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Abstract: - Power analysis attacks are serious security threats to most cryptographic implementations, where 
these attacks may reveal the secret keys by exploiting leaked power consumption from running cryptographic 
devices. Most of the research efforts and proposed countermeasures against these attacks result in additional 
computational cost for hardware implementation. This paper presents efficient scalar multiplication methods, 
which is secure against the simple power analysis attacks. The main idea of the proposed method is to delay the 
elliptic curve point addition operation of the scalar multiplication using buffering technique. By such delay, the 
correlation between the key and the power consumption is eliminated. In addition, when combined with 
randomization techniques, the second method may also protect against differential power analysis attacks. 
Accordingly, the proposed methods have been implemented on an Altera Cyclone III EP3C80F780C7 FPGA and 
the results show that the proposed methods exhibit a time advantage over related works. Compared to other 
methods, the proposed methods can achieve up t o 50% time improvement for accomplishing one scalar 
multiplication with 173-bit, 191-bit, and 230-bit.  
 
 
Key-Words: - Elliptic Curve Cryptosystems, Simple Power Analysis attacks, Differential Power Analysis  
Attacks,  and Scalar Multiplication. 
 
1 Introduction 

Elliptic Curve Cryptosystems (ECC), which was 
originally proposed by Niel Koblitz and Victor Miller 
in 1985 [1, 2] is a serious alternative to RSA [3] with 
much shorter key size [4]. ECC is considered to be 
ideal for implementation on r esource constrained 
devices such a wi reless sensor networks (WSNs) 
(e.g., [5 - 7]), smart cards, mobile phones, radio 
frequency identity (RFID), etc.  

Scalar multiplication (SM), kP, is the basic 
operation for ECC. Computing kP can be done with 
the straightforward double-and-add method (also 
called binary method) [4], as described in Algorithm 
(1), based on the binary expression of k = (km-1,…,k0) 
where km-1 is the most significant bit of k.  

 
 

* Extended version of the published paper in ICCIT 
2013. 

 

Algorithm 1: The straightforward double-and-add 
method (left-to-right version) 
Inputs: P: Base Point, k: Secret key 
Outputs: kP. 

1: Q ← P  
2: for i =  m-2 down to 0 do 

2.1 Q ← 2Q 
2.2 if ki = 1 then Q ← Q + P 

3: end for 
Return Q 
 
Several SM methods have been proposed in the 

literature [4]. Furthermore, such SM methods are 
disposed to the power analysis attacks (PAA), such 
as simple power analysis (SPA) and differential 
power analysis (DPA) attacks, which was introduced 
by Paul Kocher in 1999 [9, 10], that exploit leaked 
power consumption from running cryptographic 
devices such as WSNs, smart cards, mobile phones, 
RFIDs etc., to reveal the secret keys.  R ecently P. 
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Dyka [11] in 2013 discussed the security of WSNs 
against Side Channel Attacks (SCA), and various 
solutions were proposed to secure SM against SCA 
[43, 44]. 

This paper presents an efficient scalar 
multiplication method, which is secure against the 
simple power analysis (SPA). The main idea of the 
proposed method is to delay the elliptic curve point 
addition (PADD) operation of the scalar 
multiplication using buffering technique; i.e., some 
points are stored into buffer and the PADD 
operations are performed in later stages. By such 
delay, the correlation between the key and the power 
consumption is eliminated. In addition, when 
combined with randomization techniques, the 
proposed method may protect against some DPA 
attacks.  

The rest of the paper is organized as follows. In 
Section 2, the background of ECC, and the PAA are 
presented. In Section 3, we described the proposed 
SM method, followed by an example. In section 4, 
we conducted a performance and a security analysis 
of the proposed SM method. Section 5 concludes the 
presented paper. 
 
 

2 Background 
 
2.1 Elliptic Curve Cryptography 
ECC, which was originally proposed by Niel Koblitz 
and Victor Miller in 1985 [ 1, 2] is a ser ious 
alternative to RSA [3] with much shorter key size. 
For instance, as recommended by NIST for ECC and 
RSA key length, ECC-160 provides comparable 
security to RSA-1024 and ECC-224 provides 
comparable security to RSA-2048 [4]. To date, no 
significant breakthroughs have been made in 
determining weaknesses in the ECC algorithm, 
which is based on the discrete logarithm problem 
over points on an elliptic curve. The advantage of 
ECC is being recognized recently where it is being 
incorporated in many standards. ECC is considered 
to be ideal for implementation on r esource 
constrained devices such a WSN (e.g., [5 - 7]), smart 
cards, mobile phones, RFID, etc. 

Computing P + Q  is called PADD if P ≠ Q 
and  is called elliptic curve point doubling (PDBL) if 
P = Q. Elliptic Curve Point subtraction (PSUB) is a 
useful operation in some algorithms. This operation 
can be performed with the PADD formula using the 
additive inverse of the point to be subtracted. For 
example, the point subtraction P − Q can be 
computed using the PADD operation where: P − Q 
= P + (−Q). The additive inverse of a point P = (x, 

y) is the point (x, x + y) for curves defined over the 
GF(2m) fields.  

Moreover, adding a point P on the elliptic 
curve E to itself a number of times (k) is known as 
the scalar product (kP) of point P by the scalar k. SM 
is the basic operation for ECC. SM in the group of 
points of an elliptic curve is analogous of 
exponentiation in the multiplicative group of integers 
modulo a fixed integer m. Computing kP can be done 
with the straightforward double-and-add method [4], 
as described in Algorithm (1), based on the binary 
expression of the multiplier of k = (km-1,…,k0) where 
km-1 is the most significant bit of k. The 
straightforward double-and-add method inspects the 
bits of the scalar multiplier k, if the inspected bit ki = 
0, only PDBL is performed. If, however, the 
inspected bit ki = 1, both PDBL and PADD are 
performed. This method requires an average of m 
PDBL + [m/2] PADD. A good survey on SM 
methods is presented in [4].  
 
2.2 Power Analysis Attacks on ECC  
In 1996, Paul Kocher introduced the power analysis 
procedure; then, in 1999 he introduced the PAA. 
These attacks have become a major threat against 
tamper resistant device [8 - 10] [47]. PAA allow 
adversaries to obtain the secret key, or partial 
information on it, by observing the power 
consumption traces of a cryptographic device. This is 
a serious threat especially to mobile devices such as 
WSNs, smart cards, mobile phones, RFIDs etc. Thus, 
implementers need algorithms that are not only 
efficient, but also PAA-resistant.  Tw o main PAA 
techniques are the SPA and DPA:  
 
2.2.1 SPA Attack  
The main idea of the SPA attacks [10] is to get the 
secret k using the side-channel leakage information 
obtained through observing the power consumption 
from a si ngle measurement trace. For instance, 
PDBL, in Algorithm (1), is executed for each bit of 
the scalar k and PADD is executed only if the scalar 
bit is equal to one. If the power consumption trace 
pattern of PDBL is different from that of PADD, the 
side-channel leakage of the implementation reveals 
the presence of the PADD and thus the value of the 
scalar bits and attackers can easily retrieve the secret 
key from a single side-channel trace. 
 
2.2.2 DPA Attack  
In DPA attacks [10], the adversary makes use of the 
obvious variations in the power consumption that are 
caused by multiple data and operation computations, 
and use statistical techniques to pry the secret 
information. This attack uses a two round technique: 
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(1) data collection and (2) data processing. DPA 
attack on SM is described in [14]. However, many 
research efforts have been made to countermeasure 
the DPA attacks [8][12 - 14][35 - 37][47]. Therefore, 
more advanced DPA attacks techniques applicable to 
elliptic curve cryptosystems, such as refined power 
analysis (RPA) [12], zero power analysis (ZPA) [15], 
SVPA (Same Values Power Analysis) [17], and 
doubling attacks (DA) [16] were introduced. 
 
2.2.3 Countermeasures 
Since 1996, many research efforts [14] [22 - 30] have 
been made to secure ECC method implementations, 
in special the SM, against PAA. The major challenge 
is to avoid additional computational cost, and to 
develop relatively fast cryptosystems without 
compromising security, due to the nature of the 
resource constrained devices. 
    There are different strategies to resist SPA attacks. 
These strategies share the same objective, which is to 
render the power consumption traces that are caused 
by the data and operation computations during an SM 
independent from the secret key. One 
countermeasure is the double-and-add-always 
algorithm [14], it is highly regular, and it requires no 
pre-computation or prior recoding. This algorithm 
requires m PDBL and m PADD regardless of the 
value of the scalar multiplier, and two temporary 
registers are needed to store the results of each 
iteration (see Algorithm (2)).  
 
Algorithm 2: The double-and-add-always Method 
Inputs: P: Base Point, k: Secret key. 
Outputs: kP. 
1: R[0]←O. 
2: for i =  m-1 down to 0 do 

2.1: R[0] ← 2R[0], R[1] ← R[0] + P. 
2.2: R[0] ← R[ki]. 

3: end for 
Return R[0]. 

 
Another countermeasure is the Montgomery ladder 
algorithm [25], which for every bit of k, computes 
both a PADD and a P DBL operation, and this 
algorithm avoids the usage of dummy instructions. 
Montgomery ladder [25] resists the normal DA. 
However, it is attacked by the relative DA proposed 
by S.M. Yen [18]. Moreover, recent studies have 
shown that processing the bits of multiplier from least 
to most, as Montgomery ladder does, are vulnerable 
to certain attacks [16]. Algorithm (3) below outlines 
this method. 
 
 

Algorithm 3: Montgomery ladder Method 
Inputs: P: Base Point, k: Secret key. 
Outputs: kP. 
1: R[0] ← P, R[1] ← 2P  
2: for i =  m - 2 down to 0 do 

2.1: R[1 - ki]←R[0] + R[1] 
2.2: R[ki]←2R[ki]. 

3: end for 
Return R[0]. 

 
Same as in SPA attacks, there are different 
approaches and techniques [12 - 14][35 - 37][47] 
used to resist DPA attacks. In general, the traditional 
and straightforward approach is by randomizing the 
intermediate data, thereby rendering the calculation 
of the hypothetical leakage values rather impossible. 
 
 

3 Previous scalar multiplication 
methods against PAA 

Ciet and Joye’s Method. This method [13] uses 
the variant of Shamir’s double ladder to compute the 
muli-scalar multiplication k1P + k 2Q. The main 
difference is to insert a dummy operation in the 
computation. So, each loop includes one doubling 
and one addition, and the operation order is a 
repeated sequence of PDBL and PADD operations in 
Algorithm 3. Hence one PDBL and one PADD per 
bit is needed.  

 
Lee’s Method. To resist SPA, Lee improved the 

simultaneous scalar multiplication in [45]. He 
changed the value of (ki, mi) when (ki, mi) = (0, 0) to 
construct another adequate digit pair with at least one 
non-zero digit. The adjacent pair (ki+1, mi+1) should 
be modified as wel l. After the transformation, the 
digit pair (ki,mi) cannot be all zero. Therefore, the 
modified simultaneous scalar multiplication was 
proposed by Lee to resist SPA. The cost of Lee’s 
algorithm is one PDBL and one PADD per bit. 

Zhang, Chen, Xiao’s Algorithm. This algorithm 
[42] proposes four scalar multiplication algorithms 
against power analysis. Those algorithms are all 
based on the highest-weight binary form (HBF) of the 
scalars and randomization to resist power analysis. 
Although those four countermeasures have no 
dummy operations, the efficiency of them is similar 
to Ciet and Joye’s algorithm. They also almost need 
one PDBL and one PADD per bit. One of these 
algorithms can be seen as follows in Algorithm5. 

Liu, Tan, and Dai’s Algorithm. Liu et al. also 
propose a multi-scalar multiplication to resist SPA in 
[46]. The difference is that they use a joint sparse 
form (JSF) to represent a pair of integers and process 
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two or three JSF columns each time. Although the 
processed column number may be different, the 
algorithm always performs 4 PDBL and 2 PADD in 
each loop. This means that it is not possible for useful 
information related to the private key to be obtained 
by the attacker through SPA. The theoretical analysis 
and simulation results show that this algorithm needs 
1.384 PDBLs and 0.692 PADDs per bit. 

  
4 The Proposed Scalar Multiplication 
Methods 
 
4.1 The Buffer-Based Method 
The first proposed scalar multiplication method is 
presented here. The main idea is to modify the right-
to-left (R2L) version of Algorithm 1 method through 
delaying the computation of PADD operation for bit 
value of 1 by cashing its corresponding PDBL value 
in a buffer of fixed size r. Each of the cashed points 
in the buffer is associated with the location of bit 
value 1 in the scalar. Once the buffer is full or upon 
the completion of the scalar’s bits inspection, 
compute a P ADD operation on the cashed points. 
After all bits of the scalar are full inspected, the 
resulting PADD operation value is assimilated to 
produce the scalar product kP. Thus, the PADD 
operation is delayed, and turned to be independent of 
the scalar bit value ki. The pseudocode of the 
proposed scalar multiplication method is given in 
Algorithm 4. The inspection of the scalar is 
performed in Step 2. All points are initially cashed 
into the buffer (Step 2.1), but the buffer index is only 
incremented for bit value of 1 (Step 2.4). The PDBL 
operation is computed for all bits in Step 2.2. In Step 
2.3, the computation of PADD operation is 
performed on a ll cashed points in the buffer. All 
PADD operations are added in the accumulation 
point R[0] in the last step of the algorithm to produce 
the multiplication kP. 
For example, for a key of 8-bit length, and value of 
186 equivalent to (10111010)2 in binary, and a buffer 
capacity of 3, PDBL computations (those 
corresponding to scalar bit value of 1) are cached 
twice in the buffer of fixed size 3, as follow: 
1. In the first iteration, and because the buffer 

became full, only 2P, 8P, 16P correspond to the 
scalar bit positions of 1,3,4 respectively, and then  

2. In the second iteration, and as the scalar scan is 
completed, 32P, 128P correspond to the scalar 
bit positions of 5, and 7 respectively. 

 Where in each iteration (Step 2.3) a PADD operation 
is performed on the cached points, so that R[0] values 
are evaluated as 26P (2P + 8P + 16P) and 186P (26P 
+ 32P + 128P), respectively. Finally, the output value 

of the scalar multiplication is represented by the final 
value of R[0], which is equal to 186P. The 
intermediate results computed by the proposed 
method are shown in Table 1. Furthermore, the 
dataflow of the proposed method is depicted in 
Figure 1. 
 
Algorithm 4: The Buffer-Based method 
Inputs: P: Base Point, k: Secret key, r is capacity 
limit of buffer 
Outputs: kP. 
1: R[0] ← O, t ← 1 /* set buffer index t to 1 */ 
2: for i =  0 to m-1 do 

2.1: B[t] ← P /* scan k, store points in 
buffer */ 
2.2: P ←  2P 
2.3: If (t = r) or (i = m-1), then /* buffer 
reach its capacity limit or scan k is done */ 

2.3.1: for s = 1 to t do  
2.3.1.1: R[0] ← R[0] + B[s]  
2.3.2: t ← 1 /* reset buffer index 
to 1 */ 

2.4 else t ← t + ki /* increment t if the bit 
value of k is 1 */ 

Return R[0]. 
 
 

4.2 The Randomized Buffer-Based Method 
The second method introduces randomization 
technique to the first method by randomizing the 
accumulation step of the resulting point from 
processing the key partitions (see Algorithm 5 and 
Figure 2).  

In Figure 2, the scalar multiplier k is scanned 
from right to left and for every scalar bit value: 

1. Perform a PDBL operation. PDBL operation 
keeps the significance of the point value at 
the scalar bit position of the scalar. 

2. Write to buffer the updated value of P (result 
of PDBL operation) The buffer capacity is 
randomized (greater than zero, and less or 
equal to the initial random capacity). Index 
to buffer is directly related to the bit scalar 
value; i.e., it will only increment for bit value 
of 1. Therefore, the buffer will only store 
points corresponding to bit value of 1.  

3. Once the buffer is full (i.e. the number of 
stored points is equal to the capacity of the 
buffer after applying randomization), the 
PADD operation is performed on a random 
number of points stored in the buffer.  

4. When the scalar scanning is completed, the 
PADD operation is performed on t he 
remaining points in the buffer. 
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The scalar multiplication will be the accumulated 
points of the PADD operation results. 
 
Algorithm 5: The Randomized Buffer-Based 
method 
Inputs: P: Base Point, k: Secret key, r is capacity 
limit of buffer 
Outputs: kP. 
1: R[0] ← O, t ← 1 /* set buffer index t to 1 */ 
2: for i =  0 to m-1 do 

2.1: r' ← RNG (0,r); /* Generate random 
number r', where 0 < r' < buffer capacity r.  
2.2: B[t] ← P /* scan k, store points in 
buffer */ 
2.3: P ←  2P 
2.4: if (t ← r') then 

2.4.1: j ← RNG (≤ r'); random 
number generator for a number 
less than or equal to i 
2.4.2: for s = j to t do 

2.4.2.1: R[0]←R[0]+B[s] 
2.4.3: t ← j; Reset buffer (to avoid 
calculating resident points from 
previous iteration) 

2.5: else t ← t + ki /* increment t if the bit 
value of k is 1 */ 
2.6: if i ← m-1 then  

2.6.1: for s = 1 to t – 1 do 
2.6.1.1: R[0]←R[0]+B[s] 

Return R[0]. 
 
 
5 Performance/Security Analysis and 

Comparison 
 

5.1   Performance Analysis 
In algorithm 4, each loop of Step 2 has one PDBL and 
a PADD for only the cached points in the buffer, 
which are corresponding the bit value of 1 of the 
scalar. Therefore, each bit needs one PBDL and ½ 
PADD. In order to show the performance of 
Algorithm 4, a comparison with previous methods is 
listed in Table 2. This can be improved when NAF 
encoding is used [47]. Additionally, this method 
requires no extra dummy computation. 
 In the proposed Randomized Buffer-based 
method (Algorithm 5), on the other hand, PADD is 
performed in later stage and only if the bit value ki = 
1, while PDBL is always performed regardless of the 
bit value ki. In addition, this proposed method is 
derived from the binary method (See Algorithm 1); 
therefore, the performance required by the proposed 
Buffer-based method is m PDBL and an average of 
m/2 PADD operations, which is equivalent to the 

performance of the binary method, and it has a better 
performance in compared to the double-and-add 
always method. In addition, Buffer-based method 
requires no extra dummy computation. Similarly, this 
can be improved to m PDBL and an average of m/3 
PADD when NAF encoding is used [47].  
 
5.2     Security Analysis 
In the proposed method, the PADD operation is 
delayed by storing points in a buffer, and a PDBL 
with "write to buffer" is performed for every bit 
value, and thus the relation between the scalar bit 
value and point operation is removed. Therefore, this 
proposed method is robust against SPA attacks since 
the point operations (PDBL and PADD) are 
independent of the bit scalar value.  
 Moreover, the security of this proposed method 
depends on the provided depth of confusion which is 
directly proportional to the size of the buffer, i.e., the 
smaller the buffer is, the easier to guess the number 
of processed bit "1" during the sequence of PDBL 
operations, and it will be harder when the buffer is 
larger. 
 In the randomized buffer-based method 
(Algorithm 5), on the other hand, the PADD 
operation is delayed by storing points in a buffer, and 
a PDBL with "write to buffer" is performed for every 
bit value, and thus the relation between the scalar bit 
value and point operation is removed. In addition, 
randomization technique is used in number points 
stored in the buffer, and the number of points 
processed for PADD in the buffer. However, 
resistance against all DPA attacks can be achieved by 
combining two or more of the countermeasures 
proposed in the literature thus far [48]. 
  
5.3  Performance Comparison with other Recent 

SM Methods 
Table 2 compares the number of point operations 
(PADD and PDBL) needed for the first and second 
proposed methods to those needed for other recently 
reported scalar multiplication algorithms with DPA 
resistant countermeasures. Both of the proposed 
methods require the same number of point 
operations, but only the second one will be 
considered in this comparison as it provides security 
against DPA attacks.  
 The five selected countermeasures are the 
Modular Scalar Randomization (MSR) reported in 
Section 4 of [13], the Binary Random Initial Point 
method (BRIP) [41], and the three methods presented 
in [42]. As it is shown in the comparison (Table 2), 
the proposed SM methods in this paper outperform 
the other methods by at least [m/2]*PADD 
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operations, and thus it is efficiently applicable on 
resource constrained devices. 
 
5.4  Implementation Results and Comparisons 
To conduct an appropriate evaluation of the two 
proposed SM methods, these methods are compared 
to other two similar methods; One is proposed in 
[14], which is based on the double-and-add-always 
algorithm (See Algorithm 2), and the other is 
proposed by [28], and it is based by partitioning the 
bit string of the scalar into half and extracting the 
common substring from the two parts based on 
propositional logic operations. 
 We implemented the four proposed SM methods 
over GF(2173), GF(2191), and GF(2230) for different m 
sizes as recommended by NIST (m ϵ {173, 191, 
230}) on an Altera Cyclone III EP3C80F780C7 
FPGA, which contains 81,264 Slices. It was to use an 
identical FPGA chip with these methods to ensure 
that the power, delay and area comparisons were 
performed for the same technology and FPGA 
architecture and resources. 
 Table 3 lists the implementation results for all four 
methods in terms of 1 - Delay measured in ms, 2 - 
Area measured in number of slices, and 3 - Power 
consumed measured in mW. As expected, the 
implementation results show that our proposed 
methods outperformed the other two methods in 
terms of time delay for all values of m. In addition, 
very close results for all methods in terms of area, and 
power consumption, and this quite justifiable as our 
proposed methods are using slightly extra registers 
for buffering. 
 
6 Conclusion 
Two SM methods are proposed in this paper, and 
these proposed methods provide security against 
power analysis attacks on resource constrained 
devices. These methods eliminate the correlation 
between the key and the power consumption by 
delaying the PADD operation of the SM using 
buffering technique. Efficient performance and high 
security are both achieved by the two proposed 
methods. For instance, and in comparison with other 
recently reported scalar multiplication algorithms 
with power analysis attacks resistant 
countermeasures, the performance analysis shows 
that the proposed methods achieve higher 
performance, i.e. m*PDBL + [m/2]*PADD.  

Furthermore, we implemented the proposed 
methods together with other two similar methods for 
GF(2173), GF(2191) and GF(2230) on an Altera 
Cyclone III EP3C80F780C7 FPGA. The results in 
terms of the cost measurements (time delay, power 

and space) and security level prove that the proposed 
methods are feasibly implementable on resource-
constrained devices such as W SNs, RFID mobile 
devices and smart card technology. 
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Table 1:  Example of the Proposed Buffer-Based Method 

Iteration 
# 

bit  B[t] PBDL  t = r?    
(Buffer is 

full)?  
(r = 3) 

i = m – 1? 
(End of 
Scalar 

Inspection?) 

R[0]: the scalar 
multiplication  

result (kP) 

t = t + bit 

1 
 

0 B[1]= P; t=1 P = 2P No No O 1+0 = 1 
1 B[1]=2P; t=1 P = 4P No No O 1+1 = 2 
0 B[2]=4P; t=2 P = 8P No No O 2+0 = 2 
1 B[2]=8P; t=2 P=16P No No O 2+1 = 3 
1 B[3]=16P; t=3 P=32P Yes No 1.1:R[0] = O + B[1] = 2P 

1.2:R[0] = 2P + B[2] = 10P 
1.3:R[0] = 10P + B[3] = 26P 

1 

2 
 

1 B[1]=32P; 
t=1 

P=64P No No 26P 1+1=2 

0 B[2]=64P; t=2 P=128P No No 26P 2+0=2 
1 B[2]=128P; 

t=2 
P=256P No Yes 2.1:R[0]=26P+32P =58P 

2.2:R[0]=58P+128P=186P 
1 

 
 

Table 2: The Number of Point Operations for the Proposed Methods and Other Recent SM Methods 

Countermeasure Point Operations 
MSR [13] m*PDBL + m*PADD 
BRIP [41] m*PDBL + m*PADD 
Algorithm 5 in [42] [m + 1]*PDBL + [m + 1]*PADD 
Algorithm 6 in [42] m*PDBL + m*PADD 
Algorithm 7 in [42] m*PDBL + m*PADD 
The proposed methods here m*PDBL + [m/2] *PADD 

 
 

Table 3: Synthesis results of the two proposed SM methods 

Cryptoprocessor m Clock(MHz) Delay(ms) Area (Slices) Area Usage Power (mW) 

Method in [14] 173 34.11 16.793 22,292 27% 169.70 
Method in [28] 173 35.80 10.114 25,977 32% 178.64 
First Method 173 41.00 8.831 25,954 32% 173.97 

Second Method 173 37.97 9.536 26,155 32% 174.00 
 

Method in [14] 191 33.29 20.959 24,576 30% 177.78 
Method in [28] 191 25.63 17.207 28,703 35% 187.53 
First Method 191 40.36 10.927 28,625 35% 181.01 

Second Method 191 29.34 15.031 29,746 37% 183.14 
 

Method in [14] 230 22.56 44.797 29,539 36% 193.09 
Method in [28] 230 22.76 28.063 34,483 42% 199.57 
First Method 230 23.05 27.710 35,060 43% 196.77 

Second Method 230 22.78 28.038 36,190 45% 197.54 
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d0d1de

Write 
Buffer

 Buffer or 
Scan? PADD

Point Double Operation for 
each scalar bit value

YES

dn-1

20P21P2eP2n-1P

P2P2eP2n-1P

P2P2eP2n-1P

Updated Value of P 
correspond to each scalar bit 

value

Shift Left by one bit

Index to buffer will be incremented by the bit 
value (no increment in case of 0), and those 
only stored points in case of bit value of 1 will 

be considered for later PADD computation

Scan the bit scalar from right to left, store the updated value 
of P into the buffer, and then move to the next bit value

NO

PADD operation for all points 
stored in the buffer, and then 

add the result to Q
Check if either the buffer is full or the scan is completed

Return Q
Once the scan is completed 

together with the PADD 
operation, return Q

 

 

 

Figure 1: The Dataflow of the Buffer-based Method. 
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d0d1de

Write 
Buffer

Buffer ?

PADD

Point Double Operation for 
each scalar bit value

YES

dn-1

20P21P2eP2n-1P

P2P2eP2n-1P

P2P2eP2n-1P

Updated Value of P 
correspond to each scalar bit 

value

Shift Left by one bit

Index to buffer will be incremented by the bit value (no 
increment in case of 0), and those only stored points in case of 

bit value of 1 will be considered for later PADD computation

 Scan the bit scalar from right to left, store the updated value 
of P into the buffer, and then move to the next bit value

NO

Point Add operation on 
random (j - r’) number of 

points in the buffer

Check if the buffer index (stored points in the 
buffer) is equal to r’

Return Q
Once the scan is completed 

together with the PADD 
operation, return Q

r' = RNG (r) Generate a random number greater than 
zero and less than the buffer capacity r

Scan?

j = RNG (≤ r') Generate a random number 
less than or equal to r’

Reset buffer 
to j

Reset buffer (to avoid calculation 
of points from previous iteration)

Increase the 
buffer index 

by de

Check if the scan of the scalar 
is completed PADD Point Add operation on the 

remaining points in the buffer
YES

NO

 

 

 

Figure 2: The Dataflow of the Randomized Buffer-based Method. 

WSEAS TRANSACTIONS on COMPUTERS Turki F. Alsomani, Hilal Houssain

E-ISSN: 2224-2872 251 Volume 16, 2017




