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Abstract: - QRS detection in the magnetocardiogram (MCG) and electrocardiogram (ECG) signals is very 
crucial as the first step for evaluating the cardiac function. Unlike most of the published algorithms which are 
aimed at increasing the detection accuracy by using complex signal-processing techniques, we propose a new, 
low-complexity QRS detection algorithm based on morphological analysis of the QRS complex. The algorithm 
does not need to remove the baseline wander, and the R waves can be quickly detected by the wave steepness 
function. The performance of the proposed algorithm was evaluated on the MIT-BIH arrhythmia database and 
MCG data recorded by the multi-channel MCG system. The sensitivity (SE) and positive prediction (+P) for 
MIT-BIH database were 99.69% and 99.87%, respectively. Also, the accuracy of 97.22% is achieved for MCG 
data. Compared to other published results, the processing time of one hour ECG data was reduced to 0.187s. 
The lower computational time makes the proposed method can be used in portable devices, for example, a 
Smartphone. 
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1 Introduction 
 
QRS detection is very crucial as the first step for 
evaluating the cardiac function. All the other 
components, such as P-wave, S-wave, RR interval, 
QT interval and ST interval et al., can be found with 
the reference of QRS complex. Thus, accurate 
detection of QRS complex becomes the foremost 
and critical objective[1]. Scholars have proposed a 
variety of algorithms to identify QRS complexes in 
recent decades. These algorithms have many 
different forms, but can be broadly classified into 
the following categories: wavelet transform [2-4], 
artificial neural network (ANN) [5, 6], Hilbert 
transform[7, 8], and empirical mode decomposition 
(EMD)[9, 10]. In wavelet-based algorithms, Merah 
proposed a new QRS complex detection method 
based on stationary wavelet transform [2], and 
Abibullaev made use of four different wavelet basis 
functions to detect QRS complex [11]. However, 
wavelet transform is very sensitive to the selection 
of mother wavelet that affects the detection 
performance of QRS complex [12]. In ANN, 
sigmoidal radial basis function, support vector 
machine, and backward propagation neural network 
were extensively used because of the advantage of 

being effective in nonlinear and non-stationary 
environment [5]. However, ANN is expensive 
because of the need for a large amount of memory 
for training, setting and evaluation of the model 
parameters [1]. Hilbert transform is an odd filter and 
has the ability to identify QRS complex. However, 
Hilbert transform may not be able to recognize low-
amplitude R-wave. EMD has the drawback of being 
time-consuming, because the extraction of intrinsic 
mode functions needs a series of iterations. 

In addition to the above drawbacks, the 
mentioned methods used a lot of complex 
transforms to increase the accuracy of QRS complex. 
However, for portable devices, the power 
consumption and the overall complexity should be 
low. Hence, the challenge of current QRS complex 
detection methods lies in increasing the detection 
accuracy, noise-robustness of the detection, and 
reducing the computational burden. 

To address these challenges, we propose a new, 
low-complexity QRS detection algorithm based on 
morphological analysis of QRS complex. Unlike the 
existing methods, the algorithm does not need to 
remove the baseline wander. To effectively detect 
the QRS complex, we define the wave steepness 
function, which can be used to detect the R-wave. 
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To increase the detection accuracy of QRS complex, 
two measures were implemented: a) Identify the 
direction of the R-wave, and delete the peak points 
whose direction is inconsistent with the R-wave; b) 
Define the pseudo R peak point, then remove all the 
pseudo R peak points. 

In order to evaluate the performance of the 
proposed algorithm, the QRS detection accuracy 
and computational time were compared with the 
published algorithms using the MIT-BIH arrhythmia 
database. The reduction in computational time and 
high detection accuracy confirms the effectiveness 
of the proposed algorithm. 
 

2 Proposed Method 
 
This section explains the proposed algorithm in 
detail. The flow diagram of the algorithm is given in 
Figure. 1. As can be seen from the Figure 1, the 
algorithm includes the following four steps: 

1) Detect all the peaks of the ECG or MCG data. 
Assuming that the ECG or MCG data is y(n) 

with ‘N’ sampling points. In order to detect all the 
peaks of y(n), first, y(n) is differentiated according 
to the following equation: 

 ( ) ( )d
y n y n

dn
                (1) 

( )y n is the differential result of y(n). Then, a 
nonlinear transformation is applied to ( )y n , the 
result of the nonlinear transformation is g(n). 
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Finally, the g(n) is differentiated according the 
equation (3) and the points whose differential result 
do not equal to 0 are the peaks. 

 ( ) ( )d
g n g n

dn
                (3) 

2) Select the steep peaks from the above peaks. 
To select the sharp peaks, we define the wave 

steepness function according the following formula: 

 
( ) ( 1)( )
( ) ( 1)

py k py k
sp k

px k px k

 


 
          (4) 

py(k) is the k-th peak, k is the ordinal number of 
peaks. px(k) is the time of py(k). sp(k) is the wave 
sharpness of py(k). 

When the absolute value |sp(k)| of sp(k) satisfies 
the following formula, py(k) is a steep peak. 

 
max(| ( ) |)| ( ) |

5
sp k

sp k          (5) 

max(| ( ) |)sp k is the maximum value of the 
sequence {|sp(k)|, k=1,2,3…,M}. 

3) Select the peaks whose directions are 
consistent with R-wave direction from the above 
steep peaks. 

To select the peaks in line with the direction of 
the R-wave, we need to find the direction of the R-
wave. Take a section of data {py(j), j=1,2,…L}  
from the steep peaks {py(j), j=1,2,…,M} (Note that 
L<M), and find the direction of the R-wave 
according the following formula: 

1 max(| ( ) |) min(| ( ) |) 0
1 max(| ( ) |) min(| ( ) |) 0
0 max(| ( ) |) min(| ( ) |) 0

py j py j

flag py j py j

py j py j

 


   
  

  (6) 

Here, max(|py(j)|) is the maximum value of the 
sequence {|py(j)|, j=1,2,…,L}, min(|py(j)|) is the 
minimum value of the sequence {|py(j)|, j=1,2,…,L}. 
When flag=1, the direction of R-wave is downward 
(convex wave), When flag=-1, the direction of R-
wave is upward (concave wave), else when flag=0, 
the result is wrong, then it is need to take another 
piece of data from the sharp peak points and re-
determine the direction of R-wave. 

After finding the direction of the R-wave, it is 
necessary identify the direction of each steep peaks 
according to the following equation.  
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py j
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          (7) 

DP(j) is the direction of the j-th steep peak, 
( )py j  is the result of quadratic differential of py(j). 

When the value of DP(n) is equal to the value of 
flag, the peaks of the n-th steep peak is consistent 
with R-wave direction. 

4) Identify and delete the pseudo R peaks. 
The pseudo R peak is defined by the following 

equation: 
( ) ( ) 0.2
( ) ( 1) || ( ) ( 1)

py j py j

py j py j py j py j

  


   
  (8) 

( )py j  is calculated by the following formula. 

 
1

( )( )
N

i

py i
py j

N

            (9) 

When py(j) satisfies the equation (8), py(j) is a 
pseudo R peak point. 

After removing all of the pseudo R peak points, 
the remaining peak points are the desired R peak 
points. 

 
3 Results 
3.1 MCG data 
The performance of the proposed algorithm was 
evaluated on the MCG data recorded by a multi-
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Fig.1 The flow diagram of the proposed algorithm: (1) Identify all the peak points of the pre-processed data; (2) Select the 

steep peak points from the peak points; (3) Select the peak points whose direction are consistent with R-wave 
direction from the steep peak points; (4) Identify and delete the pseudo R peak points.

channel MCG system and the MIT-BIH arrhythmia 
database. The QRS detection results of MCG data 
are shown in Figure 2. Fig.2(a) shows an instance of 
the MCG data with baseline wander. In order to 
accurately detect the peaks of R-wave, the first step 
of the proposed algorithm is to detect the entire 
peaks in the MCG data, the detection results are the 
red dots in Fig.2(b). Then the steep peaks were 
selected from the above peaks, as shown in Fig.2(c). 

To increase the detection accuracy of QRS 
complex, the steep peaks whose direction are 
consistent with the R-wave were filtered out, as 
shown in Fig.2(d). Finally, the pseudo R peaks were 
deleted and the desired R peaks were selected, as 
shown in Fig.2(e). 

To evaluate the performance of the proposed 
method, we calculated the QRS detection accuracy 
(Ac) of MCG data according to the following 
equation, 

 (%) TP
Ac

TP FN FP


 
           (10) 

Here FP indicates the detection of a QRS peak 
when there is actually none, FN indicates that the 
algorithm failed to detect an actual beat, and TP is 
the number of QRS correctly detected [13]. The 
QRS detection accuracy for one hour MCG data is 
97.22%. 

3.2 MIT-BIH Arrhythmia Database 
Then the MIT-BIH Arrhythmia Database was used 
to evaluate the performance of the proposed 
algorithm. The MIT-BIH Arrhythmia Database 
contains 48 ECG records which are filtered by a 
band-bass filter (0.1 to 100Hz) and a digital notch 
filter (60Hz). To evaluate the performance of the 
proposed algorithm, the sensitivity (Se) and positive 
prediction (+P) were calculated by the following 
equations:
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Fig.2 The recognition results of the QRS complex: (a) the pre-processed MCG data; (b) the peak points in the MCG data; 

(c) the steep peak points selected from the peak points; (d) the peak points which are consistent with R-wave direction 
screened from the steep peak points; (e) the desired R peak points 
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Table 1. The performance of the proposed method using the MIT-BIH database 

Tape Total FP FN Se(%) +P(%) 
100 2273 0 2 99.91 100 
101 1865 0 1 99.95 100 
102 2187 0 0 100 100 
103 2084 0 3 99.86 100 
104 2229 10 5 99.78 99.55 
105 2572 18 12 99.54 99.31 
106 2027 0 6 99.70 100 
107 2137 0 4 99.81 100 
108 1774 20 8 99.55 98.89 
109 2532 2 6 99.76 99.92 
111 2124 0 2 99.91 100 
112 2539 0 1 99.96 100 
113 1795 0 0 100 100 
114 1879 3 4 99.79 99.84 
115 1953 1 0 100 99.95 
116 2412 6 18 99.26 99.75 
117 1535 0 1 99.93 100 
118 2278 0 2 99.91 100 
119 1987 0 1 99.95 100 
121 1863 0 0 100 100 
122 2476 0 1 99.96 100 
123 1518 6 4 99.74 99.61 
124 1619 4 3 99.82 99.75 
200 2601 4 0 100 99.85 
201 1963 2 60 97.03 99.90 
202 2136 1 12 99.74 99.95 
203 2980 16 20 99.33 99.47 
205 2656 0 6 99.77 100 
207 1860 12 8 99.57 99.36 
208 2955 2 24 99.19 99.93 
209 3004 0 1 99.97 100 
210 2650 6 22 99.18 99.77 
212 2748 2 3 99.89 99.93 
213 3251 4 27 99.18 99.88 
214 2265 4 9 99.60 99.82 
215 3363 2 6 99.82 99.94 
217 2209 0 2 99.91 100 
219 2154 0 4 99.81 100 
220 2048 0 0 100 100 
221 2427 1 8 99.67 99.96 
222 2483 5 2 99.92 99.80 
223 2605 0 2 99.92 100 
228 2053 15 22 98.94 99.27 
230 2256 0 0 100 100 
231 1571 0 1 99.94 100 
232 1780 0 11 99.39 100 
233 3079 0 2 99.94 100 
234 2753 0 1 99.96 100 

Total 109508 146 337 99.69 99.87 
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 (%) TP
Se

TP FN



            (11) 

 (%) TP
P

TP FP
 


            (12) 

The QRS detection results for the MIT-BIH 
Arrhythmia Database are shown in Table 1. The Se 
and +P for MIT-BIH database are 99.69% and 
99.87%, respectively. 

3.3 Performance comparison 
The QRS detection performance of the proposed 
algorithm was compared with other published 
algorithms in Table 2. The proposed method shows 
improved performance compared to the results of 
algorithms in [13-17] and comparable results 
compared to the results in [9, 18]. 

Table 2. Comparison of the proposed method with other algorithms for QRS detection based on the MIT-BIH Database 

Authors 
Proposed algorithm Results 

Database 
Pre-processing stage Detection stage Se(%) +P(%) 

Pal et al.[9] (2012) EMD Morphological analysis 99.88 99.96 21 signals of MIT-BIH 

Das et al.[18] (2011) EMD+Wavelet Dynamic threshold 99.84 99.96 17 signals of MIT-BIH 

Proposed Low-pass Filter+notch filter Morphological analysis 99.69 99.87 Full MIT-BIH 

Zidelmal et al.[19] (2012) Wavelet Dynamic threshold 99.64 99.82 Full MIT-BIH 

Deepu et al.[13] (2015) Low-pass Filter+notch filter linear predictor 99.64 99.81 Full MIT-BIH 

Phyu et al.[20] (2009) Wavelet Dynamic threshold 99.63 99.89 Full MIT-BIH 

Nielsen et al.[21] (2012) Wavelet Dynamic threshold 99.63 99.63 Full MIT-BIH 

Chen et al.[14] (2006) Wavelet Dynamic threshold 99.55 99.49 45 signals of MIT-BIH 

Raquel et al.[17] (2015) Differentiation Dynamic threshold 99.54 99.74 Full MIT-BIH 

Ieong et al.[16] (2012) Wavelet Dynamic threshold 99.31 99.70 Full MIT-BIH 

Laila et al.[15] (2012) Wavelet+Hilbert Dynamic threshold 96.30 97.83 Full MIT-BIH 

 
 

Table 3. Comparison of computation time 

Authors Methods ECG data Waves studied Processing time (s) 
Li et al.[22] (1995) Wavelet Transform 10 min, 2 leads P-QRS-T 60 

Yochum et al.[23] (2016) Wavelet Transform 10 min, 12 leads P-QRS-T 48.6 

Yeh et al.[24] (2008) Difference Operation Method 10 min, 2 leads QRS 30 

Madeiro et al.[25] (2012) Derivative, Hilbert and Wavelet 15 min, 2 leads QRS 4.52 

Manikandan et al.[8] (2012) 
Shannon energy envelope 

estimator 
15min, 1 lead R 2.24 

This work Morphological analysis 60 min, 2 leads QRS 0.187 

 
 

Computational time is an important indicator to 
evaluate the performance of the algorithm, and the 
less the better. The comparison of the computation 
time with the other published work is shown in 
Table 3. The mean computation time of the 
proposed algorithm is 0.187s for 60 minutes long 
ECG and on the 2 leads. As shown in Table 3, the 
computation time of the proposed algorithm is 
significantly less than the literatures [22-24]. 

The computation time of the methods depend on 
the following several factors: the amount of 

processing data, the operating system, the 
processing power of the computer, and the memory. 
The proposed algorithm is implemented with 
LABVIEW. If C language and a parallelization 
process were used instead, the computation time 
could be reduced by 10%, or even more. In this case, 
the proposed method can be used in portable devices, 
for example, a Smartphone. 

4 Conclusions 
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QRS detection in the MCG and ECG signals is very 
crucial as the first step for evaluating the cardiac 
function, and the challenge of current QRS complex 
detection method lies in increasing the detection 
accuracy, noise-robustness of the detection, and 
reducing the computational burden. Therefore, in 
this paper, we proposed a new QRS detection 
algorithm based on the morphological analysis of 
the QRS complex. The algorithm does not need to 
remove the baseline wander, and there is no 
complex signal processing technology, which 
greatly reduce the complexity of the algorithm. 

The MIT-BIH arrhythmia database and MCG 
data were used to evaluate the performance of the 
proposed algorithm. The sensitivity and positive 
prediction for MIT-BIH database were 99.69% and 
99.87%, respectively. Also, the accuracy of 97.22% 
is achieved for MCG data. The observation from the 
results shows good performance of the QRS 
detection. The lower computational time makes the 
proposed algorithm to be applied to real-time 
detection of QRS complex. 
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