
A System for Structural Information Visualization Based on Attributed
Hierarchical Graphs

VICTOR KASYANOV, TIMUR ZOLOTUHIN

Institute of Informatics Systems
Novosibirsk State University

Novosibirsk, 630090
RUSSIA

kvn@iis.nsk.su

Abstract: - Information visualization is an inherent part of the processing of complex information about the
structure of objects, systems and processes in many applications in science and technology, and the graph
models are the best formalism for visual presentation of information of complex and intricate nature. This paper
presents the Visual Graph system for structural information visualization based on attributed hierarchical
graphs, its application area, as well as the main problems encountered during the system design and their
solutions.

Key-Words: - Attributed hierarchical graphs; graph visualization; graph navigation; information visualization
system; search algorithm of maximum common subgraph of two graphs.

1 Introduction
Visualization of information plays an important role
in human life. People are believed to get about 90%
of information visually. It took thousands of years to
go from the easiest ways of visualization in the form
of rock paintings to maps, charts, and diagrams.
Today, visualization is an integral part of processing
complex information about the structure of objects.

Many data structures, which are of practical
interest for mathematics and computer science, can
be represented as graphs. As a rule, the advantages
of using graphs in research can only be perceived if
a good system for their visualization and processing
is available. Therefore, there has recently been a lot
of interest in the world concerning the methods and
means of graph visualization, as evidenced by the
growing number of publications containing the
description of new algorithms and methods for
graph visualization, as well as their implementation
in systems [1, 2, 3].

In some application areas the organization of
information is too complex to be modelled by a
classical graph. To represent a hierarchical kind of
diagramming objects, some more powerful graph
formalisms have been introduced, e.g. compound
digraphs [4] and the clustered graphs [5]. The
hierarchical graphs are an extension of cluster and
compound graphs and can be used in many areas
where visualization of complex and large amount
information is needed [6].

The size of the graph model to view is a key
issue in graph visualization [2, 7]. Large graphs
pose several difficult problems. If the number of
graph elements is large it can compromise
performance or even reach the limits of the viewing
platform. Even if it is possible to layout and display
all graph elements, the issue of viewability or
usability arises, because it will become impossible
to discern between nodes and edges of graph model.
It is well known that comprehension and detailed
analysis of data in graph structures is easiest when
the size of the displayed graph is small. Another
weak point is that usual systems for graph
visualization do not have a support for many
different attributes of graph elements. The standard
situation for graph visualization systems is to have
one text label for each vertex and, optionally, for
each edge.

In this paper, the Visual Graph system which can
be used for visualization of complex structured large
amount of information on the basis of attributed
hierarchical graph models is considered [8]. At
present the Visual Graph system is focused on the
visualization of data structures arising in compilers.

2 Application Area
The Visual Graph system has been developed to
visualize the internal data structures typically found
in compilers and other programming systems.

WSEAS TRANSACTIONS on COMPUTERS Victor Kasyanov, Timur Zolotuhin

E-ISSN: 2224-2872 193 Volume 16, 2017

During the development of compilers, several
structures have been created that are represented as
graphs: syntax trees, control flow graphs and call
graphs. Each of these graphs has its practical
application. Thus, syntax trees are used for the
internal representation of a program in compilers or
interpreters, control flow graphs are good for
optimizations in compilers and tools of static code
analysis, and call graphs are used for program
debugging. All these graphs are attributed
hierarchical graphs.

The representation of these graphs in different
compilers may be different, and it may even differ
in different versions of the same compiler.

It is assumed that the Visual Graph system is
used as follows (Fig. 1). First, a compiler (or
another programming system) itself or with an
auxiliary program transforms a graph model arisen
during compiling a source program from its internal
representation into a file of one of the formats
supported by the Visual Graph system, usually into
the GraphML-file [9]. Then the Visual Graph
system will be able to read this graph model from
the file, to visualize it and to provide a user with
different navigation tools for its visual exploration.

Fig. 1. Application of the Visual Graph system.

3 Existing Problems and Their
Solutions
When designing the Visual Graph system,
developers faced many problems. This section will
deal with the main ones and with their solutions in
the Visual Graph system.

The first problem is storing graphs outside the
Visual Graph system, i.e. their representation in a
file system, in a text format. There are a lot of
languages for the representation of simple graphs in
the text form, but few of them support the
description of attributed hierarchical graphs. One of
these languages is GraphML [9].

GraphML is a language for describing the XML-
based graphs. This format allows describing
directed, undirected, mixed, hyper, and hierarchical
graphs and specific attributes for applications.

Accordingly, GraphML fully supports attributed
hierarchical attributed graphs.

Another problem is graph storage inside the
Visual Graph system. The size of an input graph can
be hundreds of megabytes. Therefore, storing this
amount of information in RAM can quickly exhaust
it. A possible solution to this problem is caching
data to a hard drive using a relational database.

The embedded SQLite database was chosen as a
relational database [10]. Unlike most popular
relational databases, SQLite does not require
installing a server and the client-server architecture
is reduced to working with files.

Another problem is the extensibility of the
Visual Graph system. This problem occurs because
some parts of the system, such as navigation,
visualization and analysis of graphs, are submitted
by a set of tools that can be expanded both by the
Visual Graph system developers and third-party
developers.

To construct an expandable system, it was
decided to use the product Apache Felix [11],
which, in turn, is an implementation of the
specification OSGi [12]. This solution is de facto for
this type of tasks and allows developers to extend
the system by writing new plug-ins.

Fig. 2. Screenshot of user interface of the Visual Graph system.

Yet another problem discussed is navigating
through graphs. As is known, there is no universal
set of navigation tools that would satisfy any needs
of any user to solve any of his/her problems.
Therefore, it was decided to focus on the application
area described above and provide it with the
following tools (Fig. 2):

• Desktop is an instrument that contains a set of
tabs that can be opened by the user for visualizing
the selected regions of a graph model as a graph on
the plane. To improve the resulting image, the user

WSEAS TRANSACTIONS on COMPUTERS Victor Kasyanov, Timur Zolotuhin

E-ISSN: 2224-2872 194 Volume 16, 2017

can change the shape of vertices and edges, layout
and its parameters, displayable attributes, the scale
of the visible area, and many other parameters.

• Minimap is an instrument that allows the user
to see the whole graph placed in a current tab of the
desktop, and also move and zoom the visible area.

• Navigator is an instrument that visualizes graph
models in the tree form (Fig. 3). For a quick search
of the tree, search line is implemented, which allows
the user to easily find the elements he/she is
interested in, using regular expression. After that,
the user can select the interesting elements and open
them in a new tab using the desktop.

Also, a Visual Graph system navigator can work
with big graphs. It can download the necessary
elements dynamically, when the user uncollapses an
element containing inner elements. If the number of
inner elements is too large), the elements can be
combined in blocks. Each block contains not more
100 elements.

Fig. 3. Screenshot of the filter instrument.

• Attribute panel is an instrument that allows the
user to control rendering attributes for selected
vertices and edges in the current tab in the desktop.
To do this, the user needs to select in the current tab
the vertices and edges he/she is interested in, and
then mark the attributes he/she wants to visualize in
the attribute panel.

• Filter is an instrument that searches vertices
and edges in the current tab using the conditions
given. The conditions are specified by the user and
use the names and values of attributes. Fig. 4 shows
a mechanism for specifying the conditions. User-
defined conditions can be combined into
expressions by means of logical structures, as well

as by brackets. As a result, the user will receive a set
of vertices and edges that will satisfy the given
conditions (see Fig.5). In the future, the developers
plan to extend the existing functionality and give
users the possibility to make their requests to the
database using an API, for example SPARQL.

Fig. 4. Screenshot of the filter instrument.

• Search panel is a tool that, similarly to the
filter, uses the fact that the user works with
attributed graphs. In contrast to the filter, this tool
allows you to set conditions only for vertices and
performs search not only for the graph in the current
tab, but also for all its internal graphs and their
internal graphs and so on, in the hierarchical order.
The result of this search is a tree (see Fig. 6), in
which the red crosses mark the vertices that do not
satisfy the conditions specified.

Fig. 5. Screenshot of the filter’s result.

• Notebook is an instrument that allows you to
upload files with additional information and link
them to the graph models. After that, the user can
move from a vertex of a graph model to additional
textual information. For example, it can be used for
joining the graph model with the source code.

WSEAS TRANSACTIONS on COMPUTERS Victor Kasyanov, Timur Zolotuhin

E-ISSN: 2224-2872 195 Volume 16, 2017

• The tools of structural analysis can also be
considered as navigation tools, i.e. various graph
algorithms help the user to get various kind of
information.

The Visual Graph system includes the following
tools for structural analysis: lighting of the shortest
path, lighting of cycles, lighting of neighborhood
vertices, lighting of all paths from the source vertex
to the target vertex, finding the maximum common
subgraph of two graphs.

The latter tool is worth considering in more
detail. Let us deal with the problem it solves and an
algorithm for its solution.

Fig. 6. Screenshot of the search panel result.

The problem of finding the maximum common
subgraph of two graphs occurs when the user wants
to find the difference in the behavior of different
versions of the same compiler (for example, the first
and second versions). This difference can be seen
owing to the graphs arising in the compiler at the
compile time. In particular, thanks to them the user
can find out what optimizations have been made or
not made by the compiler of the second version as
compared with the compiler of the first version.

For small graphs (about 5 vertices and 3-5
edges), the user can try to solve this problem
without resorting to additional instruments.

However, if a graph contains more than 10 vertices
and 7-10 edges, this problem will not be trivial.

Now let us consider the algorithm for solving the
above problem.

The search for the maximum common subgraph
of two graphs belongs to the class NP and is solved
using brute-force and different heuristics for
reducing the number of options. The proposed
algorithm follows the same path and works as
follows:

1. two attributed (or not attributed) graphs are
input, as well as additional information about
the weight of a particular attribute for the
vertices and edges;

2. a bipartite graph is constructed with vertices
from the first and second graphs (the first
and second partite sets, respectively).
Furthermore, from each vertex of the first
partite set edge is constructed to the second
partite set with the weight equal to the
percentage of coincidence of these two
vertices (between zero and one,
respectively), where 0 means a radical
mismatch of vertices and 1 means their
perfect complete match;

Fig. 7. Example of two input graphs.

3. the Hungarian algorithm for solving the
assignment problem is applied to the
resulting bigraph to obtain the maximal
matching of the maximum weight [13, 14].
Obviously, such a matching may not be in
the singular, so all of these options have to
be sorted out;

4. the output is the maximum common
subgraph of two input graphs, as well the

WSEAS TRANSACTIONS on COMPUTERS Victor Kasyanov, Timur Zolotuhin

E-ISSN: 2224-2872 196 Volume 16, 2017

vertices and edges not published in it of the
first and second graph, respectively.

Now let us discuss how this is implemented in
the Visual Graph system. As it was said before, the
input is two attributed (or not attributed) graphs, and
the user wants to find the maximum common
subgraph.

In the Visual Graph system, the user has two
options:

• selecting two graphs in the navigator and
calling the function for comparing the two
graphs in the opened popup menu;

• selecting two vertices with inner graphs in
the current tab on the desktop and calling the
function of comparing the two graphs in the
popup menu.

After that, the desktop will contain a new tab
with the result of comparing the two graphs.

In Fig. 8 we can see the maximum common
subgraph of the two source graphs represented in
Fig. 7; the transparent colors mark the outside
elements: red is for the outside elements of the first
graph, and blue is for the second.

Fig. 8. The tab with the result of comparing the two graphs.

The user can change the weights of any
attributes, thereby affecting the matching of the
vertices and edges (see Fig. 9).

In the menu on Fig. 10, the user can select a
strong or weak matching:

• In case of a strong matching, the values of
two attributes are considered equal only if
they coincide completely (1 or 0);

• In case of a weak matching, the following
function is used for numerical attributes:
1, if a=b,
0, if a≥b and b <0 or b ≥0 and a<0,

,
|),max(|

||1
ba

ba −
− otherwise.

• To match the string attributes, the following
function is used: (2*i)/(length1+ length2),
where i is the position in which the strings
are different or the length of the string if the
strings are equal; length1 and length2 are the
lengths of the first and the second string,
respectively

Fig. 9. Menu for changing the weights of attributes.

In the menu, the user can estimate the maximum
number of iterations in the algorithm. In addition,
the user can stop the process of searching for the
best solution at any time and obtain a solution that
will not necessarily be the best.

The use of this tool has shown that the algorithm
proposed copes well with the graphs whose
elements contain quite diverse values of the same
attributes and fails in other cases. The number of
vertices in the test graphs ranged from 10 to 1000.

The last problem to be considered in this section
is the problem of graph mapping, namely, the layout
of the graph in the plane.

Fig. 10. Menu for selecting type of comparing and barrier.

The layout problem does not have an optimal
solution and cannot have it because the sets of the
criteria for assessing the quality of layouts are
different for different graphs [1, 2, 3, 7]. For some
graphs, a certain criterion will be of greater
importance than the others in the readability of the
graph. However, a user can pick up the kinds of

WSEAS TRANSACTIONS on COMPUTERS Victor Kasyanov, Timur Zolotuhin

E-ISSN: 2224-2872 197 Volume 16, 2017

layouts, their parameters and approximate
algorithms for the specific classes of graphs that are
typically visualized. As mentioned earlier, the main
graphs the compiler processes are syntax trees,
control flow graphs and call graphs. All these
graphs have a small number of edges and a
hierarchical structure. As a rule, a hierarchical
layout is good for these types of graphs (Fig. 11).
Depending on the number of graph vertices and
edges, we can apply heuristic algorithms, or
algorithms to minimize the width or height of the
image pickup, and to decrease the intersection
between the edges.

4 Features of the Visual Graph
System and its Analogs
Currently, the market offers a fairly wide range of
systems working with graphs. The most popular are
aiSee [15], yEd [16], Cytoscape [17] and Higres
[18].

Fig. 11. Screenshot of using the hierarchical layout for control flow
graph.

The domain area of these systems partially
overlaps with the domain area of Visual Graph but
on the whole it is wider. For instance, many of them
are designed to edit the existing graphs and create
new, while the Visual Graph system is oriented
exclusively to viewing the existing graphs without
the editing option.

The main objectives of such systems are
displaying the graphs and navigating through them.
Therefore, let us consider the characteristics of each
of the systems in the context of these problems.

The aiSee system is a fee-based system, which
automatically draws the layout of the graph
described in the language of GDL. Then a user can
interactively explore (without editing) a given
graph, print it and save it in various formats.

AiSee was originally developed to visualize data
structures handled by compilers. Today, it is used by
tens of thousands of people around the world in
various fields, including: business management
(block diagrams enterprises, visualization of
business processes), genealogy (family trees), and
software development (block diagrams, control flow
graphs, and graphs of function calls).

Cytoscape is free system with an open source
code used to visualize and analyze networks
(Fig. 13).

The main domain area of this system is
bioinformatics. This system owes its popularity to
the fact that it is easily extensible, allowing third-
party developers to write various plug-ins.

Fig. 12. Screenshot of aiSee system.

The yEd system is a powerful diagram editor that
can be used to quickly and effectively generate
high-quality drawings of diagrams (Fig. 14).

The diagrams can be created manually or be
imported as an external data. yEd offers powerful
support for creating and editing diagrams. yEd can
be used to build, modify, and visualize diagrams in
an effective and efficient manner. They can be
loaded and saved using a variety of different file
formats including XML-based GraphML file
format.

The Higres system is an editor and a
visualization tool for attributed non big simple

WSEAS TRANSACTIONS on COMPUTERS Victor Kasyanov, Timur Zolotuhin

E-ISSN: 2224-2872 198 Volume 16, 2017

hierarchical graphs and a platform for execution and
animation of graph algorithms (Fig. 15). The
semantics of a hierarchical graph model is
represented in the Higres system by means of labels
(attributes) of graph elements and a library of so-
called external modules. Each label has its data type,
name and several other parameters. Higres provides
the run-time animation of algorithms represented by
external modules [19].

Each of the systems considered displays graphs
and has its own methods to control the displaying of
these graphs.

In the aiSee system, there are several layouts and
a lot of settings whose influence on the result is
negligible. The quality of the layout of certain types
of graphs is very high.

The yEd system has a large number of layouts
and options for them. The user can fine-tune each
type of a graph.

The Cytoscape system has its own layout
algorithms, as well as third-party algorithms, such
as yFiles. It is also worth noting that the results
obtained in yEd are much better than similar results
in Cytoscape with settings by default.

For automatic graph allocation the Higres system
uses a few graph drawing algorithms which are
based on the force method and are good for non big
simple hierarchical graphs.

The Visual Graph system provides several
layouts, the main of which is the hierarchical layout,
which has been maximally adapted to work with
graphs used in compilers. If desired, the layout may
be modified and / or adjusted for other types of
tasks.

Fig. 13. Screenshot of the Cytoscape system.

Now we will deal with the navigation features in
each of these systems.

The aiSee system provides:

1. Desktop is an instrument that visualizes the
graph model as a static image, which cannot
be modified by moving or changing
elements, for example.

2. Searcher is an instrument that allows the user
to search elements in the graph model using
their names. It supports regular expressions,
the choice of categories of elements for the
searching and saving of previous searches.

The yEd system provides:
1. Desktop is similar to the aiSee desktop

except that
a. it is capable of working with several

graph models simultaneously in a
single instance of the program (a tab
for each of the graph is created);

b. it is capable of modifying the
elements of the graph, from
changing their positions and sizes to
setting the attributes that affect their
visualization.

2. Navigator is an instrument that displays the
graph placed in the current tab.

3. Minimap is an instrument that shows the
whole graph placed in the current tab.

Fig. 14. Screenshot of the yEd system.

The Cytoscape system provides:
1. Desktop similar to the yEd desktop. The

difference is that Cytoscape can work with
hierarchical graphs.

2. Minimap identical to the minimap provided
by the yEd system.

3. Attribute panel is a tool that allows the user
to manage the visualization of attributes, edit
the existing attributes and create the new
ones. To this end, the tool builds a table
using the attribute names as rows and graph
elements as columns. This method has grave

WSEAS TRANSACTIONS on COMPUTERS Victor Kasyanov, Timur Zolotuhin

E-ISSN: 2224-2872 199 Volume 16, 2017

disadvantages if the number of attributes and
graph elements is large.

The Higres system provides:
1. Desktop is similar to the desktop of the aiSee

system, but unlike it makes it possible to
close or open one or more fragments as well
as to edit the elements of visualized
hierarchical graph from by changing of their
position, shape and size to by specification
of their types and attributes that affect their
visualization.

2. Mini-map is similar to the mini-map in the
yEd system.

The navigation features provided by the Visual
Graph system (a detailed description of all the
following tools can be found in the section "Existing
problems and their solutions"):

1. Desktop similar to the desktop provided by
the analog systems. The main difference is
that in the analog systems a desktop shows a
full graph model in one tab, while the Visual
Graph desktop allows the user to select
interesting elements (vertices and edges) in
the graph model (using the navigator or
another instrument) and then to visualize
them in different tabs. This strategy, which
works well with big graphs, is one of the
most important features of the Visual Graph
system. In order to understand something
complex, we can always break it into many
small simple pieces for subsequent analysis;

2. Navigator similar to the yEd navigator. The
main difference is that in yEd system the
navigator shows a graph that is in the current
tab, and the Visual Graph navigator shows all
the graphs the user is processing at the
moment. In addition, the Visual Graph
navigator can dynamically download the
necessary elements, when the user
uncollapses an element containing inner
elements. If there are too many inner
elements, they are combined in blocks. Each
block contains no more 100 elements. The
analogs do not have such a mechanism and
so cannot work with the biggest graphs (with
about 1-3 billion elements). In the analogs,
the navigator wants to show all the elements
and this leads to big lags.

3. Minimap identical to the yEd minimap.
4. Attribute panel displays a set of attributes of

the elements selected in the current tab and
allows the user to manage their visualization.

5. Filter and search panel allows the user to
search graph elements using specifying
expressions. The analogs have simple

searchers incapable of a flexible search of
graph elements. They can find a graph
element using a substring (not even a regular
expression) for a name (or a title attribute). It
is a good (easy and understandable) strategy
for small graphs but it does not work for
large with a lot of attributes.

6. Although the Notepad does not have many of
the features standard for most notepads
popular today, such as syntax highlighting,
searching with regular expressions, and so
on, its functionality suffices to cope with the
challenges facing the user of the Visual
Graph system, namely:

a. Opening several text files and
relating them with graphs, with a
subsequent pass from a graph
element to a fragment in the text
file;

b. Highlighting the search result.

Fig. 15. Screenshot of the Higres system.

7. Structural analysis instruments, such as
searching of cycles, critical paths,
neighborhoods of vertices and the maximum
common subgraph of two graphs. It is
difficult to estimate the pluses and minuses
of these instruments, but certainly it is
practically impossible to do without them.
The analogs do not have most of the tools for
structural analysis, such as finding the
maximum common subgraph or lighting the
critical paths.

5 Conclusion
In this paper, we have discussed the problems
encountered during the development of the Visual

WSEAS TRANSACTIONS on COMPUTERS Victor Kasyanov, Timur Zolotuhin

E-ISSN: 2224-2872 200 Volume 16, 2017

Graph system and its domain area, and have re-
searched similar systems. As we can see, the Visual
Graph system has many advantages and is not
inferior to its peers in terms of the visualization of
hierarchical attributed graphs used in compilers.

At present the Visual Graph system is focused on
the visualization of data structures arising in
compilers, can simultaneously work with them both
in graphical and in text forms, and provides smooth
performing of the basic operations on graphs with
up to 100000 elements (vertices and edges). Its
successful test use had been in the Intel Company.

It is also worth noting that using the Visual
Graph system is not limited to the visualization of
graphs arising in compilers. This system can be used
in other related fields which require graph
visualization and navigation. For example, the
system is used now as a base of visual debugging
tool of a parallel programming system CSS which is
under development for supporting cloud
supercomputing on the base of the Cloud Sisal
language [20, 21]. The CSS system uses the
attributed hierarchical graphs for internal
representations of Cloud-Sisal-programs and
provides means to write and debug Cloud-Sisal-
programs on low-cost devices as well as to translate
and execute them in clouds. So, the system can open
the world of parallel and functional programming to
all students and scientists without requiring a large
investment in new, top-end computer systems.

This work is supported in part by the Russian
Foundation for Basic Research under grant RFBR
15-07-02029.

References:
[1] G. DiBattista, P. Eades, R. Tamassia,

I.G. Tollis. GraphDrawing: Algorithms for
Vizualization of Graphs, PrenticeHall, 1999.

[2] I. Herman, G. Melançon, M.S. Marshall. Graph
visualization and navigation in information
visualization: a survey, IEEE Trans. on
Visualization and Computer Graphics, Vol. 6,
2000, pp. 24 - 43.

[3] V.N. Kasyanov, V.A. Evstigneev. Graphs in
Programming: Processing, Visualization and
Application. St. Petersburg, BHV-Petersburg,
2003. (In Russian).

[4] Q.W. Feng, R.F. Cohen, P. Eades. Planarity for
clustered graphs, Lecture Notes in Computer
Science, Vol. 979, 1995, pp. 213 - 226.

[5] K. Sugiyama, K. Misue. Visualization of
structured digraphs, IEEE Trans. on Systems,
Man and Cybernetics, Vol. 21, No. 4, 1999,
pp. 876-892.

[6] V.N. Kasyanov. Methods and tools for
structural information visualization, WSEAS
Transactions on Computers, Vol. 12, No. 7,
2013, pp. 349 - 359.

[7] V.N. Kasyanov, E.V. Kasyanova. Information
visualization on the base of graph models,
Scientific Visualization, Vol. 6, No. 1, 2014,
pp. 31 – 50. (In Russian).

[8] V.N. Kasyanov, T.A. Zolotuhin. Visual Graph -
a system for visualization of big size complex
structural information on the base of graph
models, Scientific Visualization, Vol. 7, No. 4,
2015, pp. 44 – 59. (In Russian).

[9] U. Brandes, M. Eiglsperger, J. Lerner and
C. Pich. Graph Markup Language (GraphML),
In: Handbook of Graph Drawing and
Visualization, CRC Press, 2013, pp. 517 - 541.

[10] SQLite homepage, http://www.sqlite.org
[11] Apache Felix homepage, http://felix.apache.org.
[12] OSGi Alliance homepage,

http://www.osgi.org/Main/HomePage
[13] J. Munkres. Algorithms for the Assignment and

Transportation Problems, Journal of the Society
for Industrial and Applied Mathematics, Vol. 5,
No. 1, 1957, pp. 32—38.

[14] H.W. Kuhn. The Hungarian Method for the
assignment problem, Naval Research Logistics
Quarterly, Vol. 2, Issue 1-2, 1955, pp. 83—97.

[15] aiSee homepage, http://www.aisee.com/
[16] yEd homepage, http://www.yworks.com/
[17] Cytoscape homepage, http://www.cytoscape.org
[18] Higres homepage, http://pco.iis.nsk.su/higres/
[19] I.A. Lisitsyn, V.N. Kasyanov. HIGRES -

visualization system for clustered graphs and
graph algorithms, Lecture Notes in Computer
Science, Vol.1731, 1999, pp. 82 - 89.

[20] V.N. Kasyanov, E.V. Kasyanova. Graph- and
cloud-based tools for computer science
education, Lecture Notes in Computer Science,
Vol. 9395, 2015, pp. 41 - 54.

[21] V.N. Kasyanov, E.V. Kasyanova. Cloud
system of functional and parallel programming
for computer science education, In Proceedings
of 2015 2nd International Conference on
Creative Education (ICCE 2015), London,
SMSSI, 2015, pp. 270 - 275.

WSEAS TRANSACTIONS on COMPUTERS Victor Kasyanov, Timur Zolotuhin

E-ISSN: 2224-2872 201 Volume 16, 2017

http://www.sqlite.org/
http://www.osgi.org/Main/HomePage
http://www.cytoscape.org/

