
Live Data Migration Strategy with Stream Processing Framework

KUN MA, QIUCHEN CHENG, and BO YANGun Ma, Qiuchen Cheng, and Bo Yang
University of Jinan

Shandong Provincial Key Laboratory of Network Based Intelligent Computing
336 West Road of Nan Xinzhuang, Jinan 250022

CHINAhina
ise mak@ujn.edu.cn, chengqc.m@gmail.com, yangbo@ujn.edu.cn

Abstract: Live data migration in the cloud is responsible to migrate blocks of data of emigration node to several
immigration node. However, live data migration strategy is a NP-hard problem like task scheduling. Recently,
in-stream processing is the immediate need in many practical applications. Therefore, we explore a real-time live
data migration strategy with stream processing framework in this paper. First, the migration cost and balance
model is introduced as the metrics to evaluate data migration strategy. Subsequently, a live data migration strategy
with particle swarm optimization is proposed. Afterwards, we implement this method using stream processing
framework. The experimental results show the best performance of our method in all.

Key–Words: load balancing, stream processing, data migration, particle swarm optimization

1 Introduction

Cloud computing [1], as a new computing paradigm,
has recently received considerable attention in both a-
cademic and industry to provide dynamically scalable
and virtualized resource (such as infrastructure, soft-
ware and data) as a service over the Internet. By this
means, users will be able to access large-scale data in
the cloud anywhere and anytime on demand. Cloud
elasticity [2], the ability to use as many resources
as needed with low cost at any given time, the ser-
vice provider must take load balancing of the data re-
sources into consideration. For example, the cloud n-
odes providing data access services need dynamic da-
ta migration to guarantee that all the data nodes can
provide stable service [3] [4]. The data nodes with
heavy load caused by the emergency and uncertainty
of data access will become the bottleneck of data ser-
vices. Therefore, the requirement of live data migra-
tion strategy in the cloud is urgent to guarantee quality
of service and satisfy the elasticity of cloud comput-
ing.

Live data migration in the cloud means that the
data resource of each node is responsive all the time
during the migration process from the clients’ per-
spective. Compared with traditional suspend/resume
migration, live migration holds many benefits such
as energy saving, load balancing, and online main-
tenance [5]. Many live migration strategy method-
s are proposed to improve the migration efficiency.
The first solution is making migration plan by migra-
tion cost [6] [5]. A load balancing framework, sup-

porting a wide range of measures for load imbalance
and reconfiguration cost, are proposed to reconfigur-
ing a system facing dynamic workload changes [6].
To improve the migration strategy, greedy algorithm
is used to determine the best migration solution [5].
The second solution is making migration plan by hot-
spot neighbor [7] [8]. The hot-spot data will be mi-
grated to the nearest neighbor by some metrics [7].
A subset of objects from hot-spot servers is selected
to perform topology-aware migration to minimize re-
configuration costs [8]. Some more intelligent algo-
rithm are assisted to make a migration strategy. The
frequency of data access and block size of migration
data are considered to find target nodes using particle
swarm optimization algorithm [9]. More metrics such
as priority of tenant ant its data are considered in the
improved method [10].

Live data migration strategy is a NP-hard problem
like task scheduling [11]. Therefore, particle swar-
m optimization (PSO) and genetic algorithm (GA)
are used to address this issue. Both algorithms are
based on collaborative population-based search, but
the particle swarm optimization is better in efficien-
cy [12] [13]. Reference [14] gives more analysis on
how particle swarm optimization benefits task assign-
ment. Discrete particle swarm optimization (DPSO) is
also used to address load balancing [15] [16] [17]. Al-
though traditional PSO is effective, each particle that
is computing in serial will cause too much waste in
case of big data. Recently, several researchers pro-
posed to improve PSO in parallel such as MapReduce
framework [18] [19] [20], where experiment results

WSEAS TRANSACTIONS on COMPUTERS Kun Ma, Qiuchen Cheng, Bo Yang

E-ISSN: 2224-2872 142 Volume 17, 2018



show that PSO with MapReduce is faster. However,
this batch processing framework need repeating start-
up of migration strategy job.

Recently, the shortcomings and drawbacks of
batch-oriented data processing (e.g. MapReduce
framework) were widely recognized by the Big Data
community. In-stream processing [21] [22] is the im-
mediate need in many practical applications. There-
fore, it is natural that we wonder how both live data
replication strategy and stream processing framework
can be integrated and benefit from each other. In this
paper, we first introduce the migration cost and imbal-
ance model as the metrics to evaluate data migration
strategy. Then, a live data migration strategy with P-
SO is proposed. Afterwards, we implement this ap-
proach using stream processing framework. Finally,
live data replication approach with stream processing
framework shows the best performance of our method
in all.

The rest of the paper is organized as follows. Sec-
tion 2 discusses the related work. In Section 3, we in-
troduce the methodology of live data migration strate-
gy with stream processing framework. The migration
cost and imbalance model is firstly introduced to e-
valuate the performance of the data migration. Subse-
quently, this live data migration strategy using PSO is
proposed, and then implemented with the stream pro-
cessing framework. Section 4 gives the experimental
evaluation of this live data migration strategy. Brief
conclusions are outlined in the last section.

2 Related Work

2.1 Data Migration Strategy

With the emerging of cloud computing and batch
computing, there are mainly two types of classical da-
ta migration strategies: online live migration [23] and
offline batch-oriented migration. Online live migra-
tion continuously analyzes the load in motion to deliv-
er real-time analytic in real time, and migrates the da-
ta from the node with heavy load to the one with light
load. Offline batch-oriented migration is another way
to migrate the data in parallel. Generally, MapReduce
framework [24] is selected to implement this method.

There are mainly two types of skews for data us-
age in the cloud: data skew and load skew. One or
both of them might exist in the system anytime. Great
efforts have been paid to deal with data skew to guar-
antee a uniform distribution of data among cluster n-
odes in the previous work [25] [26]. Whereas the re-
balancing is also costly, load skew is the main focus
of this paper, which is more likely to cause nodes to
be overloaded. We assume that this is the main fac-

tor causing imbalance, and other imbalances can be
easily tolerated.

2.2 Straightforward Method

Live data migration is in charge of transferring blocks
of data from emigration nodes to immigration nodes.
The data are stored in the form of blocks, and each
block contains several records. Therefore, the data
migration problem means migrating m blocks of da-
ta to different target n nodes. As mentioned above,
the data migration problem can be generalized to task
scheduling problem [27] or binpacking problem [28],
which is NP hard. There are several intelligent method
to address this issue, such as particle swarm optimiza-
tion (PSO), genetic algorithm (GA), and greedy algo-
rithm. A modified PSO-based task scheduling method
was proposed to reallocate migrated virtual machines
in the overloaded host and dynamically consolidate
the under-loaded host [29]. Skewness and refined cost
model are improved to address resource allocation of
virtual resources in the cloud later [30] [27]. Some
researchers investigated to use PSO to address load
balancing problem [31] [15].

After we evaluate the cons and pros of the above
mentioned methods, we select PSO to determine how
to migrate data from emigration nodes to immigration
nodes. Compared with straightforward methods, we
attempt to implement live data migration strategy in
Parallel.

2.3 Parallel Method

Several modern parallel methods have been proposed
to address binpacking-like problem in order to im-
prove the performance using MapReduce techniques.
PSO with MapReduce framework is proposed to ad-
dress intrusion detection and overlay network opti-
mization [32] [33].

3 Methodology of Live Data Migra-
tion Strategy

3.1 Migration Cost Model and Balance Mod-
el

3.1.1 Migration Cost Model

Migration cost is the trade-offs between the migration
time and performance impact. We represent the mi-
gration cost model in a two-dimensional space, where
x axis denotes migration time t and y axis denotes per-
formance impact i. The migration cost of at any giv-
en moment is represented by the product of migration

WSEAS TRANSACTIONS on COMPUTERS Kun Ma, Qiuchen Cheng, Bo Yang

E-ISSN: 2224-2872 143 Volume 17, 2018



Figure 1: Migration cost model.

time and performance impact. The cost of a migration
is represented by the a given rectangle (computed as:
cost=(t2− t1)*(i2− i1)) (see Figure 1). Consequent-
ly, the trade-off problem is converted into the rectan-
gle selection problem. In fact, this rectangular area-
based cost model is built based on the idea of inte-
gration in mathematics. Given a function of response
time and an interval of time, the definite integral could
be computed. Figure 1 shows the response time in 2
migrations (a and b). Consider the longest interval
(from t1 to t2) as the basis. The average response
time r can be represented as r =

∫ t2
t1 f(t)dt/(t2−t1),

where f(t) is the instant response time. The integra-
tion can be regarded as the shadow area Ss plus the
blank area Sb. Since the blank area Sb is the same
with different migrations, the average response time
is finally decided by the shadow area Ss.

3.1.2 Balance Model

Load skew is the main factor that affects the perfor-
mance of the data node. Next, we propose a bal-
ance model of the data nodes. Consider li be the load
value on node i, then the normalized load value is
pi = li/

∑n
i=1(li). According to Shannon’s theory

[34], the information entropy may serve as a measure
of mix-up of a distribution. Thus we build the balance
function F based on Shannon’s theory. The entropy
of P is denoted as Equation 1.

H(p) = −
n∑

i=1

(pi ∗ logpi) (1)

Obviously, the larger the entropy is, the more bal-
ancing the load is. It is clear that the maximum value
of H(p) is log(n) if and only if pi = 1/n, which cor-
responds to the most uniform load distribution. Af-
terwards, the balance model is represented by the nor-
malized entropy as Equation 2.

F = H(P )/log(n) = −
n∑

j=1

(Pj ∗ logPj)/log(n)

(2)

3.2 Live Data Migration Strategy with Dis-
crete Particle Swarm Optimization

3.2.1 Problem Description

In fact, live data migration problem means migrating
m blocks of data of 1 source emigration node to n tar-
get immigration nodes. The constraint criteria is that
1 block of data can only migrated into 1 immigration
node, that is called 1 migration task, and all the tasks
can executed in parallel. The objective of live data mi-
gration strategy is the minimum value of the quotient
of migration cost C and loading balance H . Migra-
tion cost C is calculated as the migration cost model
shown in Equation 1, denoted as C = T ∗ I , where
migration time T depends on the number of blocks od
data, and performance impact I depends on the load-
ing performance of the immigration node. Loading
balance of migration cost H is calculated by the nor-
malized entropy of loading balance shown in Equation
2.

Live data migration strategy is described as how
to migrate m blocks of data of 1 source emigration
node to n target immigration nodes. Consider Di

(1¡=i¡=m) as the size of block i, Pj (1¡=j¡=n) is the
loading performance of the immigration node j. The
output of live data migration strategy is xij , where
xij = 1 means migrating block i to immigration n-
ode j. Besides, the fitness of the quotient of migration
cost and its loading balance is also calculated.

3.2.2 Fitness

The fitness of live data migration strategy is consid-
ered as the quotient of migration cost and its loading
balance, denoted as Equation 3. T is the migration
time (represented by size of block Di), I is the per-
formance impact (represented by load of immigration
node Pj), and H is normalized entropy of migration
cost.

F =
C

H
=
T ∗ I
H

=

∑m
i=1

∑n
i=1(Xij ∗ Tij) ∗

∑m
i=1

∑n
i=1(xij ∗ Iij)

−
∑n

j=1(xij ∗ (Tij ∗ Iij) ∗ log(Tij ∗ Iij))/log(n)

=

∑m
i=1

∑n
i=1(Xij ∗Di) ∗

∑m
i=1

∑n
i=1(xij ∗ Pj)

−
∑n

j=1(xij ∗ (Di ∗ Pj) ∗ log(Di ∗ Pj))/log(n)
(3)

WSEAS TRANSACTIONS on COMPUTERS Kun Ma, Qiuchen Cheng, Bo Yang

E-ISSN: 2224-2872 144 Volume 17, 2018



3.2.3 Position and Velocity

In the problem of live data migration strategy, the po-
sition of a particle is a feasible migration task, migrat-
ing a block of data to a target immigration node. The
position matrix X is denoted as X = {xij} (1¡=i¡=m,
1¡=j¡=n). The value of xij is either 0 or 1. xij = 1
means block i is migrated into immigration node j.
The constraint criteria of xij is

∑n
j=1 xij = 1. The

velocity matrix of a particle V = is denoted as Equa-
tion 4, where vij is the velocity of a particle, w is the
inertia weight, c1 and c1 are learning factors respec-
tively, r1 and r1 are random values in range [0, 1], pb
is the previous best fitness value of this particle, and
gb is the global best fitness value. The velocity value
of each particle is confined within [-vmax,vmax].

vt+1
ij = w∗vtij+c1∗r1∗(pb−xij)+c2∗r2∗(gb−xij)

(4)
Since only 1 particle in the same row of the po-

sition matrix is 1, we update the position of a particle
according the maximum value of sigmoid function of
velocity.

xij =

{
1 ifsigmod(vij) = maxn

j=1(sigmod(vij)), ∀i ∈ {1, 2, ...,m}
0 otherwise

In order to avoid all the blocks are migrated in-
to the same immigration node with small load perfor-
mance, we propose a safeguard measure to guarantee
xij is not equal to x(i+1)j . If xij=x(i+1)j = 1, we
set x(i+1)j as0, and choose another particle with the
second largest sigmod(vij) to set as 1.

3.2.4 Algorithm

The pseudo code of the proposed PSO algorithm to
address live data migration strategy is stated as Algo-
rithm 1:

3.3 Live Data Migration Strategy with
Stream Processing Framework

3.3.1 Stream Topology

In order to implement the real-time decision to mi-
grate blocks of data to immigration nodes, we attempt
to propose a stream processing framework. To do real-
time computation, the stream topology is present first,
which is shown in Figure 2. A topology is a graph
of computation of live data migration strategy. Each
computation node in a topology contains processing
logic, and links between nodes indicate how in-stream

Algorithm 1 Live data migration strategy using PSO
pso
Require: block size array of data in the emigration

node D; load performance array of immigration
node P ;

Ensure: particle position matrix X; global fitness F ;
1: initialize velocity matrix;
2: initialize position matrix (0 or 1);
3: normalize D and P ;
4: initialize pbest pb and gbest gb
5: while result is not convergent do
6: compute fitness using Eq. 3;
7: update pbest pb;
8: update velocity using Eq. 4;
9: update position;

10: update gbest gb;
11: end while
12: endprocedure

Figure 2: Stream topology of live data migration strat-
egy.

data should be passed around between nodes. The in-
put of blocks of data of emigration nodes and load
performance of immigration nodes are called stream
in the stream processing framework. A stream is ab-
stracted as an unbounded sequence of tuples. This
stream processing framework provides the primitives
for transforming a stream into a new stream in a dis-
tributed and reliable way. Finally, the stream after the
last processing element is the output strategy of live
data migration. Networks of processing element are
packaged into a topology which is the top-level ab-
straction. A topology is a graph of stream transforma-
tions where each node is a processing element. Edges
in the graph indicate which processing elements are
subscribing to which streams. When a processing ele-
ment emits a tuple to a stream, it sends the tuple to ev-
ery processing element that subscribed to that stream.

3.3.2 Processing Element

Processing element provides for doing stream trans-
formations to migrate blocks of data to immigration n-

WSEAS TRANSACTIONS on COMPUTERS Kun Ma, Qiuchen Cheng, Bo Yang

E-ISSN: 2224-2872 145 Volume 17, 2018



odes. This processing element have interfaces to help
developers implement the application-specific logic to
complete the migration. A source of streams of the in-
put element is emitted to the stream processing frame-
work, then grouped to compute fitness, update pbest,
velocity and position of each particle. A input element
reads tuples of block size of data of emigration nodes
and load performance of immigration nodes, and emit
them as a stream. The subsequent processing elemen-
t of the stream processing framework consumes any
number of input streams to implement PSO process-
ing, and possibly emits new streams. Complex stream
transformations require multiple steps and processing
elements, to generate the PSO result.

Several grouping tasks to compute fitness, update
pbest, velocity and position of each particle are in par-
allel. Local fitness element calculate the fitness of par-
ticles in this group according to Equation 3, pbest el-
ement means updating pbest, velocity and position el-
ement is responsible to update velocity and position
according to Equation 4. Afterwards, all the particles
are put together to compute global fitness element and
update gbest.

3.3.3 Grouping Strategy

In order to make PSO execution in parallel as many
tasks across the cluster and reduce the convergence
rate of PSO, we group particles before computing fit-
ness. The particles in different groups evolve inde-
pendently. We adopt fitness grouping strategy to par-
tition particles, which answers this question by telling
stream processing framework how to send tuples be-
tween sets of tasks. According to the global fitness,
we partition particles into several groups.

3.3.4 Fault Tolerance

We provide one method that is called implicit lineage
tracking to deal with fault tolerance. Each in-stream
compuation is guaranteed to be processed at least once
by verifying the transactional unique ID. In case of
failure, the PSO computation is recovered from the
checking point.

We provide an acknowledgment task to track the
directed acyclic graph (DAG) of tuples for every tu-
ple of input element. When this task sees that a DAG
is complete, it sends a message to the input elemen-
t that created the acknowledgment message. When
a tuple is created in a topology, it is given a random
64 bit ID within its lifecycle. These IDs are used by
acknowledgment tasks to track the tuple DAG for ev-
ery tuple of input element. Every tuple knows the ids
of all the tuples of input element for which it exists
in their tuple trees. After emitting a new tuple in the

intimidate processing element, the tuple ids of input
element from the tuple’s anchors are copied into the
new tuple. When a tuple is acknowledged, it sends a
message to the corresponding acknowledgment tasks
with information about how the tuple tree changed.

Acknowledgment tasks do not track the tree of tu-
ples explicitly. For large tuple trees with tens of t-
housands of nodes, tracking all the tuple trees could
overwhelm the memory. Instead, the acknowledg-
ment tasks take a XOR strategy that only requires a
fixed amount of space per tuple. An acknowledgment
task stores a map from a tuple id to a pair of values.
The first value is the task id creating the tuple of input
element, which sends completion messages later. The
second value is a 64 bit number called the acknowl-
edgment value, which is a representation of the state
of the entire tuple tree. It is simply the XOR of all tu-
ple ids that have been created and/or acknowledged in
the tree. When an acknowledgment task sees that an
acknowledgment value has become 0, then it knows
that the tuple tree is completed. Since tuple ids are
random 64 bit numbers, the chances of an acknowl-
edgment value accidentally becoming 0 is extremely
small.

As shown in Figure 3(a), the initial value of ac-
knowledgment is 1A0F . After emitting tuples to
processing element 1, the acknowledgment value is
1A0F xor 1A0F (see Figure 3(b)). Next, the process-
ing element 1 emits two groups of tuples to processing
element 2 and 3, the acknowledgment value is 1AoF
xor 1A0F xor 2007 xor 300A (see Figure 3(c)). Fi-
nally, processing element 2 and 3 generates tuples to
the final processing element, the acknowledgment val-
ue becomes 1AoF xor 1A0F xor 2007 xor 300A xor
2007 xor 300A=0. The acknowledgment value 0 indi-
cates that this task has completed successfully.

With the above methods, the stream processing
framework avoids data loss in case of failure.

• When a tuple is not acknowledged due to the died
task, the tuple IDs of input element at the root of
the trees for the failed tuple will time out and be
replayed.

• When the acknowledgment task dies, all the tu-
ples of input element that the acknowledgment
task was tracking will time out and be replayed.

• When the task of input element dies, the data
source that the spout talks to is responsible for
replaying the messages.

WSEAS TRANSACTIONS on COMPUTERS Kun Ma, Qiuchen Cheng, Bo Yang

E-ISSN: 2224-2872 146 Volume 17, 2018



(a) Initial acknowledgment
value.

(b) Acknowledgment value after emit-
ting tuples to processing element 1.

(c) Acknowledgment value after processing element 1.

(d) Final acknowledgment value.

Figure 3: Acknowledgment task is updating acknowl-
edgment value

4 Experiment Results

We have made two experiments to evaluate our ap-
proach to make a decision of live data migration. The
first experiment is to evaluate the grouping improve-
ment of PSO, and the second experiment is to evaluate
the instantaneity of PSO with with stream processing
framework. The evaluation indicators is the ratio be-
tween migration cost and its balance, which is shown
in Equation 3.

4.1 Standard PSO vs. proposed PSO

This experiment is to illustrate the superiority of
our proposed PSO. We run our experiments an In-
tel Core(TM) i5-2300 @2.8 GHz CPU, 8GB memory
and runs a 64-bit CentOS Linux OS with a Java 1.6
64-bit server JVM. The fitness and execution time of
standard PSO and our proposed PSO are shown in Ta-
ble 1. As evident, the proposed PSO performs better
than classical PSO, especially in case of large amount
of blocks of data and immigration nodes.

4.2 PSO with MapReduce vs. PSO with
Stream Processing Framework

This experiment is to illustrate the instantaneity of
PSO with stream processing framework. We use
Hadoop 2.2 and Apache Storm 0.95 to run MapRe-
duce and stream topology. We implement our pro-
posed PSO with Hadoop MapReduce and Apache S-
torm respectively. The MapReduce job of our pro-
posed PSO is assgined with 6 map and 3 reduce tasks,
and speculative execution feature of Hadoop is dis-
abled. Table 2 shows the fitness and execution time
of PSO with MapReduce and PSO with stream pro-
cessing framework. The execution time of PSO with
stream processing framework is slightly faster than P-
SO with MapReduce. Without repeated startup of P-
SO jobs, PSO with stream processing framework is
better in in-stream live data migration strategy overal-
l.

5 Conclusions

There are many methods to address live data migra-
tion strategy, but most of them mainly focus on the
parallel execution. For the in-stream strategy, batch
processing is not always a good way. Therefore, we
investigate another stream processing method to ad-
dress live data migration strategy. Both migration cost
and balance models are proposed to evaluate the met-
rics of migration strategy. Next, the live data migra-
tion strategy using PSO and stream processing frame-

WSEAS TRANSACTIONS on COMPUTERS Kun Ma, Qiuchen Cheng, Bo Yang

E-ISSN: 2224-2872 147 Volume 17, 2018



Table 1: Fitness and execution time of standard PSO and proposed PSO.

No. Blocks of data Immigration nodes Iteration
PSO Grouping PSO

Fitness Execution time (ms) Fitness Execution time (ms)

1 500 100 500 8.34 3999 8.22 3819
2 1000 100 500 5.32 8031 4.66 7551
3 3000 100 500 2.07 39872 1.31 22466
4 500 300 1000 3.12 12341 2.85 11181
5 1000 300 1000 2.35 23123 1.29 22317
6 3000 300 1000 4.39 73123 3.98 66679

Table 2: Fitness and execution time of PSO with MapReduce and PSO with stream processing framework.

No. Blocks of data Immigration nodes Iteration
PSO with MapReduce PSO with stream processing framework

Fitness Execution time (ms) Fitness Execution time (ms)

1 500 100 500 8.19 774 8.23 647
2 1000 100 500 4.59 1510 4.53 1259
3 3000 100 500 1.39 5503 1.41 3754
4 500 300 1000 2.84 2478 2.72 1874
5 1000 300 1000 1.37 4437 1.31 3730
6 3000 300 1000 4.09 13345 3.95 11123

work are present to illustrate the instantaneity of mi-
gration.

Acknowledgements: This work was supported
by the National Key Technology R&D Program
(2012BAF12B07), the Shandong Provincial Natural
Science Foundation (ZR2014FQ029), the Shandong
Provincial Key R&D Program (2015GGX106007),
the Doctoral Fund of University of Jinan (XBS1237),
the National Training Program of Innovation and En-
trepreneurship for Undergraduates (201410427030),
and the Teaching Research Project of University of
Jinan (J1344).

References:

[1] Michael Armbrust, Armando Fox, Rean Griffith,
Anthony D Joseph, Randy Katz, Andy Konwin-
ski, Gunho Lee, David Patterson, Ariel Rabkin,
Ion Stoica, et al. A view of cloud comput-
ing. Communications of the ACM, 53(4):50–58,
2010.

[2] Paul C Brebner. Is your cloud elastic enough?:
performance modelling the elasticity of infras-
tructure as a service (iaas) cloud applications. In

Proceedings of the 3rd ACM/SPEC International
Conference on Performance Engineering, pages
263–266. ACM, 2012.

[3] Sudipto Das, Shoji Nishimura, Divyakant A-
grawal, and Amr El Abbadi. Albatross:
lightweight elasticity in shared storage databas-
es for the cloud using live data migration. Pro-
ceedings of the VLDB Endowment, 4(8):494–
505, 2011.

[4] Maryam Razavian and Patricia Lago. A lean
and mean strategy: a data migration industrial
study. Journal of Software: Evolution and Pro-
cess, 26(2):141–171, 2014.

[5] Xiulei Qin, Wenbo Zhang, Wei Wang, Jun Wei,
Xin Zhao, and Tao Huang. Towards a cost-
aware data migration approach for key-value s-
tores. In Cluster Computing (CLUSTER), 2012
IEEE International Conference on, pages 551–
556. IEEE, 2012.

[6] Daniel Kunkle and Jiri Schindler. A load bal-
ancing framework for clustered storage system-
s. In High Performance Computing-HiPC 2008,
pages 57–72. Springer, 2008.

WSEAS TRANSACTIONS on COMPUTERS Kun Ma, Qiuchen Cheng, Bo Yang

E-ISSN: 2224-2872 148 Volume 17, 2018



[7] Flavio Pfaffhauser. Scaling a cloud storage sys-
tem autonomously. PhD thesis, Masters thesis,
ETH Zuerich, 2010.

[8] Gae-won You, Seung-won Hwang, and Navendu
Jain. Scalable load balancing in cluster storage
systems. In Proceedings of the 12th Internation-
al Middleware Conference, pages 100–119. In-
ternational Federation for Information Process-
ing, 2011.

[9] Xiaojun Ren, Yongqing Zheng, and Lanju Kong.
Multi-tenant data dynamic migration strategy of
saas application in the cloud. Computer Engi-
neering and Science, 35(10):89–97, 2013.

[10] Lanju Kong, Qingzhong Li, and Xiaona Li. A
multi-tenant data migration policy for saas deliv-
ery platform. Computer Applications and Soft-
ware, 28(11):52–56, 2011.

[11] Gerhard J Woeginger. Exact algorithms for np-
hard problems: A survey. In Combinatorial Op-
timizationłEureka, You Shrink!, pages 185–207.
Springer, 2003.

[12] Rania Hassan, Babak Cohanim, Olivier
De Weck, and Gerhard Venter. A comparison
of particle swarm optimization and the genetic
algorithm. In Proceedings of the 1st AIAA
multidisciplinary design optimization specialist
conference, pages 1–13, 2005.

[13] Carlos A Souza Lima, Celso Marcelo F Lapa,
Cláudio Márcio do NA Pereira, João J da Cun-
ha, and Antonio Carlos M Alvim. Compari-
son of computational performance of ga and pso
optimization techniques when designing similar
systems–typical pwr core case. Annals of Nucle-
ar Energy, 38(6):1339–1346, 2011.

[14] Ayed Salman, Imtiaz Ahmad, and Sabah Al-
Madani. Particle swarm optimization for task
assignment problem. Microprocessors and Mi-
crosystems, 26(8):363–371, 2002.

[15] Zhanghui Liu and Xiaoli Wang. A pso-based
algorithm for load balancing in virtual machines
of cloud computing environment. In Advances
in Swarm Intelligence, pages 142–147. Springer,
2012.

[16] Ashkan Paya and Dan Marinescu. Energy-aware
load balancing and application scaling for the
cloud ecosystem. IEEE Transactions on Cloud
Computing, 2015.

[17] Fahimeh Ramezani, Jie Lu, and Fa-
rookh Khadeer Hussain. Task-based system load
balancing in cloud computing using particle
swarm optimization. International Journal of
Parallel Programming, 42(5):739–754, 2014.

[18] Andrew W Mcnabb, Christopher K Monson, and
Kevin D Seppi. Mrpso: Mapreduce particle
swarm optimization. In Proceedings of the 9th
annual conference on Genetic and evolutionary
computation, pages 177–177. ACM, 2007.

[19] Ibrahim Aljarah and Simone Ludwig. Parallel
particle swarm optimization clustering algorith-
m based on mapreduce methodology. In Nature
and Biologically Inspired Computing (NaBIC),
2012 Fourth World Congress on, pages 104–111.
IEEE, 2012.

[20] Andrew W McNabb, Christopher K Monson,
and Kevin D Seppi. Parallel pso using mapre-
duce. In Evolutionary Computation, 2007. CEC
2007. IEEE Congress on, pages 7–14. IEEE,
2007.

[21] Leonardo Neumeyer, Bruce Robbins, Anish
Nair, and Anand Kesari. S4: Distributed stream
computing platform. In Data Mining Workshops
(ICDMW), 2010 IEEE International Conference
on, pages 170–177. IEEE, 2010.

[22] Ankit Toshniwal, Siddarth Taneja, Amit Shuk-
la, Karthik Ramasamy, Jignesh M Patel, San-
jeev Kulkarni, Jason Jackson, Krishna Gade,
Maosong Fu, Jake Donham, et al. Storm@ twit-
ter. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of da-
ta, pages 147–156. ACM, 2014.

[23] Kejiang Ye, Xiaohong Jiang, Dawei Huang,
Jianhai Chen, and Bei Wang. Live migration of
multiple virtual machines with resource reserva-
tion in cloud computing environments. In Cloud
Computing (CLOUD), 2011 IEEE International
Conference on, pages 267–274. IEEE, 2011.

[24] Jeffrey Dean and Sanjay Ghemawat. Mapre-
duce: simplified data processing on large clus-
ters. Communications of the ACM, 51(1):107–
113, 2008.

[25] David Karger, Eric Lehman, Tom Leighton,
Rina Panigrahy, Matthew Levine, and Daniel
Lewin. Consistent hashing and random trees:
Distributed caching protocols for relieving hot
spots on the world wide web. In Proceedings
of the twenty-ninth annual ACM symposium on

WSEAS TRANSACTIONS on COMPUTERS Kun Ma, Qiuchen Cheng, Bo Yang

E-ISSN: 2224-2872 149 Volume 17, 2018



Theory of computing, pages 654–663. ACM,
1997.

[26] Giuseppe DeCandia, Deniz Hastorun, Madan
Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swaminathan Sivasub-
ramanian, Peter Vosshall, and Werner Vogels.
Dynamo: amazon’s highly available key-value
store. In ACM SIGOPS Operating Systems Re-
view, volume 41, pages 205–220. ACM, 2007.

[27] Haikun Liu, Hai Jin, Cheng-Zhong Xu, and X-
iaofei Liao. Performance and energy modeling
for live migration of virtual machines. Cluster
computing, 16(2):249–264, 2013.

[28] Beth Trushkowsky, Peter Bodı́k, Armando Fox,
Michael J Franklin, Michael I Jordan, and
David A Patterson. The scads director: Scal-
ing a distributed storage system under stringent
performance requirements. In FAST, pages 163–
176, 2011.

[29] Seyed Ebrahim Dashti and Amir Masoud Rah-
mani. Dynamic vms placement for energy ef-
ficiency by pso in cloud computing. Journal
of Experimental & Theoretical Artificial Intelli-
gence, (ahead-of-print):1–16, 2015.

[30] Zhen Xiao, Weijia Song, and Qi Chen. Dy-
namic resource allocation using virtual machines
for cloud computing environment. Parallel
and Distributed Systems, IEEE Transactions on,
24(6):1107–1117, 2013.

[31] Hector M Lugo-Cordero, Abigail Fuentes-
Rivera, Ratan K Guha, Eduardo Ortiz-Rivera,
et al. Particle swarm optimization for load bal-
ancing in green smart homes. In Evolutionary
Computation (CEC), 2011 IEEE Congress on,
pages 715–720. IEEE, 2011.

[32] Ibrahim Aljarah and Simone A Ludwig. Toward-
s a scalable intrusion detection system based on
parallel pso clustering using mapreduce. In Pro-
ceedings of the 15th annual conference compan-
ion on Genetic and evolutionary computation,
pages 169–170. ACM, 2013.

[33] Simone A Ludwig. Mapreduce-based optimiza-
tion of overlay networks using particle swarm
optimization. In Proceedings of the 2014 confer-
ence on Genetic and evolutionary computation,
pages 1031–1038. ACM, 2014.

[34] Jianhua Lin. Divergence measures based on
the shannon entropy. Information Theory, IEEE
Transactions on, 37(1):145–151, 1991.

WSEAS TRANSACTIONS on COMPUTERS Kun Ma, Qiuchen Cheng, Bo Yang

E-ISSN: 2224-2872 150 Volume 17, 2018




