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Abstract: - Model selection is a process of choosing a model from a set of candidate models which will provide 
the best balance between goodness of fit of the data and complexity of the model. Different criteria for 
evaluation of competitive mathematical models for data fitting have become available. The main objectives of 
this study are: (1) to generate artificial experimental data by known models; (2) to fit data with various models 
with increasing complexity; (3) to verify if the model used to generate the data could be correctly identified 
through the two commonly used criteria Akaike’s information criterion (AIC) and Bayesian information 
criterion (BIC) and to assess and compare empirically their performance. The artificial experimental data 
generating and the curve fitting is performed through using the GraphPad Prism software. 
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1 Introduction 

In the past it was proposed different models, but 
little work was done on c omparing of the models. 
Comparing least square errors between measured 
and modelled data, indicates the quality of fit of 
each model. However, the least squares statistic 

does not take into account the tradeoff between 
model complexity and estimation errors. Models of 
increased complexity can better adapt to fit to data. 
However, additional parameters may fit to 
measurement noise and not describe any important 
processes. Using solely the model that gives the 
lowest mean square error will often just lead to the 
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largest model being selected as “optimal”. The 
“optimal” model should balance simplicity and 
quality of fit.  

Model selection is a process of choosing a model 
from set of candidate models from different classes, 
which will provide the best balance between 
goodness of fitting of the data and complexity of the 
model [1, 2, 3] . There are different criteria for 
evaluation of competitive mathematical models for 
data fitting (approximation). Information criteria 
provide an attractive base for model selection [1, 3], 
[4-11]. However, little is understood about their 
relative performance in model selection. 

This research has several specific objectives: 
(1) to generate artificial experimental data by 

known test models; 
(2) to fitting data with various models with 

increasing complexity; 
(3) to verify if the class model used to generate 

the data could be correctly identified through the 
two commonly used criteria Akaike’s information 
criterion (AIC) and Bayesian information criterion 
(BIC) and to assess and compare their performance. 
 
2 Problem Formulation 

There are two main cases of models, which 
concern experimental data analysis: distribution 
fitting and curve fitting. Their approaches and 
purposes lead to two different meanings of the term 
model [3]. The distribution fitting follows the 
behavior of a single variable and involves modeling 
of its probability distribution. This model is in fact a 
normalized probability density function. The 
appropriate plot for the experimental data is a 
histogram. The objective of the analysis of data like 
these, is not to predict how the value of one variable 
is related with a value of any other variable, but 
rather to describe the full frequency distribution of 
observed variable as a sample of data.  

The second case modeling, titled curve fitting is 
applied when we analyses the behavior of one 
variable which depend on one or more independent 
variables and the individual model could be 
interpreted as a fitting function of the experimental 
data. Thus, we obtain a curve to a set of points and 
the appropriate plot for the data is an X-Y 
scatterplot. 

Mathematical models are commonly used in 
biological sciences. We usually try to determine 
whether the experimental data are consistent with a 
particular theoretical relationship and find the model 
in the class model M describing this relationship. 
Suppose the experimental data consist of a set of n 

values of some measured variable y: y1, …, yn, 
corresponding to n associated values of some 
independent variable x: x1, …, xn. So we obtain data 
points (xi, yi), for i = 1, …, n, forming a set of points 
of the experimental data A = {(x1, y1), ..., (xn, yn)}. 
The set of points A can be modeled by a 
mathematical function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥;  𝑝𝑝1, … ,𝑝𝑝𝑚𝑚 ), with a 
variable 𝑥𝑥 and parameters 𝑝𝑝1, … ,𝑝𝑝𝑚𝑚 , using fitting 
approach [2, 6]. 

The best fit of the model to the experimental data 
is quantitatively defined as the minimization of 
some well described criteria with respect to the 
parameters of the models. The selection of the 
“optimal” model describing the experimental data is 
a topical scientific problem beginning with careful 
analysis of the experimental data available and 
going through the following steps: (a) creating a 
scatter plot of the data and checking whether there is 
any trend in these data and whether there are among 
obvious wrong data; if there are obvious erroneous 
data, then we ignore them and do a gain the 
measurements or observations; (b) when there is an 
obvious trend in the set of data, we try to find the 
class model, let us say polynomials of degree m: 
𝑃𝑃𝑚𝑚 (𝑥𝑥 ,𝑝𝑝𝑠𝑠) = 𝑝𝑝0 + 𝑝𝑝1 ∗ 𝑥𝑥 

 + 𝑝𝑝2 ∗ 𝑥𝑥 
2 + ⋯+ 𝑝𝑝𝑚𝑚 ∗

𝑥𝑥 
𝑚𝑚 ,  for s = 0, …, m, polynomial with one variable 
𝑥𝑥 and 𝑚𝑚 + 1  parameters 𝑝𝑝0, … ,𝑝𝑝𝑚𝑚 , expressing this 
trend of interrelationships of the studied factors; 
while observing the cloud with the experimental 
data, we turn heuristically to classes of models М1, 
…, Мк (quadratic, cubic, exponential, hyperbolic and 
etc.), which describe the set of experimental data in 
optimal way concerning to minimize the 
approximation error; (c) after the selection of 
classes of models, we use different fitting methods 
for finding the best models in the given classes; 
finding the individual model in the given classes is 
usually made by various fitting methods, such as the 
most widely used method of least squares fitting or 
other such as robust fitting,  minimax fitting etc. [2, 
6]; and (d) the selected candidate “optimal” models 
in each class mentioned above, are compared with 
some commonly used criteria for the evaluation of 
these models such as AIC [1, 3, 7, 8, 13]  and BIC 
[1, 3, 7, 8, 13] . The values of these criteria are 
calculated for each class model and an “optimal” 
model is selected for each of the fitting methods 
with respect to the criteria. 
 
2.1 The generate of experimental data 

We use the GraphPad Prism software for the 
artificial experimental data generating and for curve 
fitting. GraphPad Prism combines nonlinear 
regression, basic biostatistics, and scientific 
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graphing. (http://www.graphpad.com/scientific-
software/prism). To generate artificial experimental 
data, we use class model - third order polynomial. 
The individual member of this class is: 

 у = 44 + 99𝑥𝑥 
 − 59𝑥𝑥 

2 + 8𝑥𝑥 
3 + 𝜀𝜀              (1) 

𝜀𝜀~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,  𝑆𝑆𝑆𝑆 = 5, 

where ε is random error with Gaussian 
distribution and standard deviation (SD). 

The graph of the third order polynomial: 

𝑎𝑎 + 𝑏𝑏𝑏𝑏 − 𝑐𝑐𝑥𝑥2 + 𝑑𝑑𝑥𝑥3, a=44, b=99, c=-59, d=8 is 
shown in Figure 1. 

 

Fig. 1. The individual member of third order 
polynomial. 

For our computational experiments were 
generated samples with different sizes - small 
sample (15 points), middle sample (31 points) and 
large sample (101 points), following the 
classification in [12].  
 
2.2 Fitting experimental data 

In this research we use different class models 
(polynomials from first to sixth order) for fitting the 
artificial experimental data. To find the individual 
“optimal” models P*(Мj) in the classes Мj, j = 1, …, 
6, we use least squares fitting in GraphPad Prism 
6.0. Least squares fitting criterion is defined as 
follows: 

                  𝐹𝐹(𝑎𝑎) = �(𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖 , 𝑎𝑎1, … , 𝑎𝑎𝑠𝑠))2              (2)
𝑛𝑛

𝑖𝑖=1

 

The problem is to find 𝑎𝑎∗ = (𝑎𝑎1
∗ , … ,𝑎𝑎𝑠𝑠∗), such 

that minimizes 𝐹𝐹(𝑎𝑎). 
 
2.3 Criteria for selection of the optimal 
model from different class models 
 
2.3.1 Akaike’s information criterion 

One of the most commonly used criterion for 
model selection is AIC. The idea of AIC is to select 
the model that minimizes the negative likelihood 
penalizing by the number of parameters: 

   𝐴𝐴𝐴𝐴𝐴𝐴 =  �
𝑛𝑛𝑛𝑛𝑛𝑛 �

𝑅𝑅𝑅𝑅𝑅𝑅
𝑛𝑛
� + 2𝑘𝑘,   

𝑛𝑛
𝑘𝑘
≥ 40

𝑛𝑛𝑛𝑛𝑛𝑛 �
𝑅𝑅𝑅𝑅𝑅𝑅
𝑛𝑛
� + 2𝑘𝑘 +

2𝑘𝑘(𝑘𝑘 + 1)
𝑛𝑛 − 𝑘𝑘 − 1

,   
𝑛𝑛
𝑘𝑘

< 40,
� (3) 

where n is the number of data points; k is the 
number of the fitting parameters by the regression 
plus one (since regression is “an estimating” of the 
sum-of-squares as w ell as t he values of the 
parameters); RSS, or residual sum of squares, is the 
sum of the squares of the vertical deviations from 
each data point to the graph of a curve of the 
“optimal” fitted model. 

 
2.3.2 Bayesian information criterion 

The other most commonly used criterion BIC has 
the highest posterior probability. AIC and BIC 
criteria differ only in that the coefficient multiplies 
the number of parameters. In other words, the 
criteria differ by how strongly they penalise large 
models: 

                   𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑛𝑛𝑛𝑛𝑛𝑛 �
𝑅𝑅𝑅𝑅𝑅𝑅
𝑛𝑛
� + 𝑘𝑘𝑘𝑘𝑘𝑘(𝑛𝑛),              (4) 

with the same meaning of RSS, n and k, above. 
 
In this situation, the model that minimizes BIC 

has the highest posterior probability. BIC penalizes 
the models more from AIC for increasing number of 
parameters. AIC does not depend directly on t he 
sample size. In general, models chosen by BIC will 
be more parsimonious than those chosen by AIC. 

 
2.3.3 Program for calculating the AIC and 

BIC criteria 

For calculation of the criteria values of AIC and 
BIC according to formulas (3) and (4), we use a 
program “Comparing Models” developed by us in 
our previous research (see Figure 2), [8]. 
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(a) 

 

 
(b) 

Fig. 2. Example for calculation of the AIC: (a) 
dialogue box of the program “Comparing Models” 

for calculating AIC; (b) dialogue box of the program 
“Comparing Models” for calculating BIC. 

 
3 Problem Solution 

3.1 Case 1: generate 15 points 

For our first experiment we generate 15 po ints 
(small sample) in the interval from 0 to 3 with step 
0.2. In this case only AIC criterion correctly 
identified the third order polynomial (true class 
model) as the optimal model, and BIC criterion 

chooses fifth order polynomial as the optimal model 
(false class model) (see Table 1). 

Table 1. Result with small sample (15 points). 

Polynomial 

class model 

Number 

of data 

points 

Number of 

parameters 

AIC 

value 

BIC 

value 

First order 

15 

2 91.99 91.93 

Second order 3 67.76 66.59 

Third order 4 60.00 56.87 

Fourth order 5 60.88 54.63 

Fifth order 6 64.70 53.65 

Sixth order 7 74.66 56.32 

Simulated data and curves of the fitting models 
are shown in Figure 3. 

 

Fig. 3. Simulated data (15 points) and curves of the 
fitting models (six fitted polynomial curves of 
increasing order, from 1 (straight line) to 6). 

3.2 Case 2: generate 31 points 

For the second experiment we use 31 points 
(middle sample), that are generated in interval from 
0 to 3 with step 0.2. Here, both AIC and BIC criteria 
correctly identified the third order polynomial (true 
class model) as the optimal model (see Table 2). 

Table 2. Result with middle sample (31 points). 

Polynomial 

class model 

Number 

of data 

points 

Number of 

parameters 

AIC 

value 

BIC 

value 

First order 

31 

2 181.15 184.57 

Second order 3 132.50 136.70 

Third order 4 111.36 116.13 

Fourth order 5 114.46 119.56 

Fifth order 6 116.35 121.52 
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Sixth order 7 119.74 124.67 

Simulated data and curves of the fitting models 
are shown in Figure 4. 

 

 

Fig. 4. Simulated data (31 points) and curves of the 
fitting models (six fitted polynomial curves of 
increasing order, from 1 (straight line) to 6). 

3.3 Case 3: generate 101 points 

In the last case we use 101 points (large sample) 
generated in interval from 0 to 3 with step 0.2. The 
obtained results showed that in this case only BIC 
criterion correctly identified the third order 
polynomial (true class model) as the optimal model, 
while AIC criterion chooses fifth order polynomial 
as the optimal model (false class model) (see Table 
3). 

Table 3. Result with large sample (101 points). 

Polynomial 

class model 

Number 

of data 

points 

Number of 

parameters 

AIC 

value 

BIC 

value 

First order 

101 

2 569.67 577.26 

Second order 3 348.03 358.07 

Third order 4 303.72 316.16 

Fourth order 5 305.04 319.84 

Fifth order 6 300.47 317.57 

Sixth order 7 302.01 321.95 

Simulated data and curves of the fitting models 
are shown in Figure 5. 

 

 

Fig. 5. Simulated data (101 points) and curves of the 
fitting models (six fitted polynomials curves of 

increasing order, from 1 (straight line) to 6). 

In Figure 6 we show comparison of effectiveness 
of AIC and BIC in the selection of the optimal 
model (in all three cases) from the set of 6 class 
polynomials that was used for fitting the data. 

 

(a) 

 

(b) 
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(c) 

Fig. 6. Comparison of the effectiveness of AIC and 
BIC: (a) 15 points generated, (b) 31 points 

generated, (c) 101 points generated. 
 

Figure 6(a) shows that AIC chooses the true class 
model, and Figure 6(c) shows that BIC chooses the 
true class model. In Figure 6(b) we can see that 
both, AIC and BIC, choose the true class model.  

3.4 Coefficient of determination 

The coefficient of determination R2 also can be 
used to compare regression models. A model with a 
larger R2 value means that the independent variables 
explain a larger percentage of the variation in the 
independent variable. However, this may conflict 
with parsimony. Assessment of models in all cases 
with R2 are shown in Table 4. 

Table 4. Result for R2 with different sample size. 

Polynomial 
class model 

Number of 
parameters 

R2 value 

15 
data 

points 

31 
data 

points 

101 
data 

points 
First order 2 0.22 0.35 0.34 

Second order 3 0.88 0.88 0.93 
Third order 4 0.95 0.94 0.95 
Fourth order 5 0.96 0.94 0.95 
Fifth order 6 0.97 0.95 0.96 
Sixth order 7 0.97 0.95 0.96 

How to be seen from Table 4 R2 not a good 
criterion. Always increase with model size 
“optimal” is to take the biggest model and never 
choose the true class model. 

3.4 Hausdorff distance used to compare 
regression models 

Hausdorff distance (HD) is a mathematical 
construct to measure the proximity of two sets of 
points that are subsets of a metric space and is 
widely and successfully used in different areas. For 
example, algorithms for efficiently computing the 
HD are used for the so-called pattern recognition 
[14, 15, 16]. An extensive family of applications for 
the HD may also be found in visualisation, namely 
in the case of surface remeshing [7, 18]. On the 
other hand, some authors evaluate different 
Hausdorff-based algorithms for measuring the 
similarity between images as p lane sets [19, 20]. 
The HD is also used as a measure of similarity 
between two trajectories, represented as sets of 
points [21]. 

These findings provoked our interest to 
investigate the possibility for application of the 
Hausdorff distance as a cr iterion for “optimal” 
model selection its effectiveness, comparing it with 
other model selection criteria such as AIC, BIC and 
R2. 

In this work we applied an approach in which 
HD can be applied as a criterion of model selection. 
HD, between two non-empty sets A = {a1,…., an} 
and B = {b1,…., bm} in a metric space is defined as 
follows: 
 

HD(𝐴𝐴,𝐵𝐵) = max�ℎ(𝐴𝐴,𝐵𝐵),ℎ(𝐵𝐵,𝐴𝐴)�       (5) 
where: 

ℎ(𝐴𝐴,𝐵𝐵) = max
𝑎𝑎∈𝐴𝐴

 min
𝑏𝑏∈𝐵𝐵

‖𝑎𝑎 − 𝑏𝑏‖,         (6) 
and || • || is some underlying norm of A and B 

(e.g., Euclidean norm). The function h(A, B) is 
called the directed Hausdorff distance from A to B. 

We use the HD as a criterion named Hausdorff 
distance criterion (HDC) to compare the set of 
points of the experimental data A and the set of 
points B*(Mj), for j = 1, …, k, received by the 
individual “optimal” models P*(Mj), j = 1, ..., k. We 
are interested in finding B*∈{B1, …, Bk} such that 
HDC(A, B*)=min HD(A, B*(Mj)), j = 1, …, k. 

In this study was applied the following algorithm 
for calculating the HD presented in pseudocode: 
input: Set of points A, Set of points B*(Mj), j = 1, …, 
k, i = 1, …, 6. 
1. For any point a in A finding minimum distance to 
any point bi in B*(Mj); 
2. Finding the point a, in A with the largest 
minimum distance to any point in B*(Mj);  
3. For any point b in B*(Mj) finding minimum 
distance to any point ai in A; 
4. Finding the point b, in B*(Mj) with the largest 
minimum distance to any point in A;  
5. Finding the largest distance between directed 
Hausdorff distance h(A, B*(Mj)) and directed 
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Hausdorff distance h(B*(Mj), A) (see formula (2)). 
output: HD between A and B*(Mj). 

 
We have also developed a separate module for 

the Comparing Models program, which calculates 
the HDC (see Figure 7). 

 

 
Fig. 7. Example for calculation of the HDC: 

dialogue box of the program “Comparing Models” 
for calculating HDC. 

 
As input of the module for calculating the HDC 

is given the set of points of the experimental data 
and the set of points, received by the according 
model (see Figure 8). 

 

 
                 (a)                                   (b) 

Figure 8. Both input files (101 points) of the 
module for calculating the HDC: (a) the set of 

points of the experimental data; (b) the set of points, 
received by the sixth order polynomial. 

This module of the program works only with two 
text files, containing the two sets of points 

respectively the A and B and have possibility to 
display graphically the two sets of points A and B 
and to constructs the polylines between points, as 
and ability to export a graph in TIFF format (see 
Figure 9). 

 

Figure 9. Graph of the sixth order polynomial (101 
points), including the value of HD, in TIFF format. 

Assessment of models in all cases (15, 31 and 
101 points) with HDC are shown in Table 5. 

 

 

Table 5. Result for HDC with different sample size. 

Polynomial 
class model 

Number of 
parameters 

HDC 

15 
data 

points 

31 
data 

points 

101 
data 

points 
First order 2 20.26 24.98 34.48 

Second order 3 8.06 6.56 12.82 
Third order 4 6.28 6.30 10.04 

Fourth order 5 4.76 6.38 10.18 
Fifth order 6 6.22 8.42 8.93 
Sixth order 7 6.42 8.20 8.97 
 
Results from Table 5. show that HDC correctly 

identified the third order polynomial (true class 
model) as the optimal model in case with middle 
sample (31 points) and not identified the optimal 
model, when we have small and large sample. 

 
Usually, in optimization packages, the 

algorithms for finding the optimal solution are of 
gradient type and there is not always a guarantee 
that we have found the global minimum. That is 
why we solve the fitting problem many times, by 
starting the gradient method with points which are 
far or very close to the solution found at the 
beginning. If the application of this procedure leads 
us in the solution initially found, then it can be 
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argued with a high probability that the solution 
found (in respective case of the parameters of the 
polynomials function) is the global minimum [8]. 
4 Conclusion 

The obtained results from the computational 
experiments suggested that AIC performs relatively 
well for small samples but is inconsistent and does 
not improve performance for large samples. The 
BIC criterion appears to perform relatively poorly 
for small samples but is consistent and improves its 
performance with increasing the sample size. This is 
consistent with previous studies [4, 13], which 
demonstrated that BIC is consistent (that is, it tends 
to choose the true model with a probability equal to 
1) in large samples. In our experiments BIC also 
outperforms AIC when there is a large sample (101 
data points) in identification the true class model. 
As a w hole, the current results suggest that 
generally AIC should be preferred in smaller 
samples whilst BIC should be preferred in larger 
samples. 

In the general case if you want to select the 
"optimal" model with the smallest mean square 
error, the AIC and / or BIC criteria are very 
appropriate. They will choose the optimal model 
that has the relatively same error for each point in 
the experimental data point. These criteria report a 
compromise between the complexity of the model 
(number of parameters) and the accuracy [1, 3, 7]. 

The comparison of interpolation utility of 
regression models with a different number of 
parameters cannot be done by simple comparison of 
R2. At least the adjusted R2 must be used, but more 
sophisticated measures like an AIC, BIC are 
strongly advised. 

The HD was successfully applied as a cr iterion 
for optimal model selection. An efficient algorithm 
was presented in this study to compute the HD 
between set of points of the experimental data and 
set of points of the fitting model. The numerical 
results obtained in this research are so encouraging 
that we believe that it may be used in other 
applications, as well. For checking if the introduced 
by us criterion for model selection HDC fulfills its 
intended purpose, we made a comparison of the 
results obtained by this criterion with the results of 
the other commonly used criteria for optimality 
models such as AIC and BIC. 

However, there is one problem that may arise 
when using Hausdorff distance for determining the 
proximity between two polylines A and B. In this 
case the two polylines A and B are represented as 
two sets of points {a1, ..., an} and {b1, ..., bn}, 
respectively and the HD yields a d istance which is 
not indicative for the two polylines in general. One 

approach to mitigate this problem, proposed in [17] 
is for the sampling rate of the polylines to be 
greater, i.e two sets A and B to contain a g reater 
number of points. In our case, when we incrase 
sample from 15 t o 31 points HDC correctly 
identified the third order polynomial (true class 
model). However, with continued increase in sample 
to 101 points HDC not identified the optimal model. 
This is probably due to the fact that it does not 
include punishment to increase the number of 
parameters in the model In contrast to AIC and BIC. 

A disadvantage of the used polynomial models is 
that in many cases they are not suitable for the 
biological interpretation and are worthless outside 
the range of observed data, i.e. cannot be used to 
predictions beyond this range. 
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