
A System for Big Attributed Hierarchical Graph Visualization

VICTOR KASYANOV, TIMUR ZOLOTUHIN
Institute of Informatics Systems

Novosibirsk State University
Novosibirsk, 630090

RUSSIA
kvn@iis.nsk.su

Abstract: - Information visualization is a process of transformation of large and complex abstract forms
of information into visual form, strengthening cognitive abilities of users and allowing them to take
the most optimal decisions. A graph is an abstract structure that is widely used to model complex
information for its visualization. In this paper, we consider a system aimed at supporting of
visualization of big amounts of complex information on the base of attributed hierarchical graphs.

Key-Words: - Attributed hierarchical graphs; big graphs; information visualization; visualization systems.

1 Introduction
The current state of computer science and
programming can not be imagined without graph
theory methods and algorithms. The wide
applicability of graphs is due to the fact that they are
a very natural means of explaining complex
situations on an intuitive level. These advantages of
representing complex structures and processes with
graphs become even more tangible if there are good
means of visualizing them. Therefore, it is no
coincidence that in the world there is growing
interest in methods and systems of visualization of
structured information based on graph models [1],
[2], [3], [4].

At present, visualization based on graph models
is an integral element of processing complex
information on the structure of objects, systems and
processes in many applications in science and
technology. The market is full of high-end software
products that use information visualization methods
based on graph models. Basically these are
numerous specialized systems or embedded
components of systems that are aimed to visualize
certain subclasses of graph models and / or special
applications, but there are also some universal
systems (e.g., Higres [6], aiSee [7], yEd [8],
Cytoscape [9]) which can be used for visualization
of graph models of general type and wide use.

Since the information that it is desirable to
visualize is constantly growing and becoming more
complicated, more and more situations arise in
which the classical graph models cease to be
adequate. More powerful graph formalisms are
required to represent information models that have a

hierarchical structure. Hierarchy is the basis of
numerous methods of analysis and synthesis of
complex information models in various areas of
application of computer systems. To represent a
hierarchical kind of diagramming objects, some
more powerful graph formalisms have been
introduced, e.g. compound digraphs [9] and the
clustered graphs [10]. The compound digraph is an
extension of an undirected graph in which inclusion
relation between nodes of directed graphs can be
defined. A clustered graph is an extension of an
undirected graph in which hierarchy can be
represented by recursive partitioning of the graph
into disjoint subgraphs. The compound and
clustered graphs are relatively general graph
formalisms that can handle many applications with
hierarchical information, and are amenable to graph
drawing.

The size of the graph model to view is a key
issue in in information visualization based on graph
models [2], [4]. Large graphs pose several difficult
problems for visualization. As a rule, existing
visualization systems are aimed to visualize
relatively small graphs and can not be effectively
used when it is required to work with graphs of
large size of real applications. Another weak point is
that usual systems for graph visualization do not
have a support for many different attributes of graph
elements. The standard situation for graph
visualization systems is to have one text label for
each node and, optionally, for each edge.

The hierarchical graphs are an extension of
cluster and compound graphs and can be used in
many areas where visualization of complex and

WSEAS TRANSACTIONS on COMPUTERS Victor Kasyanov, Timur Zolotuhin

E-ISSN: 2224-2872 151 Volume 17, 2018

large amount information is needed [11], [12]. In
this paper, the Visual Graph system intended for
visualization of complex structured large amount of
information on the basis of attributed hierarchical
graph models is considered.

The rest of the paper is structured as follows.
Section 2 gives a general description of application
area of the Visual System. Section 3 describes its
user interface and tools. In Section 4 some
implementation features of the Visual System are
outlined. Section 5 is our conclusion.

2 Application Area
The Visual Graph system has been developed to
visualize the internal data structures typically found
in compilers and other programming systems. Data
structures that occur in these systems are usually
represented as attributed graphs of big size. For
example, the attributed syntax trees are used as the
internal representations of translated programs in
almost all compilers or interpreters. Optimizing and
restructuring compilers require static analysis of
control and data relationships in a program and their
presentation in the form of a more general graph
model of the program, for example, such as the
control-flow graph and the data-flow graph.

It is assumed that the Visual Graph system is
used as follows (Fig. 1). First, a compiler (or
another programming system) itself or with an
auxiliary program transforms a graph model arisen
during compiling a source program from its internal
representation into a file of one of the formats
supported by the Visual Graph system, usually into
the GraphML-file [13]. Then the Visual Graph
system will be able to read this graph model from
the file, to visualize it and to provide a user with
different navigation tools for its visual exploration.

Fig. 1. Application of the Visual Graph system.

3 User Interface and Tools

The user interface of the Visual Graph system is
shown in Fig. 2. It includes desktop, navigator,
minimap and attribute panel.

Fig. 2. User interface of the Visual Graph system.

3.1 Desktop
Desktop consists of a set of tabs that are opened by
a user to visualize the selected portion of the graph
model as its image on the plane. To improve the
image automatically obtained, the user can change
easily the shape of nodes and edges, the layout and
its settings, the representation of attributes, the scale
of the visible area and more.

Fig. 3. Navigator of the Visual Graph system.

WSEAS TRANSACTIONS on COMPUTERS Victor Kasyanov, Timur Zolotuhin

E-ISSN: 2224-2872 152 Volume 17, 2018

3.2 Navigator
Navigator is intended for visualization of all graphs
with which a user is working as an image where
nesting trees of fragments of these graphs are
represented via indentations (Fig. 3).

To quickly search on the trees, a search line was
implemented, which allows the user to use regular
expressions. After search, the user can select the
interesting elements and open them in a new tab.
The user can also specify a set of attributes that will
be visible for these elements. To work with big
graphs navigator can download their necessary
elements dynamically every time, when the user
uncollapses an element containing inner elements. If
the number of inner elements is too large, the
elements can be combined in blocks. Each block
contains no more than 100 elements.

3.3 Mini-map
Mini-map is a tool that allows a user to observe the
entire graph shown in a current tab of the desktop,
and also to move and to zoom its visible region, i.e.
such a part of the graph which is visible in the
current tab.

3.4 Attribute Panel
Attribute panel is a tool that allows a user to control
the visualization of attributes for the selected nodes
and edges in the current tab. For this purpose the
user has to select from the graph of the current tab
those nodes and edges that are of interest to his/her
and then to note in the attribute panel those
attributes that he/she wants to visualize for these
elements.

3.5 Filter
Filter is a tool, which supports the search in the
current tab all elements (nodes and edges) of the
graph model according to some conditions. The
conditions are described by the user using the
attribute names and values (Fig. 4). User-specified
conditions can be combined into expressions by
means of logical operators and parentheses. The
result of the filter work is the set of all those
elements of the graph model that satisfy the
specified conditions (Fig. 5).

3.6 Notepad
Notepad is a tool that allows a user to download
additional information in the form of text files and
link it with the graph model. The user can cross
from the graph model elements to the associated
additional text information and backwards. For
example, notepad can be used for connection of a
syntax tree with the source code.

Fig. 4. Filter of the Visual Graph system.

3.7 Structural Analysis Tools
Structural Analysis Tools include a variety of
algorithms for graph model, which help the user to
select and visualize the information he needs in their
images. These include tools for finding the shortest
path between two given nodes, maximal strongly
connected subgraphs containing a given node, all
paths between two given nodes, immediate
dominator for a given node, and largest common
subgraph of two graphs.

Fig. 5. Screenshot of the filter’s result

WSEAS TRANSACTIONS on COMPUTERS Victor Kasyanov, Timur Zolotuhin

E-ISSN: 2224-2872 153 Volume 17, 2018

4 Implementation Features

4.1 Storage of Big Graph Models within the
System
File size with an input graph model can reach
hundreds of megabytes, which prevents the use of
the computer's memory to store graphs rendered in
the system. It was therefore decided to use the
caching data to the hard disk, using a relational
database. The embedded SQLite database [14] has
been chosen as a relational database. Unlike most
popular relational database, the SQLite does not
require installing a server, and the client-server
architecture is reduced to work with files.

In the Visual Graph system a part of the data is
contained in the database and another part is
contained in the main memory, and thus high speed
of working with large graph models is achieved.

4.2 Reduction of Layout Time
Visual Graph was designed to explore large graphs
that consist of many hundreds of thousands of
elements. However, our layout algorithms have
nonlinear time, and so the layout of large graphs
may require considerable time.

There are two main ways to speed up the layout
algorithm in the Visual Graph system: multi-aspect
layout of graph and control of layout algorithms.

The first way of time reduction is due to the fact
that the Visual Graph system never tries to build an
image of the entire graph, and is limited to building
only drawings of those parts of it that are currently
interesting to a user. Therefore, before the user starts
to consider the graph, the system can do nothing,
and thus get rid of the complex task of building the
layout of the entire large graph, which is solved first
in the usual graph visualization system. Later, when
the user starts interacting with the system and shows
interest in those or other parts of the graph, the
layouts of the corresponding parts of the graph are
constructed per demand. As a result of this
interaction, a so-called multi-aspect layout of the
graph takes place, which is a certain set of layouts
of relatively small parts of the graph model. For
presentation of multi-aspects layout a set of tabs
which includes a separate tab for visualization of
each considered part of the graph model is used.

Thus, during the interaction of the user with the
system only when the user's desire arises to consider
this or that part of a graph model, the application of

the layout algorithm to the corresponding part of the
graph model takes place. To form the interested part
of the graph model the user can select its elements
in the current tab or in the navigator. The user can
also define some condition either in the filter or in
the search line of navigator. Then this condition will
be used for selection of all graph elements which
will form the interested part of the graph mogel. The
search of all graph elements satisfied to the
condition can be performed either locally (in some
subgraph, e.g. through a subgraph presented in the
current tab) or globally (around the entire graph). As
a rule, a multi-aspect layout of a graph model makes
every visible part of the graph model smaller, thus
enabling its layout to be calculated faster and the
quality of its layout to be improved.

The other way of time reduction is connected
with the possibility to control the layout algorithms
by user. For example, some phases of the layout
algorithm can be omitted by the user, or the
maximum number of iterations of some phases of
the layout algorithm can be limited. However, this
way can usually decrease the quality of the graph
layout. But it is possible to solve this problem in the
Visual System, since the user can always attempt to
improve the automatically obtained layout by hand,
e.g. by moving of nodes or by changing of their
sizes or forms.

4.3 Expandability of the System
All the features of the Visual Graph system,
including possibilities for navigation, visualization
and structural analysis, are implemented (and are
available to users of the system) using a set of tools,
which can be easily extended by both the developers
of the Visual Graph system and any third-party
developers.

To achieve a simple expandability of the Visual
Graph system it was decided to use the Apache
Felix product [15], which, in turn, is an
implementation of the OSGi specification [16]. This
solution is the de facto standard for this type of tasks
and allows different developers to easily extend the
system by writing new plug-ins.

5 Conclusion
The Visual Graph system intended for visualization
of big amounts of complex information on the basis
of attributed hierarchical graph models was
considered.

WSEAS TRANSACTIONS on COMPUTERS Victor Kasyanov, Timur Zolotuhin

E-ISSN: 2224-2872 154 Volume 17, 2018

Unlike its analogues (such as aiSee [5], yEd [6],
Cytoscape [7] or Higres [17]) the Visual Graph
system has the following important properties. It
supports the processing of arbitrary attributed
hierarchical graphs (including compound and cluster
graphs) and the using for specification of the input
(visualized) graph model the standard GraphML
language. The system makes a multi-aspect layout
of graph model that consists of separate drawings of
only such its fragments which have been interested
for user during graph model consideration and
constructed on demand. The Visual Graph system
provides also rich opportunities to navigate through
big graph model, to make its structural analysis and
to work with the attributes of its elements, as well as
to extend and customize easily the system to
specific needs of a concrete user.

At present the Visual Graph system is focused on
the visualization of data structures arising in
compilers, can simultaneously work with them both
in graphical and in text forms, and provides smooth
performing of the basic operations on graphs with
up to 100000 elements (nodes and edges).

Its successful test use had been in the Intel
Company.

It is also worth noting that using the Visual Graph
system is not limited to the visualization of the
internal data structures arising in compilers. It can
be applied in other related fields which require
graph visualization and navigation. For example, the
system is used now as a base of visual debugging
tool of a parallel programming system CSS which is
under development for supporting cloud
supercomputing on the base of the Cloud Sisal
language [18]. The CSS system uses the attributed
hierarchical graphs for internal representations of
Cloud-Sisal-programs and provides means to write
and debug Cloud-Sisal-programs on low-cost
devices as well as to translate and execute them in
clouds [19]. So, the system can open the world of
parallel and functional programming to all students
and scientists without requiring a large investment
in new, top-end computer systems.

This work is supported in part by the Russian
Foundation for Basic Research under grant RFBR
18-07-00024.

References:
[1] G. DiBattista, P. Eades, R. Tamassia,

I.G. Tollis. GraphDrawing: Algorithms for
Vizualization of Graphs, PrenticeHall, 1999.

[2] I. Herman, G. Melançon, M.S. Marshall. Graph
visualization and navigation in information

visualization: a survey, IEEE Trans. on
Visualization and Computer Graphics, Vol. 6,
2000, pp. 24 - 43.

[3] V.N. Kasyanov, V.A. Evstigneev. Graphs in
Programming: Processing, Visualization and
Application. St. Petersburg, BHV-Petersburg,
2003. (In Russian).

[4] V.N. Kasyanov, E.V. Kasyanova. Information
visualization on the base of graph models.
Scientific Visualization, Vol. 6, No. 1, 2014,
pp. 31–50 (in Russian)

[5] aiSee homepage, http://www.aisee.com
[6] yEd homepage, http://www.yworks.com
[7] Cytoscape homepage,

http://www.cytoscape.org
[8] Higres homepage, http://pco.iis.nsk.su/higres/
[9] K. Sugiyama, K. Misue. Visualization of

structured digraphs, IEEE Trans. on Systems,
Man and Cybernetics, Vol. 21, No. 4, 1999,
pp. 876-892.

[10] Q.W. Feng, R.F. Cohen, P. Eades. Planarity for
clustered graphs, Lecture Notes in Computer
Science, Vol. 979, 1995, pp. 213 - 226.

[11] V.N. Kasyanov. Hierarchical graph models
and information visualization, In: Proceedings
of the 2012 Third World Congress on Software
Engineering (WCSE 2012), IEEE Computer
Society, 2012, pp. 79-82.

[12] V.N. Kasyanov. Methods and tools for
structural information visualization, WSEAS
Transactions on Computers, Vol. 12, No. 7,
2013, pp. 349 - 359.

[13] U. Brandes, M. Eiglsperger, J. Lerner and
C. Pich. Graph Markup Language (GraphML),
In: Handbook of Graph Drawing and
Visualization, CRC Press, 2013, pp. 517 - 541.

[14] SQLite homepage, http://www.sqlite.org
[15] Apache Felix homepage, http://felix.apache.org
[16] OSGi Alliance homepage,

http://www.osgi.org/Main/HomePage
[17] I.A. Lisitsyn, V.N. Kasyanov. HIGRES -

visualization system for clustered graphs and
graph algorithms, Lecture Notes in Computer
Science, Vol.1731, 1999, pp. 82 - 89.

[18] V.N. Kasyanov, E.V. Kasyanova. Methods and
Tools of Parallel Programming. CEUR
Workshop Proceedings, Vol. 1839, 2017,
pp. 141-154.

[19] V.N. Kasyanov, E.V. Kasyanova. Graph- and
cloud-based tools for computer science
education, Lecture Notes in Computer Science,
Vol. 9395, 2015, pp. 41 - 54.

WSEAS TRANSACTIONS on COMPUTERS Victor Kasyanov, Timur Zolotuhin

E-ISSN: 2224-2872 155 Volume 17, 2018

http://www.aisee.com/
http://www.yworks.com/
http://www.cytoscape.org/
http://www.sqlite.org/
http://www.osgi.org/Main/HomePage

