

equation sequence

a = bq1 + r1

b = r1q2 + r2

r1 = r2q3 + r3

...

rj – 2 = rj – 1qj + rj

rj – 1 = rjqj+1 + 0

(9)

According to the Euclidean algorithm the

greatest common divisor of a and b is rj

(gcd(a, b) = rj).

In terms of the extended Euclidean algorithm at

each division step the intermediate coefficients si

and ti, are calculated such that

asi + bti = ri (10)

using the equations

si = si – 2 – qi si – 1, i = 1, 2, …

ti = ti – 2 – qi ti – 1, i = 1, 2, …
(11)

Speaking specifically about the sequences

produced by a pLFSR and with accuracy to a

constant -1 in (5) the output sequence can be

represented as a division of two polynomials

𝑆(𝑥) =
ℎ(𝑥)

𝑞(𝑥)
 (12)

By equating 12 and 4 we get

𝑞(𝑥). 𝑆𝑇(𝑥) + ℎ(𝑥). 𝑥𝑇 = ℎ(𝑥) (13)

The resulting equation (13) gives us the reason to

apply the extended Euclidean algorithm for finding

the gcd(xT, ST(x)) and calculating the minimal

polynomial q(x) generating the sequence S.

Moreover, the polynomial h(x) that defines the

initial state of the pLFSR will be also calculated as a

result of the extended Euclidean algorithm.

3.2 Linear Complexity of p-ary Sequences
Following the mathematical justification for the

extended Euclidean algorithm in 3.1 the algorithm 1

for determining the linear complexity of a p-ary

sequence can be synthesized.
Algorithm 1. Determining the linear complexity

of a p-ary sequence.

Input: n consecutive elements of the p-ary

sequence (coefficients of ST(x)).

Initialization: s–1(x) = 1, s0(x)= 0, t–1(x) = 0,

t0(x) = 1, r–1(x) = xn, r0 = ST(x), j = 0

while deg rj(x) ≥ n/2 do

j = j + 1

𝑞𝑗(𝑥) = ⌊𝑟𝑗−2(𝑥) 𝑟𝑗−1(𝑥)⁄ ⌋

𝑟𝑗(𝑥) = 𝑟𝑗– 2(𝑥) – 𝑞𝑗(𝑥)𝑟𝑗– 1(𝑥),

𝑠𝑗(𝑥) = 𝑠𝑗 – 2(𝑥) – 𝑞𝑗(𝑥)𝑠𝑗– 1(𝑥),

𝑡𝑗(𝑥) = 𝑡𝑗 – 2 (𝑥) – 𝑞𝑗(𝑥)𝑡𝑗– 1(𝑥)

Output: q(x) = tj(x), h(x) = sj(x),  = deg(q(x)).

Next, the algorithm will be used for evaluation of

the p-ary sequences generated by the pLFSRs and

pGSSG.

4 Evaluation of pGSSG output

sequences
In order to evaluate the work of the proposed

algorithm 1 for determining the linear complexity of

p-ary sequences a C# implementation is made.

First, we will show the algorithm’s work by

presenting an example for calculating the linear

complexity of a certain p-ary sequence generated by

a pLFSR. Let GF(32) and the primitive polynomial

q(x) = 1 + x + 2x2 are chosen. A 3LFSR with Galois

architecture is build according to [14] and the

corresponding output sequence is [12202110] and

the period is T = 8. As the length of the 3LSFR is

L = 2 and q(x) is primitive polynomial the expected

linear complexity of the given sequence is  = 2.

Next, the algorithm execution is presented.

Input: [1220], n = 4 consecutive elements of the

p-ary sequence.

Initialization:

s–1(x) = 1, t–1(x) = 0,

s0(x)= 0, t0(x) = 1,

r–1(x) = x4,

r0 = Sn(x) = 1 + 2x + 2x2

Calculations:

𝑞1(𝑥) = ⌊𝑟−1(𝑥) 𝑟0(𝑥)⁄ ⌋ =

= ⌊𝑥4/(1 + 2𝑥 + 2𝑥2)⌋ =

= 1 + 𝑥 + 2𝑥2

𝑟1(𝑥) = 𝑟−1(𝑥) – 𝑞1(𝑥)𝑟0(𝑥) = 2

𝑠1(𝑥) = 𝑠−1(𝑥) – 𝑞1(𝑥)𝑠0(𝑥) = 1

WSEAS TRANSACTIONS on COMPUTERS Antoniya Tasheva, Zhaneta Savova-Tasheva, Boyan Petrov

E-ISSN: 2224-2872 199 Volume 17, 2018

𝑡1(𝑥) = 𝑡−1 (𝑥)– 𝑞1(𝑥)𝑡0(𝑥) = 2 + 2𝑥 + 𝑥2

Output: Primitive polynomial 𝑞(𝑥) = 𝑡1(𝑥) =
2 + 2𝑥 + 𝑥2, initial state of the register h(x) = s1(x)

= 1, linear complexity  = deg(q(x)) = 2

As one can see we found that the linear

complexity  = 2 is equal the expected value and the

algorithm finished at its first step. The primitive

polynomial that was found with the algorithm is

equivalent to the one that was used to generate the

sequence.

Tests with different sequences, i.e. different

Galois Fields, primitive polynomials and lengths of

pLFSRs, were made, all reconfirming the results.

As the aim of this paper is to investigate the non-

linearity that is introduced to the output sequence of

the pGSSG by the self-shrinking rule of the p-ary

register’s output, sets of such output sequences will

be investigated with algorithm 1 in order to

calculate their linear complexity.

The equation (7) sets the boundaries of the linear

complexity of a p-ary sequence, i.e. 0 ≤ S ≤ T. The

value S = 0 is assumed to be the linear complexity

of the zero sequence S = (0, 0, …, 0). The rule

resulting from the Berlekamp-Massey algorithm

says that for determining the linear complexity  of

a sequence S, 2. consecutive elements of S are

needed. Thus, the algorithm will be tested as its

input will be fed with sequenced with length 2n, that

corresponds to the maximal possible linear

complexity .

Table 1. Results for linear complexity of output

pGSSG sequences

GF(pn) Count Period
Linear complexity

Min. Max.

GF(32) 2 6 4 5

GF(33) 4 18 15 16

GF(34) 8 54 48 51

GF(35) 22 162 152 158

GF(36) 48 486 478 481

GF(52) 4 20 18 19

GF(53) 20 100 76 98

GF(54) 48 500 492 497

GF(72) 8 42 35 41

GF(73) 36 294 288 292

GF(74) 160 2058 2050 2055

More than 360 tests are conducted using the

algorithm implementation for evaluation the linear

complexity of the output sequences generated by

pGSSG in different fields GF(pn). Table 1 shows a

summary of the test results including the number of

possible output pGSSG sequences (Count), their

period T, and the minimum and maximum results

for the calculated linear complexities.

As it was shown in section 2, the linear

complexity of the underlying pLSFR in pGSSG is

equal to its length L. We can notice in Table 1 that

the expected maximum value of the linear

complexity of the non-linear pGSSG generator is

max = T – (L – 1) = (p – 1)pL – 1 – (L – 1). 51

Therefore, the proposed non-linear method for

self-shrinking in the pGSSG increases the linear

complexity with the following coefficient

𝐾𝜆 =
(𝑝 – 1)𝑝𝐿 – 1 – (𝐿 – 1)

𝐿
. 52

Fig. 2. Coefficient for increasing the linear

complexity for pGSSG

As it is shown in [13] when p = 2 the generator

pGSSG is converted into the classic SSG [10].

Having that in mind figure 2 represents the linear

complexity enhancement dependency of pGSSG

over SSG (shown in blue color) on the length L of

the used pLFSR with different prime p.

5 Conclusion
In this paper we have investigated the linear

complexity of p-ary pseudo random sequences

produced by p-ary generalized self-shrinking

generator. We have mathematically justified that the

extended Euclidian algorithm can be applied to find

the linear complexity of p-ary pseudorandom

sequences. Using this algorithm the linear

complexity of output sequence of the pGSSG has

been calculated. The more than 360 tests that have

been performed show that the linear complexity of

pGSSG output sequences is close to the maximum

theoretical.

K

L

WSEAS TRANSACTIONS on COMPUTERS Antoniya Tasheva, Zhaneta Savova-Tasheva, Boyan Petrov

E-ISSN: 2224-2872 200 Volume 17, 2018

Acknowledgements
This paper is a result of a project supported by the

National Science Fund, Ministry of Education and

Science, Bulgaria via FINANCIAL SUPPORT FOR

PROJECT OF JUNIOR RESEARCHERS – 2016

[Grant Number DM07/5 – 15.12.2016]

References:

[1] Berlekamp, E. R. (1968). Algebraic coding

theory. McGraw-Hill Book Co., New York-

Toronto, Ont.-London.

[2] Buchanan, W. J., Li, S., & Asif, R. (2017).

Lightweight cryptography methods. Journal of

Cyber Security Technology, 1(3-4), 187-201.

[3] Edemskiy, V., & Minin, A. (2016). About the

linear complexity of the almost perfect

sequences. International Journal of

Communications, 1, 223-226.

[4] ISO/IEC 29192-3:2012. International standard

for lightweight cryptographic methods,

ISO/IEC, 2012.

[5] Manifavas, C., Hatzivasilis, G., Fysarakis, K.,

& Papaefstathiou, Y. (2016). A survey of

lightweight stream ciphers for embedded

systems. Security and Communication

Networks, 9(10), 1226-1246.

[6] Massey, J. L. (1969). Shift-register synthesis

and BCH decoding. IEEE Trans. Information

Theory, IT-15, 122–127.

[7] Massey, James L., and Shirlei Serconek.

„Linear complexity of periodic sequences: a

general theory.“ In Advances in cryptology—

CRYPTO’96, pp. 358-371. Springer Berlin

Heidelberg, 1996.

[8] McKay, K. A., Bassham, L., Turan, M. S., &

Mouha, N. (2017). NISTIR 8114 report on

lightweight cryptography. National Institute of

Standards and Technology (NIST),

Gaithersburg.

[9] Meidl, W., Winterhof, A. (2013). Linear

complexity of sequences and multisequences,

Handbook of finite fields. Chapter 10.4, pp.

318-330. Chapman and Hall/CRC.

[10] Meier, W., Staffelbach, O.: The self-shrinking

generator. In: De Santis, A. (ed.)

EUROCRYPT 1994. LNCS, vol. 950, pp. 205–

214. Springer, Heidelberg (1995).

[11] Randrianarisoa, T. (2018). Coding Theory

using Linear Complexity of Finite Sequences.

arXiv preprint arXiv:1802.10034.

[12] Rueppel R.A. (1986) Linear Complexity and

Random Sequences. In: Pichler F. (eds)

Advances in Cryptology — EUROCRYPT’ 85.

EUROCRYPT 1985. Lecture Notes in

Computer Science, vol 219. Springer, Berlin,

Heidelberg

[13] Tasheva, A., Tasheva, Zh., Milev, A.,

Generalization of the Self-Shrinking Generator

in the Galois Field GF(pn), Advances in

Artificial Intelligence, vol. 2011, Article ID

464971, 10 pages, 2011.

[14] Tasheva, A., Savova-Tasheva, Zh., Petrov, B.,

Stoykov, K., Determining the Feedback

Multipliers in a p-ary Linear Feedback Shift

Registers, WSEAS Transactions on Systems

and Control, Volume 13, 2018, Art. #45, pp.

420-424

[15] Venkateswarlu, A. (2007). Studies on error

linear complexity measures for multisequences

(Doctoral dissertation).

[16] Wang, Q., Jiang, Y., & Lin, D. (2015). Linear

complexity of binary generalized cyclotomic

sequences over GF (q). Journal of Complexity,

31(5), 731-740.

[17] Winterhof, A., Linear complexity and related

complexity measures, in Selected Topics in

Information and Coding Theory, vol. 7.

Hackensack, NJ, USA: World Scientific, 2010,

pp. 3–40.

WSEAS TRANSACTIONS on COMPUTERS Antoniya Tasheva, Zhaneta Savova-Tasheva, Boyan Petrov

E-ISSN: 2224-2872 201 Volume 17, 2018

