
Efficiently Secure ECC Scalar Multiplication Methods against Power
Analysis Attacks on Resource Constrained Devices

Extended Version*

TURKI F. ALSOMANI
Computer Engineering Department

Umm Al-Qura University
P.O. Box: 715, Makkah 21955

SAUDI ARABIA
tfsomani@uqu.edu.sa

HILAL HOUSSAIN
Islamic Research and Training Institute

Islamic Development Bank
Jeddah

SAUDI ARABIA
hilal.hussein@gmail.com

Abstract: - Power analysis attacks are serious security threats to most cryptographic implementations, where
these attacks may reveal the secret keys by exploiting leaked power consumption from running cryptographic
devices. Most of the research efforts and proposed countermeasures against these attacks result in additional
computational cost for hardware implementation. This paper presents efficient scalar multiplication methods,
which is secure against the simple power analysis attacks. The main idea of the proposed method is to delay the
elliptic curve point addition operation of the scalar multiplication using buffering technique. By such delay, the
correlation between the key and the power consumption is eliminated. In addition, when combined with
randomization techniques, the second method may also protect against differential power analysis attacks.
Accordingly, the proposed methods have been implemented on an Altera Cyclone III EP3C80F780C7 FPGA and
the results show that the proposed methods exhibit a time advantage over related works. Compared to other
methods, the proposed methods can achieve up t o 50% time improvement for accomplishing one scalar
multiplication with 173-bit, 191-bit, and 230-bit.

Key-Words: - Elliptic Curve Cryptosystems, Simple Power Analysis attacks, Differential Power Analysis
Attacks, and Scalar Multiplication.

1 Introduction

Elliptic Curve Cryptosystems (ECC), which was
originally proposed by Niel Koblitz and Victor Miller
in 1985 [1, 2] is a serious alternative to RSA [3] with
much shorter key size [4]. ECC is considered to be
ideal for implementation on r esource constrained
devices such a wi reless sensor networks (WSNs)
(e.g., [5 - 7]), smart cards, mobile phones, radio
frequency identity (RFID), etc.

Scalar multiplication (SM), kP, is the basic
operation for ECC. Computing kP can be done with
the straightforward double-and-add method (also
called binary method) [4], as described in Algorithm
(1), based on the binary expression of k = (km-1,…,k0)
where km-1 is the most significant bit of k.

* Extended version of the published paper in ICCIT
2013.

Algorithm 1: The straightforward double-and-add
method (left-to-right version)
Inputs: P: Base Point, k: Secret key
Outputs: kP.

1: Q ← P
2: for i = m-2 down to 0 do

2.1 Q ← 2Q
2.2 if ki = 1 then Q ← Q + P

3: end for
Return Q

Several SM methods have been proposed in the

literature [4]. Furthermore, such SM methods are
disposed to the power analysis attacks (PAA), such
as simple power analysis (SPA) and differential
power analysis (DPA) attacks, which was introduced
by Paul Kocher in 1999 [9, 10], that exploit leaked
power consumption from running cryptographic
devices such as WSNs, smart cards, mobile phones,
RFIDs etc., to reveal the secret keys. R ecently P.

WSEAS TRANSACTIONS on COMPUTERS Turki F. Alsomani, Hilal Houssain

E-ISSN: 2224-2872 241 Volume 16, 2017

mailto:tfsomani@uqu.edu.sa
mailto:hilal.hussein@gmail.com

Dyka [11] in 2013 discussed the security of WSNs
against Side Channel Attacks (SCA), and various
solutions were proposed to secure SM against SCA
[43, 44].

This paper presents an efficient scalar
multiplication method, which is secure against the
simple power analysis (SPA). The main idea of the
proposed method is to delay the elliptic curve point
addition (PADD) operation of the scalar
multiplication using buffering technique; i.e., some
points are stored into buffer and the PADD
operations are performed in later stages. By such
delay, the correlation between the key and the power
consumption is eliminated. In addition, when
combined with randomization techniques, the
proposed method may protect against some DPA
attacks.

The rest of the paper is organized as follows. In
Section 2, the background of ECC, and the PAA are
presented. In Section 3, we described the proposed
SM method, followed by an example. In section 4,
we conducted a performance and a security analysis
of the proposed SM method. Section 5 concludes the
presented paper.

2 Background

2.1 Elliptic Curve Cryptography
ECC, which was originally proposed by Niel Koblitz
and Victor Miller in 1985 [1, 2] is a ser ious
alternative to RSA [3] with much shorter key size.
For instance, as recommended by NIST for ECC and
RSA key length, ECC-160 provides comparable
security to RSA-1024 and ECC-224 provides
comparable security to RSA-2048 [4]. To date, no
significant breakthroughs have been made in
determining weaknesses in the ECC algorithm,
which is based on the discrete logarithm problem
over points on an elliptic curve. The advantage of
ECC is being recognized recently where it is being
incorporated in many standards. ECC is considered
to be ideal for implementation on r esource
constrained devices such a WSN (e.g., [5 - 7]), smart
cards, mobile phones, RFID, etc.

Computing P + Q is called PADD if P ≠ Q
and is called elliptic curve point doubling (PDBL) if
P = Q. Elliptic Curve Point subtraction (PSUB) is a
useful operation in some algorithms. This operation
can be performed with the PADD formula using the
additive inverse of the point to be subtracted. For
example, the point subtraction P − Q can be
computed using the PADD operation where: P − Q
= P + (−Q). The additive inverse of a point P = (x,

y) is the point (x, x + y) for curves defined over the
GF(2m) fields.

Moreover, adding a point P on the elliptic
curve E to itself a number of times (k) is known as
the scalar product (kP) of point P by the scalar k. SM
is the basic operation for ECC. SM in the group of
points of an elliptic curve is analogous of
exponentiation in the multiplicative group of integers
modulo a fixed integer m. Computing kP can be done
with the straightforward double-and-add method [4],
as described in Algorithm (1), based on the binary
expression of the multiplier of k = (km-1,…,k0) where
km-1 is the most significant bit of k. The
straightforward double-and-add method inspects the
bits of the scalar multiplier k, if the inspected bit ki =
0, only PDBL is performed. If, however, the
inspected bit ki = 1, both PDBL and PADD are
performed. This method requires an average of m
PDBL + [m/2] PADD. A good survey on SM
methods is presented in [4].

2.2 Power Analysis Attacks on ECC
In 1996, Paul Kocher introduced the power analysis
procedure; then, in 1999 he introduced the PAA.
These attacks have become a major threat against
tamper resistant device [8 - 10] [47]. PAA allow
adversaries to obtain the secret key, or partial
information on it, by observing the power
consumption traces of a cryptographic device. This is
a serious threat especially to mobile devices such as
WSNs, smart cards, mobile phones, RFIDs etc. Thus,
implementers need algorithms that are not only
efficient, but also PAA-resistant. Tw o main PAA
techniques are the SPA and DPA:

2.2.1 SPA Attack
The main idea of the SPA attacks [10] is to get the
secret k using the side-channel leakage information
obtained through observing the power consumption
from a si ngle measurement trace. For instance,
PDBL, in Algorithm (1), is executed for each bit of
the scalar k and PADD is executed only if the scalar
bit is equal to one. If the power consumption trace
pattern of PDBL is different from that of PADD, the
side-channel leakage of the implementation reveals
the presence of the PADD and thus the value of the
scalar bits and attackers can easily retrieve the secret
key from a single side-channel trace.

2.2.2 DPA Attack
In DPA attacks [10], the adversary makes use of the
obvious variations in the power consumption that are
caused by multiple data and operation computations,
and use statistical techniques to pry the secret
information. This attack uses a two round technique:

WSEAS TRANSACTIONS on COMPUTERS Turki F. Alsomani, Hilal Houssain

E-ISSN: 2224-2872 242 Volume 16, 2017

(1) data collection and (2) data processing. DPA
attack on SM is described in [14]. However, many
research efforts have been made to countermeasure
the DPA attacks [8][12 - 14][35 - 37][47]. Therefore,
more advanced DPA attacks techniques applicable to
elliptic curve cryptosystems, such as refined power
analysis (RPA) [12], zero power analysis (ZPA) [15],
SVPA (Same Values Power Analysis) [17], and
doubling attacks (DA) [16] were introduced.

2.2.3 Countermeasures
Since 1996, many research efforts [14] [22 - 30] have
been made to secure ECC method implementations,
in special the SM, against PAA. The major challenge
is to avoid additional computational cost, and to
develop relatively fast cryptosystems without
compromising security, due to the nature of the
resource constrained devices.
 There are different strategies to resist SPA attacks.
These strategies share the same objective, which is to
render the power consumption traces that are caused
by the data and operation computations during an SM
independent from the secret key. One
countermeasure is the double-and-add-always
algorithm [14], it is highly regular, and it requires no
pre-computation or prior recoding. This algorithm
requires m PDBL and m PADD regardless of the
value of the scalar multiplier, and two temporary
registers are needed to store the results of each
iteration (see Algorithm (2)).

Algorithm 2: The double-and-add-always Method
Inputs: P: Base Point, k: Secret key.
Outputs: kP.
1: R[0]←O.
2: for i = m-1 down to 0 do

2.1: R[0] ← 2R[0], R[1] ← R[0] + P.
2.2: R[0] ← R[ki].

3: end for
Return R[0].

Another countermeasure is the Montgomery ladder
algorithm [25], which for every bit of k, computes
both a PADD and a P DBL operation, and this
algorithm avoids the usage of dummy instructions.
Montgomery ladder [25] resists the normal DA.
However, it is attacked by the relative DA proposed
by S.M. Yen [18]. Moreover, recent studies have
shown that processing the bits of multiplier from least
to most, as Montgomery ladder does, are vulnerable
to certain attacks [16]. Algorithm (3) below outlines
this method.

Algorithm 3: Montgomery ladder Method
Inputs: P: Base Point, k: Secret key.
Outputs: kP.
1: R[0] ← P, R[1] ← 2P
2: for i = m - 2 down to 0 do

2.1: R[1 - ki]←R[0] + R[1]
2.2: R[ki]←2R[ki].

3: end for
Return R[0].

Same as in SPA attacks, there are different
approaches and techniques [12 - 14][35 - 37][47]
used to resist DPA attacks. In general, the traditional
and straightforward approach is by randomizing the
intermediate data, thereby rendering the calculation
of the hypothetical leakage values rather impossible.

3 Previous scalar multiplication
methods against PAA

Ciet and Joye’s Method. This method [13] uses
the variant of Shamir’s double ladder to compute the
muli-scalar multiplication k1P + k 2Q. The main
difference is to insert a dummy operation in the
computation. So, each loop includes one doubling
and one addition, and the operation order is a
repeated sequence of PDBL and PADD operations in
Algorithm 3. Hence one PDBL and one PADD per
bit is needed.

Lee’s Method. To resist SPA, Lee improved the

simultaneous scalar multiplication in [45]. He
changed the value of (ki, mi) when (ki, mi) = (0, 0) to
construct another adequate digit pair with at least one
non-zero digit. The adjacent pair (ki+1, mi+1) should
be modified as wel l. After the transformation, the
digit pair (ki,mi) cannot be all zero. Therefore, the
modified simultaneous scalar multiplication was
proposed by Lee to resist SPA. The cost of Lee’s
algorithm is one PDBL and one PADD per bit.

Zhang, Chen, Xiao’s Algorithm. This algorithm
[42] proposes four scalar multiplication algorithms
against power analysis. Those algorithms are all
based on the highest-weight binary form (HBF) of the
scalars and randomization to resist power analysis.
Although those four countermeasures have no
dummy operations, the efficiency of them is similar
to Ciet and Joye’s algorithm. They also almost need
one PDBL and one PADD per bit. One of these
algorithms can be seen as follows in Algorithm5.

Liu, Tan, and Dai’s Algorithm. Liu et al. also
propose a multi-scalar multiplication to resist SPA in
[46]. The difference is that they use a joint sparse
form (JSF) to represent a pair of integers and process

WSEAS TRANSACTIONS on COMPUTERS Turki F. Alsomani, Hilal Houssain

E-ISSN: 2224-2872 243 Volume 16, 2017

two or three JSF columns each time. Although the
processed column number may be different, the
algorithm always performs 4 PDBL and 2 PADD in
each loop. This means that it is not possible for useful
information related to the private key to be obtained
by the attacker through SPA. The theoretical analysis
and simulation results show that this algorithm needs
1.384 PDBLs and 0.692 PADDs per bit.

4 The Proposed Scalar Multiplication
Methods

4.1 The Buffer-Based Method
The first proposed scalar multiplication method is
presented here. The main idea is to modify the right-
to-left (R2L) version of Algorithm 1 method through
delaying the computation of PADD operation for bit
value of 1 by cashing its corresponding PDBL value
in a buffer of fixed size r. Each of the cashed points
in the buffer is associated with the location of bit
value 1 in the scalar. Once the buffer is full or upon
the completion of the scalar’s bits inspection,
compute a P ADD operation on the cashed points.
After all bits of the scalar are full inspected, the
resulting PADD operation value is assimilated to
produce the scalar product kP. Thus, the PADD
operation is delayed, and turned to be independent of
the scalar bit value ki. The pseudocode of the
proposed scalar multiplication method is given in
Algorithm 4. The inspection of the scalar is
performed in Step 2. All points are initially cashed
into the buffer (Step 2.1), but the buffer index is only
incremented for bit value of 1 (Step 2.4). The PDBL
operation is computed for all bits in Step 2.2. In Step
2.3, the computation of PADD operation is
performed on a ll cashed points in the buffer. All
PADD operations are added in the accumulation
point R[0] in the last step of the algorithm to produce
the multiplication kP.
For example, for a key of 8-bit length, and value of
186 equivalent to (10111010)2 in binary, and a buffer
capacity of 3, PDBL computations (those
corresponding to scalar bit value of 1) are cached
twice in the buffer of fixed size 3, as follow:
1. In the first iteration, and because the buffer

became full, only 2P, 8P, 16P correspond to the
scalar bit positions of 1,3,4 respectively, and then

2. In the second iteration, and as the scalar scan is
completed, 32P, 128P correspond to the scalar
bit positions of 5, and 7 respectively.

 Where in each iteration (Step 2.3) a PADD operation
is performed on the cached points, so that R[0] values
are evaluated as 26P (2P + 8P + 16P) and 186P (26P
+ 32P + 128P), respectively. Finally, the output value

of the scalar multiplication is represented by the final
value of R[0], which is equal to 186P. The
intermediate results computed by the proposed
method are shown in Table 1. Furthermore, the
dataflow of the proposed method is depicted in
Figure 1.

Algorithm 4: The Buffer-Based method
Inputs: P: Base Point, k: Secret key, r is capacity
limit of buffer
Outputs: kP.
1: R[0] ← O, t ← 1 /* set buffer index t to 1 */
2: for i = 0 to m-1 do

2.1: B[t] ← P /* scan k, store points in
buffer */
2.2: P ← 2P
2.3: If (t = r) or (i = m-1), then /* buffer
reach its capacity limit or scan k is done */

2.3.1: for s = 1 to t do
2.3.1.1: R[0] ← R[0] + B[s]
2.3.2: t ← 1 /* reset buffer index
to 1 */

2.4 else t ← t + ki /* increment t if the bit
value of k is 1 */

Return R[0].

4.2 The Randomized Buffer-Based Method
The second method introduces randomization
technique to the first method by randomizing the
accumulation step of the resulting point from
processing the key partitions (see Algorithm 5 and
Figure 2).

In Figure 2, the scalar multiplier k is scanned
from right to left and for every scalar bit value:

1. Perform a PDBL operation. PDBL operation
keeps the significance of the point value at
the scalar bit position of the scalar.

2. Write to buffer the updated value of P (result
of PDBL operation) The buffer capacity is
randomized (greater than zero, and less or
equal to the initial random capacity). Index
to buffer is directly related to the bit scalar
value; i.e., it will only increment for bit value
of 1. Therefore, the buffer will only store
points corresponding to bit value of 1.

3. Once the buffer is full (i.e. the number of
stored points is equal to the capacity of the
buffer after applying randomization), the
PADD operation is performed on a random
number of points stored in the buffer.

4. When the scalar scanning is completed, the
PADD operation is performed on t he
remaining points in the buffer.

WSEAS TRANSACTIONS on COMPUTERS Turki F. Alsomani, Hilal Houssain

E-ISSN: 2224-2872 244 Volume 16, 2017

The scalar multiplication will be the accumulated
points of the PADD operation results.

Algorithm 5: The Randomized Buffer-Based
method
Inputs: P: Base Point, k: Secret key, r is capacity
limit of buffer
Outputs: kP.
1: R[0] ← O, t ← 1 /* set buffer index t to 1 */
2: for i = 0 to m-1 do

2.1: r' ← RNG (0,r); /* Generate random
number r', where 0 < r' < buffer capacity r.
2.2: B[t] ← P /* scan k, store points in
buffer */
2.3: P ← 2P
2.4: if (t ← r') then

2.4.1: j ← RNG (≤ r'); random
number generator for a number
less than or equal to i
2.4.2: for s = j to t do

2.4.2.1: R[0]←R[0]+B[s]
2.4.3: t ← j; Reset buffer (to avoid
calculating resident points from
previous iteration)

2.5: else t ← t + ki /* increment t if the bit
value of k is 1 */
2.6: if i ← m-1 then

2.6.1: for s = 1 to t – 1 do
2.6.1.1: R[0]←R[0]+B[s]

Return R[0].

5 Performance/Security Analysis and

Comparison

5.1 Performance Analysis
In algorithm 4, each loop of Step 2 has one PDBL and
a PADD for only the cached points in the buffer,
which are corresponding the bit value of 1 of the
scalar. Therefore, each bit needs one PBDL and ½
PADD. In order to show the performance of
Algorithm 4, a comparison with previous methods is
listed in Table 2. This can be improved when NAF
encoding is used [47]. Additionally, this method
requires no extra dummy computation.
 In the proposed Randomized Buffer-based
method (Algorithm 5), on the other hand, PADD is
performed in later stage and only if the bit value ki =
1, while PDBL is always performed regardless of the
bit value ki. In addition, this proposed method is
derived from the binary method (See Algorithm 1);
therefore, the performance required by the proposed
Buffer-based method is m PDBL and an average of
m/2 PADD operations, which is equivalent to the

performance of the binary method, and it has a better
performance in compared to the double-and-add
always method. In addition, Buffer-based method
requires no extra dummy computation. Similarly, this
can be improved to m PDBL and an average of m/3
PADD when NAF encoding is used [47].

5.2 Security Analysis
In the proposed method, the PADD operation is
delayed by storing points in a buffer, and a PDBL
with "write to buffer" is performed for every bit
value, and thus the relation between the scalar bit
value and point operation is removed. Therefore, this
proposed method is robust against SPA attacks since
the point operations (PDBL and PADD) are
independent of the bit scalar value.
 Moreover, the security of this proposed method
depends on the provided depth of confusion which is
directly proportional to the size of the buffer, i.e., the
smaller the buffer is, the easier to guess the number
of processed bit "1" during the sequence of PDBL
operations, and it will be harder when the buffer is
larger.
 In the randomized buffer-based method
(Algorithm 5), on the other hand, the PADD
operation is delayed by storing points in a buffer, and
a PDBL with "write to buffer" is performed for every
bit value, and thus the relation between the scalar bit
value and point operation is removed. In addition,
randomization technique is used in number points
stored in the buffer, and the number of points
processed for PADD in the buffer. However,
resistance against all DPA attacks can be achieved by
combining two or more of the countermeasures
proposed in the literature thus far [48].

5.3 Performance Comparison with other Recent

SM Methods
Table 2 compares the number of point operations
(PADD and PDBL) needed for the first and second
proposed methods to those needed for other recently
reported scalar multiplication algorithms with DPA
resistant countermeasures. Both of the proposed
methods require the same number of point
operations, but only the second one will be
considered in this comparison as it provides security
against DPA attacks.
 The five selected countermeasures are the
Modular Scalar Randomization (MSR) reported in
Section 4 of [13], the Binary Random Initial Point
method (BRIP) [41], and the three methods presented
in [42]. As it is shown in the comparison (Table 2),
the proposed SM methods in this paper outperform
the other methods by at least [m/2]*PADD

WSEAS TRANSACTIONS on COMPUTERS Turki F. Alsomani, Hilal Houssain

E-ISSN: 2224-2872 245 Volume 16, 2017

operations, and thus it is efficiently applicable on
resource constrained devices.

5.4 Implementation Results and Comparisons
To conduct an appropriate evaluation of the two
proposed SM methods, these methods are compared
to other two similar methods; One is proposed in
[14], which is based on the double-and-add-always
algorithm (See Algorithm 2), and the other is
proposed by [28], and it is based by partitioning the
bit string of the scalar into half and extracting the
common substring from the two parts based on
propositional logic operations.
 We implemented the four proposed SM methods
over GF(2173), GF(2191), and GF(2230) for different m
sizes as recommended by NIST (m ϵ {173, 191,
230}) on an Altera Cyclone III EP3C80F780C7
FPGA, which contains 81,264 Slices. It was to use an
identical FPGA chip with these methods to ensure
that the power, delay and area comparisons were
performed for the same technology and FPGA
architecture and resources.
 Table 3 lists the implementation results for all four
methods in terms of 1 - Delay measured in ms, 2 -
Area measured in number of slices, and 3 - Power
consumed measured in mW. As expected, the
implementation results show that our proposed
methods outperformed the other two methods in
terms of time delay for all values of m. In addition,
very close results for all methods in terms of area, and
power consumption, and this quite justifiable as our
proposed methods are using slightly extra registers
for buffering.

6 Conclusion
Two SM methods are proposed in this paper, and
these proposed methods provide security against
power analysis attacks on resource constrained
devices. These methods eliminate the correlation
between the key and the power consumption by
delaying the PADD operation of the SM using
buffering technique. Efficient performance and high
security are both achieved by the two proposed
methods. For instance, and in comparison with other
recently reported scalar multiplication algorithms
with power analysis attacks resistant
countermeasures, the performance analysis shows
that the proposed methods achieve higher
performance, i.e. m*PDBL + [m/2]*PADD.

Furthermore, we implemented the proposed
methods together with other two similar methods for
GF(2173), GF(2191) and GF(2230) on an Altera
Cyclone III EP3C80F780C7 FPGA. The results in
terms of the cost measurements (time delay, power

and space) and security level prove that the proposed
methods are feasibly implementable on resource-
constrained devices such as W SNs, RFID mobile
devices and smart card technology.

References:

[1] N. Koblitz, "Elliptic curve cryptosystems,"
Mathematics of Computation, vol. 48, p. 203–
209, 1987.

[2] V. S. M iller, "Use of elliptic curves in
cryptography," in CRYPTO ’85: Proceedings of
the Advances in cryptology, New York, NY,
USA, 1986.

[3] R. Rivest, A. Shamir and L. Adleman, "A method
for obtaining digital signatures and public key
cryptosystems," Commun. ACM, Vol. 21, No.2,
pp. 120-126, DOI: 10.1145/357980.358017,
1978.

[4] D. Hankerson, A. Menezes and S. Vanstone,
Guide to Elliptic Curve Cryptography, Springer-
Verlag, 2004.

[5] D. Malan, M. Welsh and M. Smith, "A public-
key infrastructure for key distribution in TinyOS
based on elliptic curve cryptography," in Proc. of
the 1st IEEE Communications Society
Conference on Sensor and Ad Hoc
Communications and Networks (SECON '04),
pp. 71–80, Santa Clara, Calif, USA, 2004.

[6] H. Houssain, M. Badra and T. F. Al Somani,
"Hardware Implementations of Elliptic Curve
Cryptography in Wireless Sensor Networks," in
Proc. 6th International Conf. on Internet
Technology and Secured Transactions (ICITST
2011), Abu Dhabi, UAE, pp. 1-6, Dec 2011.

[7] N. Gura, A. Patel, A. S. Wander, H. Eberle and
S. Chang Shantz, "Comparing elliptic curve
cryptography and RSA on 8-bit CPUs," in
Cryptographic Hardware and Embedded
Systems — CHES 2004, vol. 3156 of Lecture
Notes in Computer Science, pp. 119–132,
Springer Verlag, 2004.

[8] J. Fan and I. Verbauwhede, “An updated survey
on secure ECC implementations: Attacks,
countermeasures and cost,” Cryptogr. Secur.
From Theory to Appl., pp. 265–282, 2012.

[9] P. Kocher, "Timing Attacks on Implementations
of Diffie-Hellman, RSA, DSS, and Other
Systems," in Advances in Cryptology, Proc.
CRYPTO ’96, N. Koblitz, ed., pp. 104-113, 1996.

[10] P. Kocher, J. Jaffe and B. Jun, "Differential
power analysis," in Proc. Adv. Cryptology –
CRYPTO’99, Santa Barbara, CA, 1999, vol.
1666, pp. 388–397.

WSEAS TRANSACTIONS on COMPUTERS Turki F. Alsomani, Hilal Houssain

E-ISSN: 2224-2872 246 Volume 16, 2017

[11] P. Dyka, Zoya and Langendörfer,
“Improving the Security of Wireless Sensor
Networks by Protecting the Sensor Nodes against
Side Channel Attacks,” in Wireless Networks and
Security, A.-S. Khan, Shafiullah and Khan
Pathan, Ed. Springer Berlin Heidelberg, pp. 303–
328, 2013.

[12] L. Goubin, "A refined power-analysis attack
on elliptic curve cryptosystems," in Proceedings
of PKC 2003, LNCS 2567, pp. 199-211. Springer
Berlin / Heidelberg, 2003.

[13] M. Ciet and M. Joye, "(Virtually) Free
Randomization Techniques for Elliptic Curve
Cryptography," in Information and
Communications Security (ICICS2006), LNCS
2836, Springer, 2003, pp. 348–359.

[14] J. S. Coron, "Resistance against differential
power analysis for elliptic curve cryptosystems,"
in Cryptographic Hardware and Embedded
Systems – CHES 1999, Worcester, MA: Springer,
1999, vol. 1717, pp. 292–302.

[15] T. Akishita and T. Takagi, "Zero-value
register attack on elliptic curve cryptosystem,"
IEICE Transactions, 88-A(1):132–139, 2005.

[16] P. Fouque and F. V alette, "The doubling
attack– why upwards is better than downwards,"
in Proc. CHES’03, 2003, vol. 2779, pp. 269–280.

[17] C. Murdica, S. G uilley, J.-L. Danger, P.
Hoogvorst and D. Naccache, "Same values
power analysis using special points on elliptic
curves," in In Proceedings of the Third
international conference on Constructive Side-
Channel Analysis and Secure Design
(COSADE'12), Werner Schindler and Sorin A.
Huss (Eds.). Springer-Verlag, Berlin,
Heidelberg, 183-198. DOI=10.1007/978-3-642-
29912-4_14.

[18] S. M. Yen, L. C. Ko, S. J. Moon and J. C. Ha,
"Relative doubling attack against montgomery
ladder," in Proc. ICISC’05, 2006, vol. 3935, pp.
117–128.

[19] S. Chari, J. R. Rao and P. Rohatgi, "Template
Attacks," in Cryptographic Hardware and
Embedded Systems, CHES, ser. LNCS, vol. 2523,
2002, pp. 13–28.

[20] P. Fouque, D. R´eal, F. V alette and M.
Drissi, "The Carry Leakage on the Randomized
Exponent Countermeasure," in Cryptographic
Hardware and Embedded Systems - CHES, ser.
LNCS, vol. 5154. Springer, 2008, pp. 198–213.

[21] L. Batina, J. Hogenboom, N. Mentens, J.
Moelans and J. Vliegen, "Side-channel
evaluation of FPGA implementations of binary
Edwards curves," in in International Conference

on Electronics, Circuits and Systems 2010, pp.
1255-1258, Athens, Greece, Dec. 12-15, 2010.

[22] B. Möller, "Parallelizable elliptic curve point
multiplication method with resistance against
side-channel attacks," in Int. Conf. on
Information Security (ISC 2002), Sao Paulo,
Brazil, 2002, vol. 2433, pp. 402–413.

[23] L. P.Y. and S. NP, "Preventing SPA/DPA in
ECC systems using the Jacobi form," in
Workshop on Cryptographic Hardware and
Embedded Systems (CHES 2001), Paris, France,
2001, vol. 2162, pp. 391–401.

[24] E. Brier and M. Joye, "Weierstraß elliptic
curves and side-channel attacks," in David
Naccache and Pascal Paillier (Eds.), Public Key
Cryptography, vol. 2274 of Lecture Notes in
Computer Science, pp. 335–345. Springer, Berlin
/ Heidelberg, 2002.

[25] P. Montgomery, "Speeding up the Pollard
and elliptic curve methods of factorization,"
Mathematics of Computation, vol. 48, no. 177,
pp. 243–264, 1987.

[26] M. Joye and J. Quisquater, "Hessian elliptic
curves and side-channel attacks," Cryptographic
Hardware and Embedded Systems CHES 2001,
LNCS 2162, Springer-Verlag, pp.402–410, 2001.

[27] O. Billet and M. Joye, "The Jacobi model of
an elliptic curve and side-channel analysis,"
Applied Algebra, Algebraic Algorithms and
Error-Correcting Codes 2003, LNCS 2643,
Springer- Verlag, pp.34–42, 2003.

[28] W. Keke, L. Huiun, Z. Dingju and Y. Fengqi,
"Efficient Solution to Secure ECC Against Side-
channel Attacks," 2011 20 (CJE-3): 471-475.

[29] É. Brier, I. Déchène and M. Joye, "Unified
PADDition formulæ for elliptic curve
cryptosystems," In Embedded Cryptographic
Hardware: Methodologies & Architectures.,
Nova Science Publishers, 2004.

[30] T. F. A l-Somani and A. A. Amin, "High
Performance Elliptic Curve Scalar Multiplication
with Resistance against Power Analysis
Attacks," Journal of Applied Sciences, Volume 8
(24), 2008, pp. 4587-4594.

[31] B. Chevallier-Mames, M. Ciet and M. Joye,
"Low cost solutions for preventing simple side-
channel analysis: Side channel atomicity," IEEE
Trans. Computers, 53(6):760–768, 2004.

[32] P. Longa, Accelerating the Scalar
Multiplication on Elliptic Curve Cryptosystems
over Prime Fields., PhD thesis, School of
Information Technology and Engineering,
University of Ottawa, 2007.

WSEAS TRANSACTIONS on COMPUTERS Turki F. Alsomani, Hilal Houssain

E-ISSN: 2224-2872 247 Volume 16, 2017

[33] C. Giraud and V. Verneuil, "Atomicity
Improvement for Elliptic Curve Scalar
Multiplication," CARDIS 2010: 80441.

[34] D. Bernstein and T. Lange, "Faster Addition
and Doubling on Elliptic Curves," Advances in
Cryptology - ASIACRYPT, K. Kurosawa (ed.),
vol. 4833 of LNCS, pp. 29-50, Springer, 2007.

[35] S. Ghosh, D. Mukhopadhyay and D. R.
Chowdhury, "Petrel: Power and Timing Attack
Resistant Elliptic Curve Scalar Multiplier Based
on Programmable GF(p) Arithmetic Unit," IEEE
Trans. on Circuits and Systems 58-I(8) , : 1798-
1812 (2011).

[36] M. Hedabou, P. Pinel and L. Bénéteau, "A
comb method to render ECC resistant against
Side Channel Attacks," IACR Cryptology ePrint
Archive 2004: 342, 2004 .

[37] M. Joye and C. Tymen, "Protections against
differential analysis for elliptic curve
cryptography," In: [cKKNP01] Cryptographic
Hardware and Embedded Systems – CHES 2001,
Lecture Notes in Computer Science, Vol. 2162,
pp. 377.

[38] D. Naccache, N. P. Smart and J. Stern,
"Projective Coordinates Leak," In: Advances in
Cryptology - EuroCrypt 2004, Lecture Notes in
Computer Science, Vol. 3027, pp. 257–267.
Springer, Berlin / Heidelberg, 2004.

[39] J. Ha, J. Park, S. Moon and S. Yen, "Provably
Secure Countermeasure Resistant to Several
Types of Power Attack for ECC," in Information
Security Applications (WISA), vol. 4867.
Springer, 2007, pp. 333–344.

[40] T. Akishita and T. Takagi, "Zero-Value Point
Attacks on Elliptic Curve Cryptosystem," vol.
2851, pp. 218–233, 2003.

[41] H. Mamiya, A. Miyaji and H. Morimoto,
"Efficient countermeasure against RPA, DPA,
and SPA," Cryptographic Hardware and
Embedded Systems - CHES '04, LNCS 3156,
Springer-Verlag, pp. 343-356.

[42] N. Zhang, Z. Chen, and G. Xiao, “Efficient
elliptic curve scalar multiplication algorithms
resistant to power analysis,” Inf. Sci. (Ny)., vol.
177, no. 10, pp. 2119–2129.

[43] H. Liu, Y. Zhou, and N. Zhu, “A Novel
Elliptic Curve Scalar Multiplication Algorithm
against Power Analysis,” Math. Probl. Eng., vol.
2013, 2013.

[44] J.-H. Ye, S.-H. Huang, and M.-D. Shieh, “An
efficient countermeasure against power attacks
for ECC over GF(p),” 2014 IEEE Int. Symp.
Circuits Syst., no. 1, pp. 814–817, Jun. 2014.

[45] M. Lee, “SPA-resistant simultaneous scalar
multiplication,” Computational Science and Its
Applications–ICCSA, vol. 3481, pp. 314–321,
2005.

[46] D. Liu, Z. Tan, and Y. Dai, “New Elliptic Curve
Multi-scalar Multiplication Algorithm for a Pair
of Integers to Resist SPA”, Lecture Notes in
Computer Science, vol. 5487, pp. 253–264.
Springer, Berlin / Heidelberg, 2009.

[47] F. Morain and J. Olivos, "Speeding up the
computations on a n elliptic curve using
addition-subtraction chains," Theoretical
Informatics and Applications, 24, p. 531–543,
1990.

[48] H. Houssain, M. Badra and T. Al-Somani,
"Power Analysis Attacks on ECC: A Major
Security Threat," International Journal of
Advanced Computer Science and Applications
(IJACSA), vol. 3, issue. 6 ,p. 90 - 96, 2012.

WSEAS TRANSACTIONS on COMPUTERS Turki F. Alsomani, Hilal Houssain

E-ISSN: 2224-2872 248 Volume 16, 2017

Table 1: Example of the Proposed Buffer-Based Method

Iteration

bit B[t] PBDL t = r?
(Buffer is

full)?
(r = 3)

i = m – 1?
(End of
Scalar

Inspection?)

R[0]: the scalar
multiplication

result (kP)

t = t + bit

1

0 B[1]= P; t=1 P = 2P No No O 1+0 = 1
1 B[1]=2P; t=1 P = 4P No No O 1+1 = 2
0 B[2]=4P; t=2 P = 8P No No O 2+0 = 2
1 B[2]=8P; t=2 P=16P No No O 2+1 = 3
1 B[3]=16P; t=3 P=32P Yes No 1.1:R[0] = O + B[1] = 2P

1.2:R[0] = 2P + B[2] = 10P
1.3:R[0] = 10P + B[3] = 26P

1

2

1 B[1]=32P;
t=1

P=64P No No 26P 1+1=2

0 B[2]=64P; t=2 P=128P No No 26P 2+0=2
1 B[2]=128P;

t=2
P=256P No Yes 2.1:R[0]=26P+32P =58P

2.2:R[0]=58P+128P=186P
1

Table 2: The Number of Point Operations for the Proposed Methods and Other Recent SM Methods

Countermeasure Point Operations
MSR [13] m*PDBL + m*PADD
BRIP [41] m*PDBL + m*PADD
Algorithm 5 in [42] [m + 1]*PDBL + [m + 1]*PADD
Algorithm 6 in [42] m*PDBL + m*PADD
Algorithm 7 in [42] m*PDBL + m*PADD
The proposed methods here m*PDBL + [m/2] *PADD

Table 3: Synthesis results of the two proposed SM methods

Cryptoprocessor m Clock(MHz) Delay(ms) Area (Slices) Area Usage Power (mW)

Method in [14] 173 34.11 16.793 22,292 27% 169.70
Method in [28] 173 35.80 10.114 25,977 32% 178.64
First Method 173 41.00 8.831 25,954 32% 173.97

Second Method 173 37.97 9.536 26,155 32% 174.00

Method in [14] 191 33.29 20.959 24,576 30% 177.78
Method in [28] 191 25.63 17.207 28,703 35% 187.53
First Method 191 40.36 10.927 28,625 35% 181.01

Second Method 191 29.34 15.031 29,746 37% 183.14

Method in [14] 230 22.56 44.797 29,539 36% 193.09
Method in [28] 230 22.76 28.063 34,483 42% 199.57
First Method 230 23.05 27.710 35,060 43% 196.77

Second Method 230 22.78 28.038 36,190 45% 197.54

WSEAS TRANSACTIONS on COMPUTERS Turki F. Alsomani, Hilal Houssain

E-ISSN: 2224-2872 249 Volume 16, 2017

d0d1de

Write
Buffer

 Buffer or
Scan? PADD

Point Double Operation for
each scalar bit value

YES

dn-1

20P21P2eP2n-1P

P2P2eP2n-1P

P2P2eP2n-1P

Updated Value of P
correspond to each scalar bit

value

Shift Left by one bit

Index to buffer will be incremented by the bit
value (no increment in case of 0), and those
only stored points in case of bit value of 1 will

be considered for later PADD computation

Scan the bit scalar from right to left, store the updated value
of P into the buffer, and then move to the next bit value

NO

PADD operation for all points
stored in the buffer, and then

add the result to Q
Check if either the buffer is full or the scan is completed

Return Q
Once the scan is completed

together with the PADD
operation, return Q

Figure 1: The Dataflow of the Buffer-based Method.

WSEAS TRANSACTIONS on COMPUTERS Turki F. Alsomani, Hilal Houssain

E-ISSN: 2224-2872 250 Volume 16, 2017

d0d1de

Write
Buffer

Buffer ?

PADD

Point Double Operation for
each scalar bit value

YES

dn-1

20P21P2eP2n-1P

P2P2eP2n-1P

P2P2eP2n-1P

Updated Value of P
correspond to each scalar bit

value

Shift Left by one bit

Index to buffer will be incremented by the bit value (no
increment in case of 0), and those only stored points in case of

bit value of 1 will be considered for later PADD computation

 Scan the bit scalar from right to left, store the updated value
of P into the buffer, and then move to the next bit value

NO

Point Add operation on
random (j - r’) number of

points in the buffer

Check if the buffer index (stored points in the
buffer) is equal to r’

Return Q
Once the scan is completed

together with the PADD
operation, return Q

r' = RNG (r) Generate a random number greater than
zero and less than the buffer capacity r

Scan?

j = RNG (≤ r') Generate a random number
less than or equal to r’

Reset buffer
to j

Reset buffer (to avoid calculation
of points from previous iteration)

Increase the
buffer index

by de

Check if the scan of the scalar
is completed PADD Point Add operation on the

remaining points in the buffer
YES

NO

Figure 2: The Dataflow of the Randomized Buffer-based Method.

WSEAS TRANSACTIONS on COMPUTERS Turki F. Alsomani, Hilal Houssain

E-ISSN: 2224-2872 251 Volume 16, 2017

