
Conceptualization of an Autonomic Machine Learning Platform for
Non-Expert Developers

KEON MYUNG LEE1, JAESOO YOO2, JIMAN HONG3
1Dept of Computer Science,

Chungbuk National University,
Cheongju, KOREA

kmlee@cbnu.ac.kr
2School of Information and Communication Engineering,

Chungbuk National University,
Cheongju, KOREA

yjs@cbnu.ac.kr
3School of Computer Science and Engineering,

Soongsil University,
Seoul, KOREA
jiman@ssu.ac.kr

Abstract: - Machine learning is an approach to develop some algorithm for problem solving from data of the
problem domain without coding programs. Although there are various machine learning tools with which
machine learning applications can be developed relatively easily, non-experts have yet difficulties in
developing machine learning applications. To be a successful developer, it is required to understand machine
learning algorithms and to make right design choices. This paper addresses the decision choices to be made and
which tasks need to be automated by the platform for non-expert developers to get an effective and efficient
machine learning application. It presents the autonomicity levels which specify the level of automation in
machine learning application development. It describes the requirements of an autonomic machine learning
platform which helps non-expert developers build a machine learning application. It also introduces an
architecture of an autonomic machine learning platform.

Key-Words: - machine learning, distributed computing, autonomic computing, machine learning
platform

1 Introduction

Machine learning techniques have been recently
made great progress with the invention of new
excellent machine learning algorithms like deep
learning and the availability of massive data and
computing resources. ML algorithms are very
effective in extracting knowledge in the form of
patterns or models from a collection of data.
Various machine learning algorithms have been
developed and in use for various tasks[1-16]. The
adoption of machine learning could increase
productivity, quality, or profit by saving much cost
and labour in various domains.

Excellent machine learning tools have been
developed and available in public even in open
software or open source software.[1-4] Machine
learning takes experts to be successfully applied to a
specific problem due to the following reasons: First,

appropriate machine learning task should be
identified to the problem. The tasks include
classification, regression, clustering,
recommendation, density estimation, dimensionality
reduction, feature representation, and so on. Second,
it is of paramount importance to use proper features
by selecting or extracting features from data sets
with various attributes. Third, there are many
candidate machine learning algorithms for a specific
task, each of which has some advantages or
disadvantages over others. Fourth, most machine
learning algorithms have some hyperparameters
which are a kind of parameters that influence on the
algorithm’s behaviour. The existence of
hyperparameters requires the engineering work for
selecting their proper values. With some insight of
experts and mainly generate-and-test manner, many
hyperparameter combinations should be examined
by executing the employed machine learning
algorithms with the hyperparameter values.

WSEAS TRANSACTIONS on COMPUTERS Keon Myung Lee, Jaesoo Yoo, Jiman Hong

E-ISSN: 2224-2872 252 Volume 16, 2017

Recent progresses in machine learning,
especially in deep learning and probabilistic
graphical models, take considerable amount of
computations due to their model complexity, i.e.,
the number of parameters in a model. Machine
learning algorithms with hyperparameters take
considerable computing resources for training and
inference.[6-11] External computing resources such
as cloud services or distributed computing systems
allow us to harness the computing power for
machine learning service systems.[12,13,14] As
mentioned above, however, the well-trained human
experts on machine learning is a rare resource to
take. Even though there are many open machine
learning tools are available, most sectors in industry,
business, and government have difficulty in
adopting machine learning techniques to their work
because they do not have such machine learning
experts.

There has been some work to automate machine
learning tasks with less human involvement.
[7,8,9,10] This paper addresses a new platform for
machine learning which automates machine learning
for a given data set and uses the external computing
resources. The platform works in an autonomic
manner of which architecture is organized so that
some components take care of machine learning
planning, some components manage executing of
specific machine learning task, some components
evaluate the learned models, and others take care of
distributed computing resource management.

The remainder of the paper is organized as
follows: Section 2 presents some related work to
machine learning automation. Section 3 presents the
design choices made by the machine learning
application developers which make non-expert
successfully develop machine learning application,
the requirements of an autonomic machine learning
platform. It also presents an architecture of an
autonomic machine learning platform. It also
describes the functionalities of component modules
in the platform. Section 4 presents the implement
issues and the current progress of the platform
development. Finally, Section 5 draws the
conclusions.

2 Related Work

There have been some efforts to automatically
determine hyperparameters in machine algorithm
algorithms. Grid method[12] generates candidate
hyperparameter combinations each of which
hyperparameters is equally spaced in its domain,
and chooses a combination which gives the best

performance by executing the corresponding ML
algorithm for each candidate. Random method[9]
generates candidate hyperparameter combinations
randomly which gives empirically better chances to
find better hyperparameters within the given
computation budget. Sequential model-based
algorithm configuration method [7] selects a
hyperparameter combination based on a model
rather than uniformly at random. Tree-structured
Parzen estimator method [10] sequentially
constructs models to approximate the performance
of hyperparameters based on historical
measurements, and then subsequently chooses new
hyperparameters to test based on this model.
Gaussian process-based method [6] is also used,
which uses a Gaussian process as a surrogate for
hyperparameter distributions and updates the
Gaussian process by combining sampling results
and prior distribution.

Due to considerable computation demands, there
have been various works on distributed processing
and parallel processing in machine learning.
OptiML, GraphLab, SystemML, SimSQL, and
MLBase are such machine learning platform that
provide programming and runtime support.[4]
OptiML is developed to allow the machine learning
practitioner to write code in a MATLAB-like
declarative manner of which code runs on various
hardware platforms such as a multi-core CPU, a
GPU, a clusters of computing nodes, and other
specialized accelerators. GraphLab is a graph-based,
distributed computation framework which uses the
graph-parallel abstraction for sparse iterative graph
algorithms and works in pull-based and
asynchronous manner. SystemML is an ML
framework in which a declarative ML language is
used to describe ML algorithms and the codes
expressed in the ML language are compiled and
optimized into hybrid runtime plans of multi-
threaded, in-memory operations in a single node or
distributed map-reduce or Spark operations on a
cluster of nodes. SimSQL is an SQL-based platform
which runs on top of Hadoop, and is designed for
supporting scalable Bayesian machine learning.
MLBase is an ML framework which is based on
Spark for lower-level data processing and works on
Hadoop platform.

Giraph, Spark, and DryadLinq are some of
frameworks with which ML tasks are programmed
and executed even though they have been not
designed only for ML tasks.[17] Giraph is a graph-
based, distributing computing framework, in which
models are push-based and synchronous. Spark is a
cluster computing framework for large scale data
analytics, which utilizes Resilient Distributed

WSEAS TRANSACTIONS on COMPUTERS Keon Myung Lee, Jaesoo Yoo, Jiman Hong

E-ISSN: 2224-2872 253 Volume 16, 2017

Datasets (RDDs) that allows in-memory
computation and provides fault-tolerance by
managing data lineage. DryadLinq is a distributed
computing framework which uses the distributed
execution engine Dryad and the .Net language
integrated query LINQ, and allows to easily develop
ML algorithms as well as other distributed
computing applications.

3 Autonomic Machine Learning
Platform

3.1 Design Choices in Machine Learning
Application Development

Despite many available ML tools, it takes an expert
to effectively use them in a real problem because
there are various factors to be selected in the
applications of ML algorithms. The followings are
some typical design choices made by the developers
in ML application developments:

 Acquisition of training data and partition : ML
models are developed from training data. Hence the
acquisition of proper training data is of paramount
importance which collects a collection of data that
reflect the problem domain in a cost-effective
manner. The collected data are used for training,
validation, and testing. The data collection needs to
be partitioned into smaller collections according to
the employed ML algorithm and the application
context such as the number of available data, the test
and validation methods, and the budget of
computing resources.

 Preprocessing of data : Sometimes, data need to
be preprocessed because they are usually not clean
and well curated. Data transformation and
normalization are typical tasks conducted in this
stage. Most ML algorithms have their own format
for the input data. Raw data usually do not follow
the format. The data transformation hence should be
performed to convert data into the amenable format,
if the data format is not comparable. Data
normalization is one of fundamental processing in
data preparation. The domains of attributes in data
are different each other. When distance or similarity
is computed, the differences in range of data
attributes may distort the metrics. The typical
normalization is to standardize the data.

 Feature extraction : Most ML algorithms are
strong enough to extract features while learning
some model for the designated task. The quality of
features has the strong influence on the performance

of the developed ML systems. The choice of quality
features requires expertise and sometimes is a time-
consuming task. The feature extraction techniques
include both the feature selection methods and the
feature generation methods. Feature selection
methods choose some features among available ones.
There are some measures such as χ2 method, cross-
entropy, for evaluating the relevance of attributes to
the task of interest. Feature generation methods
produces new features by combining the available
attributes. Recent development of deep learning
techniques allow the developers not to pay much
attention to feature extraction.

 Task decision : There are various kinds of ML
tasks such as classification, regression,
recommendation, clustering, policy construction,
and so on. Classification is to map data into one of
pre-specified categories. Regression is to map input
into output numerical domain. Recommendation is
to suggest related items based on the previous
history of activities. Clustering is to group similar
ones into subgroups. Policy construction is to select
actions proper to the situations.

 ML algorithm selection : ML approaches are
broadly categorized into supervised learning,
unsupervised learning, and reinforcement learning.
In the ML approaches, there are many choices of
ML algorithms each of which has its own strength
and weakness. It takes an expert to choose the
proper ML algorithm for the given problem domain.

 ML algorithm configuration : Most algorithms
require some configuration such as model
configuration and hyperparameter setting. Some ML
algorithms specify the general strategy of problem
solving, and thus the developers need to determine
the details of the algorithms. In genetic algorithm,
chromosome coding of candidate solutions and
genetic operators are the main components which
developers come up with for problem handling. In
deep learning and neural networks, the network
configuration is critical to the performance of the
ML applications. Hyperparameters are the
parameters for the developer to decide based on
their own experience and insights.

 Performance measure selection : ML algorithms
try to improve the ML models with respect to some
performance measure. ML algorithms narrow down
their candidates of performance measure. The
developers need to choose the performance measure
to use for ML applications and to determine the
criteria for accepting the developing models.

WSEAS TRANSACTIONS on COMPUTERS Keon Myung Lee, Jaesoo Yoo, Jiman Hong

E-ISSN: 2224-2872 254 Volume 16, 2017

 Computing resource acquirement : ML
algorithms demand considerable amount of
computing resources because they may handle large
volume of data and/or they conduct heavy
computations. As mentioned, the ML application
development is an engineering work in which the
developers cut, add, modify, and/or tune the system
so that the expected performance of the model could
be achieved. Hence, there is some trial-and-test
nature because multiple or many candidates are tried
to be trained and evaluated until a satisfactory
model is identified. One of major application
domains of high performance computing is the ML
applications. A private section may not afford to
acquire sufficient computing resources for ML
application development. The cloud services for ML
application development are one of the easiest
enabling technology and one of the most accessible
computing infrastructure.

 Algorithm implementation and Public tool usage :

Once an ML algorithm is selected for use, it should
be implemented as a code. The code may be
implemented by the developer. Various excellent
ML tools and frameworks have been developed and
published in public use. Some ML tools are
commercially available. The developers need to
decide which tools to use or to develop by
themselves. The self-development takes
considerable cost and time, but provides much
flexibility. The public and commercial tools have
their own way to use them, and hence the developer
need to learn how to use them and to build the
execution environment of the employed tools.

 Execution of ML algorithms: Some ML algorithm
takes certain amount of time to execute. In ML
application development, various ML models are
usually tried to find out an excellent model. Parallel
and/or execution of candidate models are widely
practiced in real development. The developers need
to manage the deployment and monitoring of the
model training tasks over the computing resources.
When a model seems to be destined to be a failure,
it is better to terminate the execution of an algorithm.

 Evaluation of trained models: Multiple ML
models are trained with different configurations and
hyperparameters. To select the most effective model,
they need to be evaluated with respect to evaluation
criteria and test data. The developers need to
prepare the procedure and/or schedule for the ML
model evaluation.

 Model update for data distribution change in the
problem domain: Sometimes, the data distribution in

the problem domain may change over the time. As
time goes, more data are collected. The ML model
need be improved as more data are collected and
used for learning. The developers need to take
actions for model improvement as new and more
data are collected.

Even an expert developer is devoted to develop
an ML application with due consideration of the
above mentioned design choices, it also takes
considerable computing resources for multiple trials
in finding a model with satisfactory performance.
Hence, it will be great to have a platform to help
ML applications without an ML expert and to take
care of computing resources required to search for a
best model and its hyperparameters. We call such a
system as an autonomic ML platform because it
works with least human involvement.

3.2 Requirements of Autonomic Machine
Learning

An autonomic ML platform aims to provide an
environment in which a non-expert on ML develops
an ML-based application in his/her problem. There
are some requirements that such a ML platform
meets:

First, the platform needs to provide the mechanism
which can use the existing public ML frameworks
and tools. There are excellent ML tools some of
which are even open source software supported by
major companies or well-known open source
software communities. Representative ML tools are
SparkML, TensorFlow, Mahout, and Weka. There
are also some language environments such as Spark
and Python which allow easy development of
massive data processing and complicated
computation. It is important for the developers to
make their familiar tools use when they use a new
development environment. Various well-known and
rapidly developing tools are efficient and effective
for ML experts to use. The autonomic ML platform
hence supports such tools on its environment.

Second, the platform should enable non-experts
to build their ML applications even though they do
not have enough understanding of ML algorithms
and skills to implement their complicated logics by
themselves. We pay attention to the level of
autonomicity which tells how much a system takes
care of ML tasks in an autonomous way. We
categorize the autonomicity into six levels.

The autonomicity levels are specified in terms of
the existences of specified data set, of specified

WSEAS TRANSACTIONS on COMPUTERS Keon Myung Lee, Jaesoo Yoo, Jiman Hong

E-ISSN: 2224-2872 255 Volume 16, 2017

input attributes, of specified ML task, of specified
ML algorithms, and of hyperparameters. At the
autonomicity level 0, all pieces of the above-
mentioned information are supposed to be provided
by the developer. Level 0 autonomicity is the
current level of ML application development.
Practically level 0 autonomicity does not provide
any autonomicity.

At the autonomicity level 1, the developers are
free from choosing the proper input attributes in the
development of ML applications. In ML
applications, it is important to determine the
relevant attributes to the output attribute, especially
in supervised learning tasks. For each type of ML
tasks, there are some techniques which can be
applied for feature selection and feature extraction.
The platform of autonomicity level 1 should be
equipped with the functionality for relevant feature
extraction and selection which are exercised with no
developer’s involvement.

At the autonomicity level 2, the platform has the
functionality of automatically determining the
hyperparameters for the given algorithm, which has
the capability of level 1. The hyperparameters are
one of major factors to affect the performance of a
specific ML algorithm for the given data set. The
hyperparameters settings are usually made by the
developers based on their experience and
understanding of the algorithm. It is usually time-
consuming because it is somewhat trial-and-test task
with no golden law for best hyperparameter values
even though there have been actively studied for the
hyperparameter selection in ML algorithms.

At the autonomicity level 3, only the training data
set and its ML task are given, and all other ML
works are done by the platform. The platform takes
care of which ML algorithm to use, the
hyperparameter setting, and relevant input attribute
selection. It needs to evaluate candidate ML
algorithms for the given t ask and to determine the
hyperparameters for each ML algorithm under
consideration. The brute-force approach is not a
good approach in searching for a good ML model
due to excessive number of possible models. There
needs some remedies to reduce the search space.
One strategy is to use the expert knowledge about
which ML algorithm\s are effective under which
situation. This requires to build up knowledge base
by extracting expert knowledge and literature
surveys. This knowledge-based approach is not
sufficient to find a good model. While the platform
is utilized for many ML application development, it
meets many problem cases and may get knowledge

from its experience. Hence the platform need to
accumulate the profile data about its ML learning
tasks and to build up the ML model construction
knowledge from the profile data.

 At the autonomicity level 4, the ML application
is developed when the training data is only provided.
All other decision choices are made by the platform.
At this level, the platform searches for which task
can be conducted for the given data set. It performs
unsupervised learning on the data set. The
unsupervised learning is rather broader than the
unsupervised learning approach conventionally
mentioned in ML literature because the platform is
concerned with not only supervised tasks but also
supervised tasks.

The autonomicity level 5 is the ultimate level at
which nothing is made by the developers. The
platform tries to find some patterns from all the
available things without any involvement of the
developers.

Third, the platform needs to have the capability of
using the external computing resources and
executing the learning and inference tasks with them.
The platform should have the mechanism for
registering, locating, monitoring the ML computing
resources and ML tools, and assigning ML tasks to
them.

Fourth, the platform needs to provide a script
language with which the autonomic ML tasks are
expressed in a distributed and parallel manner. The
script languages can be either coarse grained or fine
grained. Coarse grained script languages allow the
programmers to express the tasks and processes in a
highly abstract way. Fine grained script languages
allow them to specify the details of the tasks and
processes. Some existing ML tools is equipped with
a fine-grained script language in which the
developers design their ML models and implement
the logics of ML algorithms. Such script languages
sometimes express the ML models and the
operations of ML algorithms in directed graphs such
data flow graph in TensorFlow and RDD lineage
graph in Apache Spark. The fine-grained script
languages are tightly bound to their execution
platform on which they are compiled, deployed and
executed. Coarse grained script languages deal with
the functional modules which carry out some
designated tasks, and express the process of
operations with the functional modules. Once an
ML applications are written in a coarse-grained
script language, it is more convenient to execute
them on a distributed and parallel environment

WSEAS TRANSACTIONS on COMPUTERS Keon Myung Lee, Jaesoo Yoo, Jiman Hong

E-ISSN: 2224-2872 256 Volume 16, 2017

because scheduling and management can be done on
the functional module basis.

3.3 Architecture of the Proposed Autonomic
Machine Learning Platform

To realize an autonomic ML platform, we designed
an architecture that meets the above-mentioned
requirements as shown in Figure 1. The architecture
supports both the black box and white box modes.
In the black box mode, the ML platform does not
ask the developers to write some codes of ML tasks,
but just asks them to specify the components
corresponding to the autonomicity level employed at
the moment. The remaining details on ML tasks are
taken care of by the platform which uses the
existing ML platforms and tools integrated. In the
black box approach, the platform contains various
functional modules for both ML algorithms and
design choices mentioned in Section 3.1. The
management works for task deployment, execution,
and monitoring are coordinated by the policy taken
by the platform. The developers of ML applications
are not strongly engaged in ML model development
except the design choices required for the developer
to provide. Hence, the developers cannot make fine
control on the ML application development in terms
of ML model construction and computing resource
utilization.

In the white box mode, the developers write some
codes for ML tasks according to their own logic and
design choices, using the provided script language.
The ML models and the algorithms for training and
inference are encoded in a directed computation
graph which is later compiled and executed. The
deployment of operations in the directed
computation graph can be more complicated than
coarse-grained scripts because the granularity of
operations may not be large enough or the data
communication between operations happens heavily.
When operations are tightly bound, it is better to
wrap them into a module which runs a single
machine.

In the architecture, a developer interacts with the
platform through the ML client. The ML client
delivers the developer’ request to the Autonomic
ML Coordinator, monitors the progress of the
deployed tasks, and receives the results of learning
and inference. It maintains the connection between
the database system and the platform so that the data
sets in the database can be used in ML tasks and the
results of learning and inference are stored and
maintained in the database. The Autonomic ML

coordinator takes charge of coordinating the
autonomic ML tasks by generating ML task plans
for plausible configurations, executing them with
the available computing platforms, and selects the
best models and patterns from the results of the ML
tasks. Due to enormous number of candidate ML
configurations, the demands on computing resources
are soaring up as the autonomicity level grows high.
Expert knowledge can be helpful to set up the initial
configurations and to narrow down the ranges of
candidate hyperparameters under consideration.

Fig. 1. The architecture of the proposed autonomic
ML platform

 Such knowledge is maintained in the ML plan
repository to which the execution profiles including
configurations and their performance are maintained
to incrementally enhance the knowledge. The ML
plan repository also includes the cost model for
configurations and data characteristics. The cost
model is updated to reflect the execution profiles
collected during the ML tasks conducted on the
platform. The ML planner is in charge of
determining the model configuration, the
hyperparameters, and/or feature selection and
extraction, as well as ML tasks deployment.

The Computing Master receives the ML tasks
from the Autonomic ML coordinator, deploys them
over the computing resources, monitors their
progresses, reconfigures the deployments of ML
tasks, if needed, and reports the status and the
results to the Autonomic ML coordinator. The
computing resources include the single servers like
a GPU server and a multi-core server, the cloud
services and distributed computing systems. Each
computing resource has a master worker node which
communicates with the Computing Master and
manages its own computing resources to conduct
the ML tasks. The proposed platform supports to
use the existing ML platform and tools. Hence, the
ML wrappers are implemented to invoke the ML

WSEAS TRANSACTIONS on COMPUTERS Keon Myung Lee, Jaesoo Yoo, Jiman Hong

E-ISSN: 2224-2872 257 Volume 16, 2017

tools to execute the corresponding ML tasks, to
report their progresses and results, and to terminate
the deployed tasks, if needed.

When the ML tasks are expressed in the script
language, the codes are executed by the ML
Executer which launches the corresponding ML
platform and conducts the execution of the codes on
the platform according to the corresponding
configuration. When a cloud service or a distributed
computing system is used as a computing resource,
the master worker node is installed on it.

The master worker node communicates with the
deployed ML platform or framework which takes
care of the ML tasks. If the ML codes in the script
language are delivered, the master worker node
distributes the ML codes to the Worker nodes which
next invokes the ML Executers. The master worker
nodes of the computing resources that support the
proposed ML platform to register themselves into
the Computing Resource Registry with their access
method, functionality, capability, workload, and
billing policy. The Registry checks the registered
computing resources on a regular basis, and
maintains the current states. The Computing Master
refers to the Computing Resource Registry when
distributing the ML tasks and monitoring their
progress.

4 Implementation of the Proposed
ML Platform

The proposed autonomic ML platform is a huge
system to integrate the existing ML platforms and
frameworks and to use many external computing
resources. In addition, it is an ambitious approach to
try to realize the full range of the autonomicity
levels from the primitive level to the completely
autonomic level. Under both the black box approach
and the coarse grained script support, the
architecture and the functional modules are designed
and specified.

 To evaluate the feasibility of the proposed
architecture, we have developed an initial stage
prototype which realizes a preliminary platform of
the proposed architecture. The Single server node
has been implemented to provide the GPU-based
ML framework to execute the Tensorflow programs.

The prototypes of the ML client, the Autonomic
ML coordinator, the ML planner, the ML plan
repository, the Computing Resource Registry, and
the Computing Master have been implemented. The
autonomicity levels 0 and 1 have been supported by

the ML planner. The prototype system has been
tested to execute the deep learning algorithms like
CNN and RNN algorithms.

5 Conclusions

ML application development takes an expert
developer to be successful and also takes
computation resources to find an excellent model
from training data. The autonomic ML platform can
be an enabler for non-experts of ML to employ ML
techniques in solving their real domain problems.
We defined the autonomicity levels from the
primitive level to the ultimate level. To handle the
vast demands on computing resources in autonomic
ML, we proposed an architecture to realize the ML
platform which uses the external computing
resources and the existing ML platforms and
frameworks. To evaluate the feasibility of the
proposed platform, we have developed a primitive
prototype of the proposed architecture for the
autonomic ML platform.

The proposed ML architecture can be an
important enabling technique to convert a database
into an intelligent database. With the advances and
widespread deployment of sensor technology like
IoT, large volumes of data have been accumulated
with the expectation of finding business
opportunities from them. It is, however, not easy to
transform such data into valuable knowledge. The
autonomic ML platform can help extract valuable
and confident knowledge from data. There yet
remains much work in realizing the functionalities
of the autonomic computing platform. Once it is
implemented, the ML technology can be easily
adopted in many domains without ML experts.
Especially, the databases can be evolved into
intelligent databases with the help of the autonomic
ML platform. Such intelligent databases allow the
dream that once data are stored, the knowledge are
developed automatically.

Acknowledgments: This research was supported by
Next-Generation Information Computing Development
Program through the National Research Foundation
(NRF) of Korea (Grant no.: NRF-2017M3C4A7069432),
by the MSIT(Ministry of Science and ICT), Korea, under
the ITRC(Information Technology Research Center)
support program(IITP-2017-2013-0-00881) supervised
by the IITP(Institute for Information & communications
Technology Promotion).

WSEAS TRANSACTIONS on COMPUTERS Keon Myung Lee, Jaesoo Yoo, Jiman Hong

E-ISSN: 2224-2872 258 Volume 16, 2017

References:
[1] Kraska, T., Talwalkar, A., Duchi, J., Griffith,

R., Franklin, M. J., Jordan, M.: MLbase: A
Distributed Machine-learning System. CIDR,
Vol. 1, 2013.

[2] Bello-Orgaz, G., Jung, J. J., Camacho, D.:
Social big data: Recent achievements and new
challenges. Information Fusion, Vol. 28, pp.
45-59, 2016.

[3] Jha, S., Qiu, J., Luckow, A., Mantha, P., &
Fox, G. C.: A tale of two data-intensive
paradigms: Applications, abstractions, and
architectures. Proceedings of 2014 IEEE
International Congress on Big Data (BigData
Congress), (pp. 645-652), 2014.

[4] Cai, Z., Gao, Z. J., Luo, S., Perez, L. L.,
Vagena, Z., Jermaine, C.: A comparison of
platforms for implementing and running very
large scale machine learning algorithms. In
Proceedings of the 2014 ACM SIGMOD
international conference on Management of
data, pp. 1371-1382, 2014.

[5] Lee, K.M., Lee, S.Y., Lee, K.M., Lee, S.H.:
Document Density and Frequency-Aware
Cluster Identification for Spatio-Temporal
Sequence Data, Vol. 93, No. 1, 2017.

[6] Brochu, E., Cora, V. M., & De Freitas, N.: A
tutorial on Bayesian optimization of expensive
cost functions, with application to active user
modeling and hierarchical reinforcement
learning. arXiv preprint arXiv:1012.2599, 2010.

[7] Bergstra, J. S., Bardenet, R., Bengio, Y., Kégl,
B.: Algorithms for hyper-parameter
optimization. In Advances in Neural
Information Processing Systems, pp. 2546-
2554, 2011.

[8] Johnson, V. E., Wong, W. H., Hu, X., Chen, C.
T.: Image restoration using Gibbs priors:
Boundary modeling, treatment of blurring, and
selection of hyperparameter. IEEE Transactions
on Pattern Analysis and Machine Intelligence,
Vol. 13, No. 5, pp.413-425, 1991.

[9] Bergstra, J., Bengio, Y.: Random search for
hyper-parameter optimization. Journal of
Machine Learning Research, 13(Feb), pp.281-
305, 2012.

[10] Bergstra, J., Yamins, D., Cox, D.: Making a
science of model search: Hyperparameter
optimization in hundreds of dimensions for
vision architectures. Proceedings of
International Conference on Machine Learning,
pp. 115-123, 2013, February.

[11] Thornton, C., Hutter, F., Hoos, H. H., Leyton-
Brown, K.: Auto-WEKA: Combined selection
and hyperparameter optimization of

classification algorithms. Proceedings of the
19th ACM SIGKDD international conference
on Knowledge discovery and data mining, pp.
847-855, 2013, August.

[12] Larochelle, H., Erhan, D., Courville, A.,
Bergstra, J., & Bengio, Y.: An empirical
evaluation of deep architectures on problems
with many factors of variation. Proceedings of
the 24th international conference on Machine
learning, pp. 473-480, 2007.

[13] Kang, S. J., Lee, S. Y., & Lee, K. M.:
Performance comparison of OpenMP, MPI, and
mapreduce in practical problems. Advances in
Multimedia, Vol. 7, 2015.

[14] Lee, K., Lam, M., Pedarsani, R.,
Papailiopoulos, D., Ramchandran, K.:
Speeding up distributed machine learning using
codes. Proceedings of 2016 IEEE International
Symposium on Information Theory (ISIT), pp.
1143-1147, 2016, July.

[15] Lee, K.M., Jeong, Y.-S., Lee, S.H., Lee, K.M.:
Bucket-size balancing locality sensitive
hashing using the map reduce paradigm,
Cluster Computing, 2017.

[16] Li, M., Andersen, D. G., Park, J. W., Smola, A.
J., Ahmed, A., Josifovski, V., Su, B. Y.:
Scaling Distributed Machine Learning with the
Parameter Server. OSDI, Vol. 1, No. 10.4, p. 3,
2014.

[17] Sparks, E. R., Talwalkar, A., Smith, V.,
Kottalam, J., Pan, X., Gonzalez, J., Kraska, T.:
MLI: An API for distributed machine learning.
Proceedings of 2013 IEEE 13th International
Conference on Data Mining (ICDM), pp. 1187-
1192, 2013, December.

[18] Singh, D., Reddy, C. K.: A survey on platforms
for big data analytics. Journal of Big Data, Vol.
2, No. 24, 2015.

WSEAS TRANSACTIONS on COMPUTERS Keon Myung Lee, Jaesoo Yoo, Jiman Hong

E-ISSN: 2224-2872 259 Volume 16, 2017

