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Abstract: The paper deals with the problem of long computing times during optimization of real processes. All 
commonly used optimization methods search for optimal solution in iterative way. Therefore, they require 
many simulations of the model of optimized process. In case of numerous processes (e.g. metallurgical) the 
models are often complex and require time consuming numerical computations. This cause that optimization 
time may be unacceptable high. This is the reason why new optimization methods which need less simulation 
runs are searched. The main goal of the paper is to present a new, more efficient approximation based 
optimization method. The elaborated method was validated using frequently employed benchmark functions 
and applied in optimization of laminar cooling of rolled DP steel strips process. 
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1 Introduction 
Models of the real industrial processes are often 
based on complex mathematical equations. The 
computer simulations, depending on their 
complexity and the available computational power, 
may last from few seconds to several hours. 
Therefore, the optimization of such processes is 
difficult (or sometimes impossible) due to the fact of 
large number of necessary objective function calls 
requiring time consuming simulations of such 
model. Another problem is multimodality of the 
optimized objective function. Classical optimization 
methods (direct search or gradient methods) return 
the first encountered minimum, which rarely is a 
global one. The use of heuristic methods 
significantly increases the probability of finding the 
global minimum, however due to the fact that most 
heuristic algorithms have to process the population 
of solutions, the number of simulations drastically 
increases. This is why the new optimization 
strategies, which allow to reduce computing time of 
optimization procedure, are searched. Two 
approaches dominate nowadays. The first one is 
focused on searching for faster, computationally 
more efficient models of optimized processes, the 
second one on developing new optimization 
methods, which allow finding the global minimum 
in smaller number of objective function calls. This 
research concerns the second trend. Within this 
paper the developed by the Authors the 

Approximation Based Optimization (ABO) and 
Modified Approximation Based Optimization 
(MABO) methods were presented [5, 6, 11]. Its 
main idea focus on the fact, that the optimal solution 
of considered objective function f(x) is not searched 
directly, but indirectly. In each iteration, the 
analyzed objective function f(x) is replaced by an 
approximation function g(x) and the optimization 
procedure searches the optimal solution among 
solutions of a function g(x). The acceleration of 
convergence has been achieved by introducing 
approximation weights in each point, which allow 
increasing the importance of the approximation 
points lying in the close neighborhood of actual 
minimum. Detailed algorithm of the developed 
method is presented in the paper, as well as the 
original algorithm dedicated for generation of the 
set of initial points, which is based on design of 
experiment theory. The algorithm responsible for 
changing values of weights during optimization 
procedure is also presented. The developed method 
was tested using several benchmark functions with 
different number of variables (from 1 to 5). The 
efficiency of MABO method was compared with 
most popular heuristic methods (genetic algorithm 
(GA), evolutionary algorithms (EA) and particle 
swarm optimization (PSO) method) [1, 2, 3, 4, 10, 
14]. The results show that MABO method can 
significantly reduce the number of necessary 
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objective function calls and gives better accuracy of 
solution. 
 
 
2 Approximation Based Optimization 
Method 
The Approximation Based Optimization (ABO) 
method is an iterative optimization technique [5, 6]. 
In each iteration, the analyzed objective function 
f(x) is replaced by an approximation function g(x) 
and the optimization procedure searches the optimal 
solution among minima of a function g(x). 
Optimization procedure begins with establishing of 
the initial set X(0) ∈ Dx ⊂ ℝn consisting of feasible 
solutions. For each element x ∈ X(0), i=1, 2, …, m, 
the objective function value is computed and, as a 
result, a set {X(0), Y(0) = f(X(0))} is created. Based on 
this set, coefficients of approximation function g(x) 
are calculated by solving a system of linear 
equations expressing the approximation error ε in 
the approximation points: 
 

𝜀𝜀 = ∑ �𝑔𝑔�𝐱𝐱𝑖𝑖� − 𝑓𝑓�𝐱𝐱𝑖𝑖��
2𝑚𝑚

𝑖𝑖=1 .    (1) 
 
Next, minimal solution of a function g(x) is 
searched using any of the optimization techniques, 
and the found value x* is being added to a set X(0) 
resulting in a new data set {X(1), Y(1)}. New 
approximation g(x) of a function f(x) is evaluated on 
the basis of that new data set, and the whole 
procedure is continued until stop condition is 
reached. 
The efficiency of ABO method was evaluated using 
simple one-dimension test function: 
 
𝑓𝑓(𝑥𝑥) = (sin(𝑥𝑥) − 2)2𝑠𝑠𝑠𝑠𝑠𝑠(12𝑥𝑥 − 4),   (2) 
 
where x ∈ [-1,1]. 
The polynomials of 2 to 9 degrees and a spline 
function were used as the approximation function 
g(x). The test shows that only in case of spline 
function and high degree polynomial (9th degree) the 
ABO method was able to find the minimum of test 
function [11]. These results were the motivation to 
developing a modification of the ABO method to 
increase its efficiency. 
 
 
3 Modified Approximation Based 
Optimization Method 
Achievement of the computing cost reduction and 
increasing the efficiency became possible after 

introducing some modification into ABO method. 
The following main modifications were 
implemented [11]: 

1. introduction of weights wi to all points in 
the set X(0) which describe their influence 
on coefficients of function g(x), 

2. development of the algorithm which 
generates the initial set X(0) based on design 
of experiment (DoE) theory, 

3. choosing the approximation function g(x), 
4. development of the algorithm which 

generates weights of points of the set X(0), 
5. development of the algorithm which 

changes the weights during the 
optimization procedure, 

6. implementation of the second, local 
approximation of the function g(x) based 
on points lying in the neighbourhood of 
current solution x*. 

Some modifications were made and published in 
[12]. However, the method described in this paper 
was improved by the design of experiment theory. 
Introduced weights, which correspond to the 
approximation errors at each point allow increasing 
of the importance of approximation points lying in 
the close neighborhood of the actual minimum x*. 
The values of weights wi in each point depend on 
the values of the objective function at these points. 
The smaller is objective function value, the higher 
weight value should be. This modification yields the 
following form of equation (1): 
 

𝜀𝜀 = ∑ 𝑤𝑤𝑖𝑖 �𝑔𝑔�𝐱𝐱𝑖𝑖� − 𝑓𝑓�𝐱𝐱𝑖𝑖��
2

𝑚𝑚
𝑖𝑖=1 .  (3) 

 
As the result of that modification, the function g(x) 
is built based on the set {X(i), Y(i), W(i)}. 
Within the scope of this paper, the approximation 
function was limited to the square function: 
 
𝑔𝑔(𝐱𝐱) = 𝐱𝐱𝑇𝑇𝐀𝐀𝐀𝐀 + 𝐛𝐛𝑇𝑇𝐱𝐱 + 𝑐𝑐.    (4) 
 
This choice was made due to two main reasons: 
computing square function coefficients is very easy 
even in high dimension cases and there is no need to 
use addition optimization procedure to find its 
minimum. 
Selection of the initial data set X(0) is based on the 
design of experiment theory. The optimal plan of 
the experiment for one-dimension square function is 
composed of three points: two of them are the 
boundaries of the interval of interest and the third 
one was chosen in the middle. In case of higher 
dimension problems, the optimal plan is computed 
based on one-dimension plan [9]. 
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Generation of initial data set is made in several 
stages (the number of stages is equal to e and its 
value can be changed). In each stage the initial data 
set is enlarged by adding new points generated 
according to DoE rules [8]. However, the 
coordinates of points are multiplied by the scaling 
factor λ j and shifted by the vector μ j. In the first 
stage the scaling factor and the shifting vector are 
equal λ1 = 1 and μ1 = 0 respectively. In the 
subsequent stages the value of scaling factor is 
decreasing causing that new points are lying closer 
to each other. To compute the value of vector μ j the 
coefficients of approximation function g(x) are 
calculated based on all previously chosen points. 
The beginning of the vector is in a point 0 and its 
end is in the point in which the approximation 
function reaches the minimum. If the function g(x) 
is concave then the vector μ j = 0. If, due to the shift, 
any point goes out of the domain Dx then it is forced 
back to the interior of the considered domain. 
Applying of this algorithm results in creation of the 
set {X(0), Y(0)}. In the next step the weights of all 
points are calculated and added to the initial set. The 
method used to calculate the weights is very similar 
to the roulette wheel method known for genetic and 
evolutionary algorithms. In GA and EA the better 
individual gets higher probability of being selected 
for reproduction. In MABO method the better 
solution set gets higher value of weight. 
Based on the set {X(i), Y(i), W(i)} the coefficients of 
g(x) are determined. If the matrix A (in equation 4) 
is positively defined, the minimum is calculated: 
 
𝐱𝐱∗ = − 1

2
𝐀𝐀−1𝐛𝐛.      (5) 

 
Next, if the point x* belongs to the domain Dx, its 
neighborhood of a radius r is investigated. If the 
number of points in that neighborhood is sufficient 
(i.e. the number of points is greater or equal to 
0.5n2+1.5n+1, where n is a dimension of x), the 
local approximation is performed using another 
quadratic approximation function h. The minimum 
of function h becomes new, more accurate optimal 
solution x*. If the number of points is not sufficient 
the local approximation is not performed. Next, the 
values of the objective function y* = f(x*) and 
corresponding weight w* are calculated. The weight 
w* is computed as linear relationship between the 
maximal and minimal values of the weights W(i). 
The new point is added to the set {X(i+1), Y(i+1), 
W(i+1)} = {X(i) ∪ x*, Y(i) ∪ y*, W(i) ∪ w*} and the 
quantity of the set m is increased by one. 
If the matrix A is not positively defined or the point 
x* does not belong to the domain Dx then a point x ∈ 

X(i) for which the objective function has the smallest 
value becomes a new minimal solution x*. 
The weights wi corresponding to all approximation 
points are modified in the next step. A first degree 
spline function Ψ(η) determined by three nodes U, 
V and Z is used in these modification (see Fig. 1a). 
The argument of this function is η = ||x* - x||, which 
is the distance of a given point from the current 
minimum. 
 

 
Fig. 1. Spline function Ψ(η) controlling changes of 
the weights wi (a) and the variation of an abscissa of 
a V node. 
 
The coordinates of nodes U, V and Z determining a 
shape of a function Ψ(η) are: 
 
𝜂𝜂𝑈𝑈 = 0
𝜓𝜓𝑈𝑈 = 1
𝜂𝜂𝑉𝑉 = (𝛼𝛼 − 𝛽𝛽)𝑒𝑒−𝛾𝛾𝛾𝛾

𝜓𝜓𝑉𝑉 = 0.5
𝜂𝜂𝑍𝑍 = max{‖𝐱𝐱∗ − 𝐱𝐱‖}
𝜓𝜓𝑍𝑍 = 0.1

     (6) 

 
where: α and β are coefficients responsible for the 
initial and the final values of the abscissa of point V, 
while γ is responsible for the rate of changes and i is 
the iteration number. 
Each value wi is multiplied by the value of spline 
function Ψ(η). As the distance η = ||x* - x|| 
increases, the weight of the point becomes smaller. 
To improve the convergence, during the 
optimization procedure the abscissa of node V is 
decreasing, as it is shown in Fig. 1b. Therefore, the 
weights of points lying far from actual minimum x* 
have even smaller impact on coefficients of 
approximation function g(x).  
The procedure ends when the maximum number of 
objective function calls Nmax is reached or the 
obtained solution was satisfactory. 
The MABO method applying to searching for the 
minimum of function (2) needed only 17 objective 
function calls to return optimal solution. The ABO 
method in case of using second order approximation 
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function did not find the optimal solution in 1000 
objective function calls. 
It shows that introduced modification increases the 
effectiveness of the method. 
 
 
4 Validation of MABO method 
Developed MABO method was validated by 
optimization of several two dimension benchmark 
functions: 

• Ackley test function: 
 

𝑓𝑓(𝑥𝑥1, 𝑥𝑥2) = −20𝑒𝑒
−0.2�0.5�𝑥𝑥1

2+𝑥𝑥2
2� −

−𝑒𝑒0.5�𝑐𝑐𝑐𝑐𝑐𝑐 (2𝜋𝜋𝑥𝑥1)+𝑐𝑐𝑐𝑐𝑐𝑐 (2𝜋𝜋𝑥𝑥2)� + 20 + 𝑒𝑒
   (7) 

 
where: x1, x2 ∈ [-1, 5]; value of optimal solution  
yopt = 0,  

• Michalewicz test function: 
 

𝑓𝑓(𝑥𝑥1, 𝑥𝑥2) = −𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥1) �𝑠𝑠𝑠𝑠𝑠𝑠 �𝑥𝑥1
2

𝜋𝜋
��

20

−

−𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥2) �𝑠𝑠𝑠𝑠𝑠𝑠 �2𝑥𝑥2
2

𝜋𝜋
��

20    (8) 

 
where: x1, x2 ∈ [-4, 4]; value of optimal solution  
yopt = -1.8013, 

• Rastrigin test function: 
 
𝑓𝑓(𝑥𝑥1, 𝑥𝑥2) = 𝑥𝑥1

2 + 𝑥𝑥2
2 − 𝑐𝑐𝑐𝑐𝑐𝑐(18𝑥𝑥1) −

−𝑐𝑐𝑐𝑐𝑐𝑐(18𝑥𝑥2) + 2
   (9) 

 
where: x1, x2 ∈ [-1, 4]; value of optimal solution  
yopt = 0, 

• Rosenbrock test function: 
 
𝑓𝑓(𝑥𝑥1, 𝑥𝑥2) = 100(𝑥𝑥2 − 𝑥𝑥1

2)2 + (1 − 𝑥𝑥1)2            (10) 
 
where: x1, x2 ∈ [-2, 2]; value of optimal solution  
yopt = 0, 

• Schwefel test function: 
 
𝑓𝑓(𝑥𝑥1, 𝑥𝑥2) = −𝑥𝑥1𝑠𝑠𝑠𝑠𝑠𝑠��|𝑥𝑥1|� − 𝑥𝑥2𝑠𝑠𝑠𝑠𝑠𝑠��|𝑥𝑥2|�     (11) 
 
where: x1, x2 ∈ [-500, 500]; value of optimal 
solution yopt = -837.9658. 
The following stop conditions were considered: 
reaching the maximal number of objective function 
calls (Nmax) or obtaining the optimization error (yε) 
lower or equal to assumed accuracy (ε). The 
optimization error was computed using the 
following formula: 

 
𝑦𝑦𝜀𝜀 = �𝑦𝑦 𝑜𝑜𝑜𝑜𝑜𝑜 −𝑦𝑦∗�

𝑦𝑦 𝑜𝑜𝑜𝑜𝑜𝑜 .                (12) 
 
In case of Ackley, Rastrigin and Rosenbrock test 
functions the values of optimal solutions yopt = 0, 
therefore the optimization error was assumed to be 
equal to the function value yε = y*. 
The number of objective function calls Nmax was set 
to 5000 and required accuracy ε = 10-3. 
The obtained results of the MABO method were 
compared with the results of chosen heuristic 
optimization methods: genetic algorithm, particle 
swarm optimization and evolutionary algorithms 
(strategies (1 + 1), (μ + λ), (μ , λ)). The optimization 
procedure was performed 100 times for each of 
these methods and results presented in Fig. 2 are the 
average values. 
 

 
 
Fig. 2. Results for Ackley (a), Michalewicz (b) 
Rastrigin (c), Rosenbrock (d) and Schwefel (e) test 
functions. 
 
The performed tests were not limited to two-
dimension functions. To evaluate the efficiency of 
MABO method during optimization of multi 
dimension problems a Levy test function was used: 
 
𝑓𝑓(𝐱𝐱) = 𝑠𝑠𝑠𝑠𝑠𝑠2(𝜋𝜋𝑥𝑥1�) +
+ ∑ �(𝑥𝑥𝑖𝑖� − 1)2�1 + 10𝑠𝑠𝑠𝑠𝑠𝑠2(𝜋𝜋𝑥𝑥𝑖𝑖� + 1)�� +𝑛𝑛−1

𝑖𝑖=1

+(𝑥𝑥𝑛𝑛� − 1)2�1 + 10𝑠𝑠𝑠𝑠𝑠𝑠2(2𝜋𝜋𝑥𝑥𝑛𝑛� + 1)�

   (13) 

 
where: 
 
𝑥𝑥𝑖𝑖� = 1 + 𝑥𝑥𝑖𝑖−1

4
                (14) 

 
and 
 

WSEAS TRANSACTIONS on COMPUTERS Łukasz Sztangret, Jan Kusiak

E-ISSN: 2224-2872 290 Volume 16, 2017



𝐱𝐱 ∈ [−5, 15]𝑛𝑛 .                (15) 
 
The computations were made for n = 1, …, 5 
variables. The value of optimal solution is equal to 
0, therefore yε = y*. The stop conditions were: Nmax 
= 5000 and ε = 10-3. The results are presented in Fig. 
3. 
 

 
 
Fig. 3. Results for Levy test functions of n = 1, …, 5 
variables: average number of objective function 
calls (a) and average value of optimal solution (b). 
 
Performed test clearly proves that MABO method is 
able to solve optimization problem in much lower 
number of objective function calls.  
 
 
5 Optimization of laminar cooling of 
rolled DP steel strips 
DP steel is composed of islands of hard martensite 
(20-30%) in a matrix of soft ferrite (70-80%). Such 
structure guaranties high initial strain hardening 
rates and relatively small weight. This is the reason 
why they are widely used in automotive industry. 
The structure of DP steel is obtained during laminar 
cooling process after hot rolling. The typical cycle 
of cooling is consisted of three steps (see Fig. 4): 

• fast cooling to the temperature of the 
greatest speed of ferrite transformation (Tf), 

• maintaining at this temperature until the 
required ferrite volume fraction is reached 
(time tf), 

• fast cooling in such way as to ensure that 
the rest of the austenite is converted into 
martensite, and an amount of bainite on the 
final product is minimized. 

 

 
Fig. 4. Typical cooling scheme for DP steel. 
 
The sensitivity analysis performed in [7] indicates 
that the most impact on the volume fractions of the 
phases have two parameters: dwelling time tf at a 
low cooling rate within the range of ferritic 
transformation temperature and the temperature Tf at 
the beginning of the second step of the cycle. 
Therefore, these two parameters were chosen as 
optimization variables in the optimization 
procedure, while the cooling rates were set to Cr1 = 
100°C/s, Cr2 = 1.25°C/s, Cr3 = 70°C/s. The aim of 
this procedure was find the values of tf and Tf which 
ensure the required percentage of volume fractions 
of martensite Fm0 = 0.2, bainite Fb0 = 0 and perlite 
Fp0 = 0. The volume fractions of martensite, bainite 
and perlite are the functions of tf and Tf described in 
the work [13]. The objective function is defined as 
the root square mean error of considered volume 
fractions in following form: 
 

𝑓𝑓�𝑡𝑡𝑓𝑓 , 𝑇𝑇𝑓𝑓 � = ��𝐹𝐹𝑚𝑚 −𝐹𝐹𝑚𝑚 0
𝐹𝐹𝑚𝑚

�
2

+ 𝐹𝐹𝑏𝑏
2 + 𝐹𝐹𝑝𝑝

2.             (16) 
 
where: tf ∈ [4, 15] and Tf ∈ [670,  800]. 
The plot of the objective function (16) if shown in 
Fig. 5. The stop conditions were: obtaining a 
solution below ε = 10-2 or exceeding Nmax = 500 
objective function calls. 

 
Fig. 5. The objective function (16). 
 
The optimization with the use of non-deterministic 
methods was performed 10 times. The average 
results are presented in the Fig. 6. 
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Fig. 6. Optimization results of laminar cooling 
process. 
 
It can be noticed that MABO method gives the 
similar value of optimization error in less number of 
objective function calls. The computed values of 
control parameters were equal to: tf

* = 12.36s  
and Tf

* = 701.3°C. Application of this values 
satisfies the optimization constraints (objective 
function value is equal to f(tf

*, Tf
*) = 0.0065) and 

results in following percentage of volume fractions: 
Fm = 0.201, Ff = 0.795, Fb = 0.00356 and Fp = 0. 
 
 
6 Conclusion 
The main goal of the paper was presentation of 
elaborate Modified Approximation Based 
Optimization method. Developed method was 
validated in optimization of several benchmark 
functions, giving a similar optimal solution in much 
lower number of objective function calls comparing 
to the chosen heuristic algorithms. The reduction of 
objective function calls is very important in case of 
optimization of real industrial processes which are 
often described by complex models. It can be 
noticed, that in case of optimization of multi 
dimension function, the number of objective 
function calls used by MABO method grows 
exponentially with increasing of the number of 
optimization variables. This is due to the optimal 
plan of experiment which is applied to generate the 
initial set of points. To reduce the quantity of this 
set the non-optimal plan, achieved by imposing the 
specific constraints on points can be used. 
Application of MABO method in optimization of 
laminar cooling process of DP steel strips after hot 
rolling also confirms its effectiveness. The optimal 
solution was found almost twice faster than using 
any other employed algorithm and its accuracy was 
similar in all cases. This suggests that the Modified 
Approximation Based Optimization method is the 
best choice to perform the optimization of the 
laminar cooling of DP steel strips process.  
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