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Abstract: - Machine learning is an approach to develop some algorithm for problem solving from data of the 
problem domain without coding programs. Although there are various machine learning tools with which 
machine learning applications can be developed relatively easily, non-experts have yet difficulties in 
developing machine learning applications. To be a successful developer, it is required to understand machine 
learning algorithms and to make right design choices. This paper addresses the decision choices to be made and 
which tasks need to be automated by the platform for non-expert developers to get an effective and efficient 
machine learning application. It presents the autonomicity levels which specify the level of automation in 
machine learning application development. It describes the requirements of an autonomic machine learning 
platform which helps non-expert developers build a machine learning application. It also introduces an 
architecture of an autonomic machine learning platform.  
 
Key-Words: - machine learning, distributed computing, autonomic computing, machine learning 
platform 
 
1 Introduction 
 

Machine learning techniques have been recently 
made great progress with the invention of new 
excellent machine learning algorithms like deep 
learning and the availability of massive data and 
computing resources. ML algorithms are very 
effective in extracting knowledge in the form of 
patterns or models from a collection of data. 
Various machine learning algorithms have been 
developed and in use for various tasks[1-16]. The 
adoption of machine learning could increase 
productivity, quality, or profit by saving much cost 
and labour in various domains.  

Excellent machine learning tools have been 
developed and available in public even in open 
software or open source software.[1-4] Machine 
learning takes experts to be successfully applied to a 
specific problem due to the following reasons: First, 

appropriate machine learning task should be 
identified to the problem. The tasks include 
classification, regression, clustering, 
recommendation, density estimation, dimensionality 
reduction, feature representation, and so on. Second, 
it is of paramount importance to use proper features 
by selecting or extracting features from data sets 
with various attributes. Third, there are many 
candidate machine learning algorithms for a specific 
task, each of which has some advantages or 
disadvantages over others. Fourth, most machine 
learning algorithms have some hyperparameters 
which are a kind of parameters that influence on the 
algorithm’s behaviour. The existence of 
hyperparameters requires the engineering work for 
selecting their proper values. With some insight of 
experts and mainly generate-and-test manner, many 
hyperparameter combinations should be examined 
by executing the employed machine learning 
algorithms with the hyperparameter values.  
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Recent progresses in machine learning, 
especially in deep learning and probabilistic 
graphical models, take considerable amount of 
computations due to their model complexity, i.e., 
the number of parameters in a model. Machine 
learning algorithms with hyperparameters take 
considerable computing resources for training and 
inference.[6-11] External computing resources such 
as cloud services or distributed computing systems 
allow us to harness the computing power for 
machine learning service systems.[12,13,14] As 
mentioned above, however, the well-trained human 
experts on machine learning is a rare resource to 
take. Even though there are many open machine 
learning tools are available, most sectors in industry, 
business, and government have difficulty in 
adopting machine learning techniques to their work 
because they do not have such machine learning 
experts.  

There has been some work to automate machine 
learning tasks with less human involvement. 
[7,8,9,10] This paper addresses a new platform for 
machine learning which automates machine learning 
for a given data set and uses the external computing 
resources. The platform works in an autonomic 
manner of which architecture is organized so that 
some components take care of machine learning 
planning, some components manage executing of 
specific machine learning task, some components 
evaluate the learned models, and others take care of 
distributed computing resource management. 

The remainder of the paper is organized as 
follows: Section 2 presents some related work to 
machine learning automation. Section 3 presents the 
design choices made by the machine learning 
application developers which make non-expert 
successfully develop machine learning application, 
the requirements of an autonomic machine learning 
platform. It also presents an architecture of an 
autonomic machine learning platform. It also 
describes the functionalities of component modules 
in the platform. Section 4 presents the implement 
issues and the current progress of the platform 
development. Finally, Section 5 draws the 
conclusions. 
 
2 Related Work 
 
There have been some efforts to automatically 
determine hyperparameters in machine algorithm 
algorithms. Grid method[12] generates candidate 
hyperparameter combinations each of which 
hyperparameters is equally spaced in its domain, 
and chooses a combination which gives the best 

performance by executing the corresponding ML 
algorithm for each candidate. Random method[9] 
generates candidate hyperparameter combinations 
randomly which gives empirically better chances to 
find better hyperparameters within the given 
computation budget. Sequential model-based 
algorithm configuration method [7] selects a 
hyperparameter combination based on a model 
rather than uniformly at random. Tree-structured 
Parzen estimator method [10] sequentially 
constructs models to approximate the performance 
of hyperparameters based on historical 
measurements, and then subsequently chooses new 
hyperparameters to test based on this model. 
Gaussian process-based method [6] is also used, 
which uses a Gaussian process as a surrogate for 
hyperparameter distributions and updates the 
Gaussian process by combining sampling results 
and prior distribution. 

Due to considerable computation demands, there 
have been various works on distributed processing 
and parallel processing in machine learning. 
OptiML, GraphLab, SystemML, SimSQL, and 
MLBase are such machine learning platform that 
provide programming and runtime support.[4] 
OptiML is developed to allow the machine learning 
practitioner to write code in a MATLAB-like 
declarative manner of which code runs on various 
hardware platforms such as a multi-core CPU, a 
GPU, a clusters of computing nodes, and other 
specialized accelerators. GraphLab is a graph-based, 
distributed computation framework which uses the 
graph-parallel abstraction for sparse iterative graph 
algorithms and works in pull-based and 
asynchronous manner. SystemML is an ML 
framework in which a declarative ML language is 
used to describe ML algorithms and the codes 
expressed in the ML language are compiled and 
optimized into hybrid runtime plans of multi-
threaded, in-memory operations in a single node or 
distributed map-reduce or Spark operations on a 
cluster of nodes. SimSQL is an SQL-based platform 
which runs on top of Hadoop, and is designed for 
supporting scalable Bayesian machine learning. 
MLBase is an ML framework which is based on 
Spark for lower-level data processing and works on 
Hadoop platform.  

Giraph, Spark, and DryadLinq are some of 
frameworks with which ML tasks are programmed 
and executed even though they have been not 
designed only for ML tasks.[17] Giraph is a graph-
based, distributing computing framework, in which 
models are push-based and synchronous. Spark is a 
cluster computing framework for large scale data 
analytics, which utilizes Resilient Distributed 
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Datasets (RDDs) that allows in-memory 
computation and provides fault-tolerance by 
managing data lineage. DryadLinq is a distributed 
computing framework which uses the distributed 
execution engine Dryad and the .Net language 
integrated query LINQ, and allows to easily develop 
ML algorithms as well as other distributed 
computing applications.  
 
3 Autonomic Machine Learning 
Platform  
 
3.1 Design Choices in Machine Learning 
Application Development 
 

Despite many available ML tools, it takes an expert 
to effectively use them in a real problem because 
there are various factors to be selected in the 
applications of ML algorithms. The followings are 
some typical design choices made by the developers 
in ML application developments:  

    Acquisition of training data and partition : ML 
models are developed from training data. Hence the 
acquisition of proper training data is of paramount 
importance which collects a collection of data that 
reflect the problem domain in a cost-effective 
manner. The collected data are used for training, 
validation, and testing. The data collection needs to 
be partitioned into smaller collections according to 
the employed ML algorithm and the application 
context such as the number of available data, the test 
and validation methods, and the budget of 
computing resources.  

    Preprocessing of data : Sometimes, data need to 
be preprocessed because they are usually not clean 
and well curated. Data transformation and 
normalization are typical tasks conducted in this 
stage. Most ML algorithms have their own format 
for the input data. Raw data usually do not follow 
the format. The data transformation hence should be 
performed to convert data into the amenable format, 
if the data format is not comparable. Data 
normalization is one of fundamental processing in 
data preparation. The domains of attributes in data 
are different each other. When distance or similarity 
is computed, the differences in range of data 
attributes may distort the metrics. The typical 
normalization is to standardize the data.  

    Feature extraction : Most ML algorithms are 
strong enough to extract features while learning 
some model for the designated task. The quality of 
features has the strong influence on the performance 

of the developed ML systems. The choice of quality 
features requires expertise and sometimes is a time-
consuming task. The feature extraction techniques 
include both the feature selection methods and the 
feature generation methods. Feature selection 
methods choose some features among available ones. 
There are some measures such as  χ2 method, cross-
entropy, for evaluating the relevance of attributes to 
the task of interest. Feature generation methods 
produces new features by combining the available 
attributes. Recent development of deep learning 
techniques allow the developers not to pay much 
attention to feature extraction.  

   Task decision : There are various kinds of ML 
tasks such as classification, regression, 
recommendation, clustering, policy construction, 
and so on. Classification is to map data into one of 
pre-specified categories. Regression is to map input 
into output numerical domain.  Recommendation is 
to suggest related items based on the previous 
history of activities. Clustering is to group similar 
ones into subgroups. Policy construction is to select 
actions proper to the situations.  

    ML algorithm selection : ML approaches are 
broadly categorized into supervised learning, 
unsupervised learning, and reinforcement learning. 
In the ML approaches, there are many choices of 
ML algorithms each of which has its own strength 
and weakness. It takes an expert to choose the 
proper ML algorithm for the given problem domain.  

    ML algorithm configuration : Most algorithms 
require some configuration such as model 
configuration and hyperparameter setting. Some ML 
algorithms specify the general strategy of problem 
solving, and thus the developers need to determine 
the details of the algorithms. In genetic algorithm, 
chromosome coding of candidate solutions and 
genetic operators are the main components which 
developers come up with for problem handling. In 
deep learning and neural networks, the network 
configuration is critical to the performance of the 
ML applications. Hyperparameters are the 
parameters for the developer to decide based on 
their own experience and insights.  

    Performance measure selection : ML algorithms 
try to improve the ML models with respect to some 
performance measure. ML algorithms narrow down 
their candidates of performance measure. The 
developers need to choose the performance measure 
to use for ML applications and to determine the 
criteria for accepting the developing models.   
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    Computing resource acquirement : ML 
algorithms demand considerable amount of 
computing resources because they may handle large 
volume of data and/or they conduct heavy 
computations. As mentioned, the ML application 
development is an engineering work in which the 
developers cut, add, modify, and/or tune the system 
so that the expected performance of the model could 
be achieved. Hence, there is some trial-and-test 
nature because multiple or many candidates are tried 
to be trained and evaluated until a satisfactory 
model is identified. One of major application 
domains of high performance computing is the ML 
applications. A private section may not afford to 
acquire sufficient computing resources for ML 
application development. The cloud services for ML 
application development are one of the easiest 
enabling technology and one of the most accessible 
computing infrastructure.  

    Algorithm implementation and Public tool usage :   

Once an ML algorithm is selected for use, it should 
be implemented as a code. The code may be 
implemented by the developer. Various excellent 
ML tools and frameworks have been developed and 
published in public use. Some ML tools are 
commercially available. The developers need to 
decide which tools to use or to develop by 
themselves. The self-development takes 
considerable cost and time, but provides much 
flexibility. The public and commercial tools have 
their own way to use them, and hence the developer 
need to learn how to use them and to build the 
execution environment of the employed tools.  

    Execution of ML algorithms: Some ML algorithm 
takes certain amount of time to execute. In ML 
application development, various ML models are 
usually tried to find out an excellent model. Parallel 
and/or execution of candidate models are widely 
practiced in real development. The developers need 
to manage the deployment and monitoring of the 
model training tasks over the computing resources. 
When a model seems to be destined to be a failure, 
it is better to terminate the execution of an algorithm.  

     Evaluation of trained models: Multiple ML 
models are trained with different configurations and 
hyperparameters. To select the most effective model, 
they need to be evaluated with respect to evaluation 
criteria and test data. The developers need to 
prepare the procedure and/or schedule for the ML 
model evaluation.  

    Model update for data distribution change in the 
problem domain: Sometimes, the data distribution in 

the problem domain may change over the time. As 
time goes, more data are collected. The ML model 
need be improved as more data are collected and 
used for learning. The developers need to take 
actions for model improvement as new and more 
data are collected.  

Even an expert developer is devoted to develop 
an ML application with due consideration of the 
above mentioned design choices, it also takes 
considerable computing resources for multiple trials 
in finding a model with satisfactory performance. 
Hence, it will be great to have a platform to help 
ML applications without an ML expert and to take 
care of computing resources required to search for a 
best model and its hyperparameters. We call such a 
system as an autonomic ML platform because it 
works with least human involvement.  

3.2   Requirements of Autonomic Machine 
Learning   

An autonomic ML platform aims to provide an 
environment in which a non-expert on ML develops 
an ML-based application in his/her problem. There 
are some requirements that such a ML platform 
meets:  

First, the platform needs to provide the mechanism 
which can use the existing public ML frameworks 
and tools. There are excellent ML tools some of 
which are even open source software supported by 
major companies or well-known open source 
software communities. Representative ML tools are 
SparkML, TensorFlow, Mahout, and Weka. There 
are also some language environments such as Spark 
and Python which allow easy development of 
massive data processing and complicated 
computation. It is important for the developers to 
make their familiar tools use when they use a new 
development environment. Various well-known and 
rapidly developing tools are efficient and effective 
for ML experts to use. The autonomic ML platform 
hence supports such tools on its environment.  

Second, the platform should enable non-experts 
to build their ML applications even though they do 
not have enough understanding of ML algorithms 
and skills to implement their complicated logics by 
themselves. We pay attention to the level of 
autonomicity which tells how much a system takes 
care of ML tasks in an autonomous way. We 
categorize the autonomicity into six levels.  

The autonomicity levels are specified in terms of 
the existences of specified data set, of specified 
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input attributes, of specified ML task, of specified 
ML algorithms, and of hyperparameters. At the 
autonomicity level 0, all pieces of the above-
mentioned information are supposed to be provided 
by the developer. Level 0 autonomicity is the 
current level of ML application development. 
Practically level 0 autonomicity does not provide 
any autonomicity. 

At the autonomicity level 1, the developers are 
free from choosing the proper input attributes in the 
development of ML applications. In ML 
applications, it is important to determine the 
relevant attributes to the output attribute, especially 
in supervised learning tasks. For each type of ML 
tasks, there are some techniques which can be 
applied for feature selection and feature extraction. 
The platform of autonomicity level 1 should be 
equipped with the functionality for relevant feature 
extraction and selection which are exercised with no 
developer’s involvement.  

At the autonomicity level 2, the platform has the 
functionality of automatically determining the 
hyperparameters for the given algorithm, which has 
the capability of level 1. The hyperparameters are 
one of major factors to affect the performance of a 
specific ML algorithm for the given data set. The 
hyperparameters settings are usually made by the 
developers based on their experience and 
understanding of the algorithm. It is usually time-
consuming because it is somewhat trial-and-test task 
with no golden law for best hyperparameter values 
even though there have been actively studied for the 
hyperparameter selection in ML algorithms.  

At the autonomicity level 3, only the training data 
set and its ML task are given, and all other ML 
works are done by the platform. The platform takes 
care of which ML algorithm to use, the 
hyperparameter setting, and relevant input attribute 
selection. It needs to evaluate candidate ML 
algorithms for the given t ask and to determine the 
hyperparameters for each ML algorithm under 
consideration. The brute-force approach is not a 
good approach in searching for a good ML model 
due to excessive number of possible models. There 
needs some remedies to reduce the search space. 
One strategy is to use the expert knowledge about 
which ML algorithm\s are effective under which 
situation. This requires to build up knowledge base 
by extracting expert knowledge and literature 
surveys. This knowledge-based approach is not 
sufficient to find a good model. While the platform 
is utilized for many ML application development, it 
meets many problem cases and may get knowledge 

from its experience. Hence the platform need to 
accumulate the profile data about its ML learning 
tasks and to build up the ML model construction 
knowledge from the profile data.  

 At the autonomicity level 4, the ML application 
is developed when the training data is only provided. 
All other decision choices are made by the platform. 
At this level, the platform searches for which task 
can be conducted for the given data set. It performs 
unsupervised learning on the data set. The 
unsupervised learning is rather broader than the 
unsupervised learning approach conventionally 
mentioned in ML literature because the platform is 
concerned with not only supervised tasks but also 
supervised tasks. 

The autonomicity level 5 is the ultimate level at 
which nothing is made by the developers. The 
platform tries to find some patterns from all the 
available things without any involvement of the 
developers.  

Third, the platform needs to have the capability of 
using the external computing resources and 
executing the learning and inference tasks with them. 
The platform should have the mechanism for 
registering, locating, monitoring the ML computing 
resources and ML tools, and assigning ML tasks to 
them.  

Fourth, the platform needs to provide a script 
language with which the autonomic ML tasks are 
expressed in a distributed and parallel manner. The 
script languages can be either coarse grained or fine 
grained. Coarse grained script languages allow the 
programmers to express the tasks and processes in a 
highly abstract way. Fine grained script languages 
allow them to specify the details of the tasks and 
processes. Some existing ML tools is equipped with 
a fine-grained script language in which the 
developers design their ML models and implement 
the logics of ML algorithms. Such script languages 
sometimes express the ML models and the 
operations of ML algorithms in directed graphs such 
data flow graph in TensorFlow and RDD lineage 
graph in Apache Spark. The fine-grained script 
languages are tightly bound to their execution 
platform on which they are compiled, deployed and 
executed. Coarse grained script languages deal with 
the functional modules which carry out some 
designated tasks, and express the process of 
operations with the functional modules. Once an 
ML applications are written in a coarse-grained 
script language, it is more convenient to execute 
them on a distributed and parallel environment 
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because scheduling and management can be done on 
the functional module basis.  

3.3   Architecture of the Proposed Autonomic 
Machine Learning Platform   

To realize an autonomic ML platform, we designed 
an architecture that meets the above-mentioned 
requirements as shown in Figure 1. The architecture 
supports both the black box and white box modes. 
In the black box mode, the ML platform does not 
ask the developers to write some codes of ML tasks, 
but just asks them to specify the components 
corresponding to the autonomicity level employed at 
the moment. The remaining details on ML tasks are 
taken care of by the platform which uses the 
existing ML platforms and tools integrated. In the 
black box approach, the platform contains various 
functional modules for both ML algorithms and 
design choices mentioned in Section 3.1. The 
management works for task deployment, execution, 
and monitoring are coordinated by the policy taken 
by the platform. The developers of ML applications 
are not strongly engaged in ML model development 
except the design choices required for the developer 
to provide.  Hence, the developers cannot make fine 
control on the ML application development in terms 
of ML model construction and computing resource 
utilization.  

In the white box mode, the developers write some 
codes for ML tasks according to their own logic and 
design choices, using the provided script language.  
The ML models and the algorithms for training and 
inference are encoded in a directed computation 
graph which is later compiled and executed. The 
deployment of operations in the directed 
computation graph can be more complicated than 
coarse-grained scripts because the granularity of 
operations may not be large enough or the data 
communication between operations happens heavily. 
When operations are tightly bound, it is better to 
wrap them into a module which runs a single 
machine.   

In the architecture, a developer interacts with the 
platform through the ML client. The ML client 
delivers the developer’ request to the Autonomic 
ML Coordinator, monitors the progress of the 
deployed tasks, and receives the results of learning 
and inference. It maintains the connection between 
the database system and the platform so that the data 
sets in the database can be used in ML tasks and the 
results of learning and inference are stored and 
maintained in the database. The Autonomic ML 

coordinator takes charge of coordinating the 
autonomic ML tasks by generating ML task plans 
for plausible configurations, executing them with 
the available computing platforms, and selects the 
best models and patterns from the results of the ML 
tasks. Due to enormous number of candidate ML 
configurations, the demands on computing resources 
are soaring up as the autonomicity level grows high. 
Expert knowledge can be helpful to set up the initial 
configurations and to narrow down the ranges of 
candidate hyperparameters under consideration. 

 

Fig. 1. The architecture of the proposed autonomic 
ML platform   

 

 Such knowledge is maintained in the ML plan 
repository to which the execution profiles including 
configurations and their performance are maintained 
to incrementally enhance the knowledge. The ML 
plan repository also includes the cost model for 
configurations and data characteristics. The cost 
model is updated to reflect the execution profiles 
collected during the ML tasks conducted on the 
platform. The ML planner is in charge of 
determining the model configuration, the 
hyperparameters, and/or feature selection and 
extraction, as well as ML tasks deployment.  

The Computing Master receives the ML tasks 
from the Autonomic ML coordinator, deploys them 
over the computing resources, monitors their 
progresses, reconfigures the deployments of ML 
tasks, if needed, and reports the status and the 
results to the Autonomic ML coordinator. The 
computing resources include the single servers like 
a GPU server and a multi-core server, the cloud 
services and distributed computing systems. Each 
computing resource has a master worker node which 
communicates with the Computing Master and 
manages its own computing resources to conduct 
the ML tasks. The proposed platform supports to 
use the existing ML platform and tools. Hence, the 
ML wrappers are implemented to invoke the ML 
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tools to execute the corresponding ML tasks, to 
report their progresses and results, and to terminate 
the deployed tasks, if needed.  

When the ML tasks are expressed in the script 
language, the codes are executed by the ML 
Executer which launches the corresponding ML 
platform and conducts the execution of the codes on 
the platform according to the corresponding 
configuration. When a cloud service or a distributed 
computing system is used as a computing resource, 
the master worker node is installed on it.  

The master worker node communicates with the 
deployed ML platform or framework which takes 
care of the ML tasks. If the ML codes in the script 
language are delivered, the master worker node 
distributes the ML codes to the Worker nodes which 
next invokes the ML Executers. The master worker 
nodes of the computing resources that support the 
proposed ML platform to register themselves into 
the Computing Resource Registry with their access 
method, functionality, capability, workload, and 
billing policy. The Registry checks the registered 
computing resources on a regular basis, and 
maintains the current states. The Computing Master 
refers to the Computing Resource Registry when 
distributing the ML tasks and monitoring their 
progress. 
 
4 Implementation of the Proposed 
ML Platform 
 

The proposed autonomic ML platform is a huge 
system to integrate the existing ML platforms and 
frameworks and to use many external computing 
resources. In addition, it is an ambitious approach to 
try to realize the full range of the autonomicity 
levels from the primitive level to the completely 
autonomic level. Under both the black box approach 
and the coarse grained script support, the 
architecture and the functional modules are designed 
and specified.  

   To evaluate the feasibility of the proposed 
architecture, we have developed an initial stage 
prototype which realizes a preliminary platform of 
the proposed architecture. The Single server node 
has been implemented to provide the GPU-based 
ML framework to execute the Tensorflow programs.  

The prototypes of the ML client, the Autonomic 
ML coordinator, the ML planner, the ML plan 
repository, the Computing Resource Registry, and 
the Computing Master have been implemented. The 
autonomicity levels 0 and 1 have been supported by 

the ML planner. The prototype system has been 
tested to execute the deep learning algorithms like 
CNN and RNN algorithms. 
 
5 Conclusions 
 

ML application development takes an expert 
developer to be successful and also takes 
computation resources to find an excellent model 
from training data. The autonomic ML platform can 
be an enabler for non-experts of ML to employ ML 
techniques in solving their real domain problems. 
We defined the autonomicity levels from the 
primitive level to the ultimate level. To handle the 
vast demands on computing resources in autonomic 
ML, we proposed an architecture to realize the ML 
platform which uses the external computing 
resources and the existing ML platforms and 
frameworks. To evaluate the feasibility of the 
proposed platform, we have developed a primitive 
prototype of the proposed architecture for the 
autonomic ML platform.  

The proposed ML architecture can be an 
important enabling technique to convert a database 
into an intelligent database. With the advances and 
widespread deployment of sensor technology like 
IoT, large volumes of data have been accumulated 
with the expectation of finding business 
opportunities from them. It is, however, not easy to 
transform such data into valuable knowledge. The 
autonomic ML platform can help extract valuable 
and confident knowledge from data. There yet 
remains much work in realizing the functionalities 
of the autonomic computing platform. Once it is 
implemented, the ML technology can be easily 
adopted in many domains without ML experts. 
Especially, the databases can be evolved into 
intelligent databases with the help of the autonomic 
ML platform. Such intelligent databases allow the 
dream that once data are stored, the knowledge are 
developed automatically. 
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