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Abstract: - Nowadays, when fast-growing areas, such as IoT, automotive systems, sensor networks, healthcare, 

distributed control systems, cyber-physical systems, and the smart grid, are widely used there is a need of 

specific device design with a better balance between security, performance, and resource requirements for 

resource-constrained environments. Because low linear complexity is undesirable for cryptographic 

applications, there is a necessity for lightweight cryptographic stream ciphers development with high linear 

complexity. Due to this reason a linear complexity of p-ary Generalized Self-Shrinking Generator (pGSSG), 

which has very simple design and is suitable for lightweight stream cipher, is investigated in this paper. 

Mathematically was shown that the extended Euclidean algorithm can be applied to find the linear complexity 

of p-ary pseudorandom sequences. The conducted tests show that the pGSSG linear complexity is close to its 

theoretical upper bound. 
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1 Introduction 
The last decade of the communications development 

is characterized by the involvement of resource-

constrained devises that are interconnected and 

through joint work provide advanced services to the 

customers. Vast are the areas of application as 

Internet of Things (IoT), sensor networks, 

healthcare systems, cyber-physical systems, RFID 

devices, the smart grid and more. Ensuring security 

in these devices is critical task because they deliver 

sensitive privacy information. 

Lightweight cryptography is a subfield of 

cryptography that aims to provide solutions tailored 

for resource-constrained devices. [8]. Lightweight 

cryptographic primitives, including block ciphers, 

hash functions, message authentication codes and 

stream ciphers [2, 5, 8], are not intended for a wide 

range of applications and may impose limits on the 

power of the attacker. [8].  

Stream ciphers are typically fast and work on 

only a few bits at a time. Because of that they are 

with simple design, consume low power, and have 

relatively low memory requirements. These features 

make them an attractive choice for resource-

constrained devices and for applications where the 

amount of data is either unknown, or continuous, 

like network streams. Lightweight stream ciphers 

are expected to provide confidentiality and data 

integrity in such devices. Recently, International 

Organization for Standardization [4] standardized 

two stream ciphers for lightweight cryptography: 

Trivium and Enocoro. 

Thus, important current problem is the task to 

find nonlinear lightweight cryptography generators 

that generate sequences with good distribution and 

statistical properties. Their security characteristics 

like randomness and unpredictability of the 

sequences must be assessed. 

Recent studies on linear complexity have been 

conducted over almost perfect binary and ternary 

sequences. The authors show that the considered 

sequences have high linear complexity [3]. Other 

authors [16] research the linear complexity and 

minimal polynomials of some generalized 

cyclotomic sequences over GF(q). Randrianarisoa 

presents in [11] a coding theory based on the linear 
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complexity. He aims to design new code based 

cryptographic systems and thus counts how many 

finite sequences have linear complexity bounded by 

some integer. 

The linear complexity is used a measure of the 

unpredictability of a sequence over a finite field. It 

is the main measurement of the complexity of a 

sequence and is a critical factor to investigating the 

non-linearity introduced to pseudo-random sequence 

generators due to the fact that each sequence can be 

recovered by the Berlekamp-Massey algorithm [1, 

6] if 2λ of consecutive values of its elements are 

known. 

Linear feedback shift registers (LFSR) have been 

widely used for the generation of pseudo random 

sequences as their output has long period, good 

statistical and correlation properties, needed for 

their practical application. Pseudorandom number 

generators need to apply some nonlinear rules to 

their LFSR in order to increase the linear 

complexity of their output sequences.  

This paper focuses on the p-ary Generalized 

Self-Shrinking Generator (pGSSG) proposed in [13] 

which has very simple design and is suitable for a 

lightweight stream cipher. 

The pGSSG architecture, given in Figure 1, 

consists of a pLFSR register A, whose length will be 

denoted by L. The feedbacks of the register are 

constructed according to [14] with a chosen 

primitive polynomial. The pGSSG selects a portion 

of the output p-ary LFSR sequence by applying a 

self-shrinking selection rule that chooses a single  

p-ary digit in the pLSFR output p-tuple or discards 

everything. 

 
Fig. 1. p-ary Generalized Self-Shrinking Generator 

 

This paper aims to evaluate the nonlinearity 

introduced in the pGSSG schema by calculating the 

linear complexity of its output sequences.  

The paper is organized as follows. First, an 

overview of the linear complexity theory is made. 

Next, the extended Euclidean algorithm is explained 

and an algorithm for evaluating the linear 

complexity of p-ary sequences is formulated. 

Section 4 shows the results for the evaluated 

sequences and finally conclusions are made. 

2 Linear Complexity Theory 
The linear complexity of a sequence S can be 

defined as the length of the shortest linear 

recurrence relation satisfied by S. In engineering 

terms, λS is 0 if S is the zero sequence and otherwise 

it is the length of the shortest linear feedback shift 

register LFSR that can generate S [9]. 

Linear complexity of a given sequence S can be 

determined by using the Berlekamp-Massey 

algorithm. The algorithm is efficient for sequences 

with low linear complexity and hence such 

sequences can easily be predicted. [9, 12, 17] 

If the periodic sequence S is collated to the 

power series S(x) 

S(x) = s0 + s1x + … + sT–1x
T–1 + sTx

T + … (1) 

and knowing the fact that si+T = si for every i ≥ 0, T 

is the period of S, we can represent S(x) as: 

S(x) = (s0 + s1x + … + sT–1x
T–1)(1 + xT + x2T + …). (2) 

 

The second multiplier in (2) is a geometric 

progression and its sum is 

1 + xT + x2T + … = 1/(1 – xT). (3) 

 

Therefore 

𝑆(𝑥)  

=  (𝑠0  + 𝑠1𝑥 +  … + 𝑠Т−1𝑥𝑇–1)(1 – 𝑥𝑇)–1

=
𝑆𝑇(𝑥)

1 − 𝑥𝑇
=

𝑆𝑇(𝑥)/ gcd(𝑆𝑇(𝑥), 1 − 𝑥𝑇)

(1 − 𝑥𝑇)/ gcd(𝑆𝑇(𝑥), 1 − 𝑥𝑇)
, 

(4) 

where ST(x) = s0 + s1x + …. + sT – 1x
T – 1 is a 

polynomial with power lower than the period T. The 

polynomial ST(x) is called generating function for 

the sequence S. 

Comparing the upper equation (4) with the 

generating function of the pLFSR, (5) [14, 15] 

𝑆(𝑥) = −
ℎ0(𝑥)

𝑞(𝑥)
, (5) 

we can conclude that with accuracy to a constant the 

feedback polynomial q(x) has the following form 

𝑞(𝑥) =
1 − 𝑥𝑇

gcd(𝑆𝑇(𝑥), 1 − 𝑥𝑇)
. (6) 

 

Thus, the linear complexity S is the power of the 

polynomial  
1−𝑥𝑇

gcd(𝑆𝑇(𝑥),1−𝑥𝑇)
. 

In this case the following theorem is valid [7] 

Theorem 1. If S = s0, s1, …, sТ–1, …. is a 

sequence with period T over the field F, the linear 

complexity of the sequence S is 

𝜆𝑆 = 𝑇 − deg(gcd(𝑆𝑇(𝑥), 1 − 𝑥𝑇)). (7) 

 

pLSFR A 

Selection 

rule 

Clock i 

api 

a
pi+1

 a
pi+2

 … a
pi +(p-1)

 

p-ary output 
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3 Algorithm for Determining Linear 

Complexity of a p-ary Sequence 
In this paragraph, a mathematical algorithm will be 

justified to determine linear complexity of a 

sequence over GF(p) using the extended Euclid 

algorithm.  

 

3.1 Extended Euclidean Algorithm 
The extended Euclidean algorithm is widely used in 

the contemporary algebraic and communication 

systems. It calculates the greatest common divisor 

gcd(a, b) of two elements of the ring R and the 

coefficients s and t such that 
gcd(a, b) = as + bt. (8) 

Let |a| > |b|, by consecutive execution of the 

division algorithm one can receive the following 

equation sequence 

a = bq1 + r1 

b = r1q2 + r2 

r1 = r2q3 + r3 

... 

rj – 2 = rj – 1qj + rj 

rj – 1 = rjqj+1 + 0 

(9) 

 

According to the Euclidean algorithm the 

greatest common divisor of a and b is rj  

(gcd(a, b) = rj). 

In terms of the extended Euclidean algorithm at 

each division step the intermediate coefficients si 

and ti, are calculated such that 

asi + bti = ri (10) 

using the equations 

si = si – 2 – qi si – 1, i = 1, 2, … 

ti = ti – 2 – qi ti – 1, i = 1, 2, … 
(11) 

 

Speaking specifically about the sequences 

produced by a pLFSR and with accuracy to a 

constant -1 in (5) the output sequence can be 

represented as a division of two polynomials  

𝑆(𝑥) =
ℎ(𝑥)

𝑞(𝑥)
 (12) 

By equating 12 and 4 we get 

𝑞(𝑥). 𝑆𝑇(𝑥) + ℎ(𝑥). 𝑥𝑇 = ℎ(𝑥) (13) 

 

The resulting equation (13) gives us the reason to 

apply the extended Euclidean algorithm for finding 

the gcd(xT, ST(x)) and calculating the minimal 

polynomial q(x) generating the sequence S. 

Moreover, the polynomial h(x) that defines the 

initial state of the pLFSR will be also calculated as a 

result of the extended Euclidean algorithm. 

 

 

3.2 Linear Complexity of p-ary Sequences 
Following the mathematical justification for the 

extended Euclidean algorithm in 3.1 the algorithm 1 

for determining the linear complexity of a p-ary 

sequence can be synthesized.  
Algorithm 1. Determining the linear complexity 

of a p-ary sequence. 

Input: n consecutive elements of the p-ary 

sequence (coefficients of ST(x)). 

Initialization: s–1(x) = 1, s0(x)= 0, t–1(x) = 0,  

t0(x) = 1, r–1(x) = xn, r0 = ST(x), j = 0 

while deg rj(x) ≥ n/2 do 

j = j + 1 

𝑞𝑗(𝑥) = ⌊𝑟𝑗−2(𝑥) 𝑟𝑗−1(𝑥)⁄ ⌋ 

𝑟𝑗(𝑥)  =  𝑟𝑗– 2(𝑥)  – 𝑞𝑗(𝑥)𝑟𝑗– 1(𝑥), 

𝑠𝑗(𝑥)  =  𝑠𝑗 – 2(𝑥)  – 𝑞𝑗(𝑥)𝑠𝑗– 1(𝑥), 

𝑡𝑗(𝑥)  =  𝑡𝑗 – 2 (𝑥) – 𝑞𝑗(𝑥)𝑡𝑗– 1(𝑥) 

Output: q(x) = tj(x), h(x) = sj(x),  = deg(q(x)). 

 

Next, the algorithm will be used for evaluation of 

the p-ary sequences generated by the pLFSRs and 

pGSSG. 

 

 

4 Evaluation of pGSSG output 

sequences 
In order to evaluate the work of the proposed 

algorithm 1 for determining the linear complexity of 

p-ary sequences a C# implementation is made. 

First, we will show the algorithm’s work by 

presenting an example for calculating the linear 

complexity of a certain p-ary sequence generated by 

a pLFSR. Let GF(32) and the primitive polynomial 

q(x) = 1 + x + 2x2 are chosen. A 3LFSR with Galois 

architecture is build according to [14] and the 

corresponding output sequence is [12202110] and 

the period is T = 8. As the length of the 3LSFR is  

L = 2 and q(x) is primitive polynomial the expected 

linear complexity of the given sequence is  = 2. 

Next, the algorithm execution is presented. 

Input: [1220], n = 4 consecutive elements of the 

p-ary sequence. 

Initialization:  

s–1(x) = 1,  t–1(x) = 0, 

s0(x)= 0, t0(x) = 1,  

r–1(x) = x4,  

r0 = Sn(x) = 1 + 2x + 2x2 

Calculations: 

𝑞1(𝑥) = ⌊𝑟−1(𝑥) 𝑟0(𝑥)⁄ ⌋ = 

= ⌊𝑥4/(1 + 2𝑥 + 2𝑥2)⌋ =  

= 1 + 𝑥 + 2𝑥2  

𝑟1(𝑥) =  𝑟−1(𝑥) – 𝑞1(𝑥)𝑟0(𝑥) = 2  

𝑠1(𝑥) =  𝑠−1(𝑥) – 𝑞1(𝑥)𝑠0(𝑥) = 1  
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𝑡1(𝑥) =  𝑡−1 (𝑥)– 𝑞1(𝑥)𝑡0(𝑥) = 2 + 2𝑥 + 𝑥2  

Output: Primitive polynomial 𝑞(𝑥) = 𝑡1(𝑥) =
2 + 2𝑥 + 𝑥2, initial state of the register h(x) = s1(x) 

= 1, linear complexity  = deg(q(x)) = 2 

As one can see we found that the linear 

complexity  = 2 is equal the expected value and the 

algorithm finished at its first step. The primitive 

polynomial that was found with the algorithm is 

equivalent to the one that was used to generate the 

sequence. 

Tests with different sequences, i.e. different 

Galois Fields, primitive polynomials and lengths of 

pLFSRs, were made, all reconfirming the results. 

As the aim of this paper is to investigate the non-

linearity that is introduced to the output sequence of 

the pGSSG by the self-shrinking rule of the p-ary 

register’s output, sets of such output sequences will 

be investigated with algorithm 1 in order to 

calculate their linear complexity. 

The equation (7) sets the boundaries of the linear 

complexity of a p-ary sequence, i.e. 0 ≤ S ≤ T. The 

value S = 0 is assumed to be the linear complexity 

of the zero sequence S = (0, 0, …, 0). The rule 

resulting from the Berlekamp-Massey algorithm 

says that for determining the linear complexity  of 

a sequence S, 2. consecutive elements of S are 

needed. Thus, the algorithm will be tested as its 

input will be fed with sequenced with length 2n, that 

corresponds to the maximal possible linear 

complexity . 

 

Table 1. Results for linear complexity of output 

pGSSG sequences 

GF(pn) Count Period 
Linear complexity 

Min. Max. 

GF(32) 2 6 4 5 

GF(33) 4 18 15 16 

GF(34) 8 54 48 51 

GF(35) 22 162 152 158 

GF(36) 48 486 478 481 

GF(52) 4 20 18 19 

GF(53) 20 100 76 98 

GF(54) 48 500 492 497 

GF(72) 8 42 35 41 

GF(73) 36 294 288 292 

GF(74) 160 2058 2050 2055 

 

More than 360 tests are conducted using the 

algorithm implementation for evaluation the linear 

complexity of the output sequences generated by 

pGSSG in different fields GF(pn). Table 1 shows a 

summary of the test results including the number of 

possible output pGSSG sequences (Count), their 

period T, and the minimum and maximum results 

for the calculated linear complexities. 

As it was shown in section 2, the linear 

complexity of the underlying pLSFR in pGSSG is 

equal to its length L. We can notice in Table 1 that 

the expected maximum value of the linear 

complexity of the non-linear pGSSG generator is  

max = T – (L – 1) = (p – 1)pL – 1 – (L – 1). 51 

Therefore, the proposed non-linear method for 

self-shrinking in the pGSSG increases the linear 

complexity with the following coefficient 

𝐾𝜆 =
(𝑝 –  1)𝑝𝐿 – 1 – (𝐿 –  1)

𝐿
. 52 

 

 
Fig. 2. Coefficient for increasing the linear 

complexity for pGSSG 

 

As it is shown in [13] when p = 2 the generator 

pGSSG is converted into the classic SSG [10]. 

Having that in mind figure 2 represents the linear 

complexity enhancement dependency of pGSSG 

over SSG (shown in blue color) on the length L of 

the used pLFSR with different prime p. 

 

 

5 Conclusion 
In this paper we have investigated the linear 

complexity of p-ary pseudo random sequences 

produced by p-ary generalized self-shrinking 

generator. We have mathematically justified that the 

extended Euclidian algorithm can be applied to find 

the linear complexity of p-ary pseudorandom 

sequences. Using this algorithm the linear 

complexity of output sequence of the pGSSG has 

been calculated. The more than 360 tests that have 

been performed show that the linear complexity of 

pGSSG output sequences is close to the maximum 

theoretical. 

 

 

K 

L 
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