
Optimal paths of knapsack-set vertices on a weight-independent graph

NADAV VOLOCH

Department of Computer Science

The Open University

University Road 1, Ra'anana, 4353701

ISRAEL

nadavvo@mta.ac.il http://www.openu.academia.edu/NadavVoloch

Abstract: - Two problems that are often studied and researches in computer science algorithms are the

knapsack problem and the shortest paths on weighted graphs problem. Their combination is often

addressed by dynamic programming solutions for the knapsack problem, using shortest path problem,

with the creation of a knapsack graph. But these researches consider only two aspects of weight and

value for an item/vertex, and here we address a different kind of problem in which we are taking into

consideration three properties: item weight, item value and edge weight (that connects two items, but

its weight is not depended on its vertices). Every vertex in this specific graph is a set of knapsack

items. This situation is viable for real-life circumstances, in which a path has a non-dependent

attribute (physical distance, travel time, etc.), and there are different kinds of items to be picked in

different locations on this path. The problem presented here is finding the most efficient path between

two vertices (source and target), in three aspects- minimal edge wise, maximum knapsack value wise,

and a combination of maximal efficiency for both properties. An algorithm for finding these optimal

paths is presented here along with specific explanations on its decision stages, and several examples

for it.
.

Key-Words: - Knapsack problem; Shortest paths on weighted graphs; Dijkstra's algorithm; 0-1 knapsack

problem; All paths between two vertices in a graph;

1 Introduction

Within the scope of theoretical algorithms there are
two well known problems that are:

a. The knapsack problem dating back far as

more than a century ago ([1]), which is that

for a set of items, each with a weight and a

value, we have to determine the number of

each item to include in a collection so that

the total weight is less than or equal to a

given limit and the total value is as large as

possible. The name is based on a real-life

problem in which someone has weight-

limited knapsack, and is supposed to

maximize the value of given fixed-size

items that are put in the knapsack. It is a

problem in combinatorial optimization and

it arises in resource allocation aspects that

include financial or other allotted criteria

restraints. Knapsack-type problems are

portrayed in decision-making processes,

such as selecting financial portfolios, and

cutting of raw materials in the least wasteful

manner.

To this problem there are three main

versions:

1. The most common problem being

solved is the 0-1 knapsack problem,

which restricts the number of copies of

each kind of item to 0 or 1 (hence its

name), meaning we are able to pick

only one item from each kind. This is

the specific problem to which this paper

addresses.

2. The bounded knapsack problem (BKP)

in which there is no limit of one copy

per item, but a limit for the number of

copies of each kind of item extends to a

maximum finite amount.

WSEAS TRANSACTIONS on COMPUTERS Nadav Voloch

E-ISSN: 2224-2872 163 Volume 16, 2017

3. The unbounded knapsack

problem (UKP) places no upper bound

on the number of copies of each kind of

item.

b. The shortest path problem is the problem

of finding a path between two vertices in

a graph such that the sum of the weights of

its constituent edges is minimized as

summarized in [2]. The shortest path

problem can be defined for directed or

undirected graphs, and even for mixed ones.

In this paper we relate to the undirected

graphs definition of the problem. Shortest

path algorithms are used for several

applications such as finding the shortest

path between two physical locations (for

geographic navigation applications), finding

the shortest path of routing in network

communication. In civil engineering this

problem is often used to manifest the roads

as the graph's edges, and the nodes as

intersections, the edges' weights can

represent to the length of the road or the

time needed to travel it. Other applications

of the problem are designing facility

layouts, robotics and VLSI design.

There are several algorithms that handle these

problems, some more efficient than others.

For example, to UKP there is

a greedy approximation algorithm proposed by

George Dantzig ([3]). His version sorts the items in

decreasing order of value per unit of weight, vi/ wi,

where v represents the value of each item i of n

items (for 1≤ i ≤ n) and w represents its weight . It

then proceeds to insert them into the sack, starting

with as many copies as possible of the first kind of

item until there is no longer space in the sack for

more. Provided that there is an unlimited supply of

each kind of item, if m is the maximum value of

items that fit into the sack, then the greedy

algorithm is guaranteed to achieve at least a value

of m/2.

For the 0-1 knapsack problem there is a pseudo-

polynomial dynamic programming algorithm,

suggested in different papers such as [4], in which at

every step, the maximization process is re-assessing

the current status limit-wise, and optimizing the

result, by picking the best item for the current stage.

A solution for the shortest path problem is the well

known Dijkstra's algorithm, which finds the shortest

path between nodes in a graph, conceived by Edsger

W. Dijkstra ([5]). The algorithm was optimized in

many researches such as [6].

There have also been papers about dynamic

programming solutions for the knapsack problem,

using shortest path problem, with the creation of a

knapsack graph such as [7] and [8], and also with

other applications of it such as [9].

These papers gave a solution to the knapsack

problem using the shortest path problem. A problem

arises when a knapsack graph, that its edge weights

are non-dependent in the vertices values, is built.
This situation can apply for real-life circumstances,

in which a path has a non-dependent attribute

(physical distance, travel time, etc.), and there are

different kinds of items to be picked in different

locations on this path.
The decision of finding the most efficient path,

attributing sets of knapsack-items as vertices, has to

take additional factors into consideration – the

knapsack weight limit, and maximizing the value of

items. While most papers mentioned above consider

only two aspects of knapsack weight and value, here

we take into consideration three properties: item

weight, item value and edge weight (that connects

two items, but its weight is not depended on its

vertices). A graph having the three attributes

mentioned above was first shown in [10], and in it

the vertices themselves were knapsack items

(singular). Here we find the different possibilities of

paths from a source vertex to a target vertex, having

the vertices as sets of knapsack items, considering

the preferred attribute we choose to apply.

2 Problem Formulation- The

knapsack weight-independent graph

Given a weighted graph G = (V, E), where V

represents the vertices of the graph, and E its edges,

we first constrain the edges' weights to be non-

negative ones. The second stage is adding to each

vertex a set of items with the properties of weight

(wi) and value (vi) to all of these knapsack items. We

take into consideration the difference between the

weight of the items in the vertex, that is marked w,

as mentioned before, and the weight of the edge,

that will be marked as w
E
. In addition to these

properties, we will add to the graph G a limit m, that

represents the knapsack limit of maximum weight.

We now have a suitable graph for the integrated

problem that is defined as finding the most efficient

path between two vertices that are sets of knapsack

items, which will be marked G
D
. An example of

such a G
D
 is shown in Fig.1, were the items in the

vertices are presented as wi/vi, the source vertex is A,

and the target vertex is F.

WSEAS TRANSACTIONS on COMPUTERS Nadav Voloch

E-ISSN: 2224-2872 164 Volume 16, 2017

Fig. 1. GD – Items in the vertices marked wi/vi , source-A, target- F

2.1 Finding the most efficient path between

two vertices

Given a graph G
D
 as described above, we wish to

find a path between two chosen vertices (source
vertex-vs and target vertex-vt), that with a given
knapsack weight limit (m), will achieve optimal
results, by choosing the maximal value of items
from this path.

Here we divide the meaning of "optimal" into three
different cases:

a. The main priority is given to the minimal

edge weight between the two vertices.
For this specific case, a possible solution is

a two-step algorithm, in which we find the

shortest path between two vertices in G
D
, by

using Dijkstra's algorithm, and then we

unite the items in the vertices from the

chosen sub-graph (the path), limiting the

vertices weights with m- the knapsack limit,

and then use the pseudo-polynomial

dynamic programming algorithm for the 0-1

knapsack, to choose the items from the

path.

b. The main priority is given to the maximal

knapsack value of items in the path

between the two vertices. In this case, we

have to take into consideration all of the

paths between the two vertices, to achieve

an optimal knapsack-value choice of items

from all of the vertices.

c. An equal priority is given to both aspects –

minimal edge weight, and maximal

knapsack value of items.
In this case we also have to consider all

possible paths between two vertices, and

calculate the optimal difference between the

two aspects.

3 Problem Solution- The algorithm

for the integrated problem

For solving the problem described above, on all of

its three different cases, we use an algorithm that

first finds all of the possible paths between the two

vertices, and then gives attributes to each path, that

will help us choose the optimal path.

These attributes are: total edge weight of the path,

and total value of knapsack chosen items, given a

knapsack limit (m).

For the first part, of finding all possible paths, we

can use the Ford-Fulkerson algorithm ([11]), or

another one that finds all of the paths from a source

vertex to a target vertex, such as the Edmonds–Karp

algorithm ([12]) for computing the maximum

flow in a flow network in O (V E
2
) time, V being the

number of vertices in the graph/network, and E

being the number of edges, or the Dinic's algorithm

([13]), also for a maximum flow network, that

achieves a better time of O (V
2
E).

Since the Dinic's algorithm is the most efficient one,

we will use it in our algorithm.

For the second part we unite all of the items of the

vertices to one set and then use the pseudo-

polynomial Knapsack 0-1 dynamic programming

algorithm, to choose the items from every path.

The last step is choosing the priority case (a, b or c,

as describes in the previous part).

During this process, it is convenient to manifest all

of the attributes to the complex object of path.

The algorithm is as follows:

Finding most efficient path in a knapsack-item

weight-independent graph (Graph G
D
, Vertex

source, Vertex target, integer max_item_weight,

char priority):

WSEAS TRANSACTIONS on COMPUTERS Nadav Voloch

E-ISSN: 2224-2872 165 Volume 16, 2017

https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Big_O_notation

1. Create a list of all paths source to target :

1.1. Lpath
 = Dinic (G

D
, source, target)

2. For each path Li
path

 where 1 ≤ i ≤ | Li
path

 | set

attribute of total edge weight:

2.1. tewi = 


||

0

E

j

w
E
 j (Li

path
)

3. For each path Li
path

 create chosen items list:

3.1. LK
(Li

path
) = Knapsack 0-1 (V (Li

path
),

max_item_weight)

4. For each L
K
(Li

path
), set attributes of total

knapsack value:

4.1. tkvi = 


|_|

0

PathL

j

vj (L
K
(Li

path
))

5. If (priority='a'):

5.1. Find min tewi (L
path

)

5.2. Return Li
path

6. If (priority='b'):

6.1. Find max tkvi (L
path

)

6.2. Return Li
path

7. If (priority='c'):

7.1. Find max (tkvi- tewi)(L
path

)

7.2. Return Li
path

For example, given the graph G
D
, shown in Fig.1,

and its data as presented in Table 1, using A as the
source vertex and F as the target vertex, and a
knapsack weight limit of m=42, the first step is
finding all of the paths between A and F. An item is
presented as its vertex and an index 1 ≤ i ≤ |Vi|, e.g.
the items of vertex A are marked A1, A2, A3. An edge
is marked by its source vertex and its target vertex,
e.g. A-B. There are 7 possible paths between A and
F in G

D
, L

path
 is presented in Table 2, with all of the

properties of the paths, including the chosen
knapsack items, tkvi, and tewi as described above.

In every path we choose the vertex- items that

maximize the knapsack value- these are the chosen

items of the path that add up to tkvi, while the

weights of the edges is summed up to tewi. In

addition there are the three paths chosen by the

different priorities ('a', b', and 'c' as described

above). The three chosen paths are seen in Fig.2 (Li
path

 (G
D
), priority 'a' (minimal edge weight)), Fig.3

(Li
path

 (G
D
), priority 'b' (maximal knapsack value)),

and Fig.4 (Li
path

 (G
D
), priority 'c' (maximal

difference between knapsack value and edge

weight)). Looking at the table and figures, we can

now see that for priority 'a', the minimal edge

weight achieved by L3
path

 is 14, and that for priority

'b', the maximal knapsack value achieved by L7
path

is 90, and that for priority 'c', the maximal

difference between the knapsack value and edge

weight achieved by L6
path

 is 88-15=73. The bold

items in the figures are the chosen items.

3.1 Complexity analysis

We will now analyze the different parts of the
algorithm as described in the previous part,
considering V being the number of vertices in the
graph/network, E being the number of edges, m the
maximal knapsack weight, and n the number of
knapsack-items.

The first stage of the algorithm is finding all of the
paths using the Dinic's algorithm. This stage has an
O (V

2
E) running time as explained in the previous

part. The second stage of the algorithm is finding
the entire edge weight total of the paths, and its
approximation is O (E). For the third stage we use
the pseudo-polynomial Knapsack 0-1 dynamic
programming algorithm that has an O (nm)
complexity, and similarly to stage 2, in the fourth
stage we have to set the entire edge weight total of
the paths' knapsack-items, so its approximation is of
O (nE) complexity. For stages 5-7 (we choose only
one stage) we have to find the max attribute of the
paths created in the previous stages, hence achieving
a complexity of O (E). The summation of these
stages gives us the complexity of O(V

2
E)+ 2O(E)+

O (nm)+ O (nE), meaning O((m+V
2
)E+mn).

For example, we can take the graph presented in
Fig.1, that its scheme is presented in Table 1, and
calculate the estimated running time by the given
parameters:

V = 6, E = 10, m = 42, and n = 17.

The calculation is as follows:

 (m + V

2
) E + mn = (42 + 6

2
) ∙ 10 + 42 ∙ 17 =

 780 + 714 = 1494.

This means that for the graph shown in Fig.1, that
its scheme is presented in Table 1, the estimation of
the number of elementary operations performed by
the algorithm is 1494, where an elementary
operation takes a fixed amount of time to perform.

WSEAS TRANSACTIONS on COMPUTERS Nadav Voloch

E-ISSN: 2224-2872 166 Volume 16, 2017

https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Big_O_notation

Table 1: GD Scheme Example No.1

G
D
- knapsack-item weight-independent graph

Vertices-items (Vi)

V(G
D
)i v

w

A1 14
13

A2 15
12

A3 19
18

B1 10
9

B2 14
11

C1 9
8

C2 12
10

D1 14
7

D2 18
8

D3 20
10

E1 13
9

E2 17
12

E3 9
5

F1 19
8

F2 21
10

F3 14
8

F4 23
11

Edges

E(G
D
)

w
E

A-B
3

B-C
2

A-C
7

A-E
10

B-D
8

C-E
4

D-E
11

E-F
5

D-F
6

A-D
9

m
Source vertex Target vertex

42
A F

Table 2: LPATH for GD Scheme Example No.1

L
path

 (G
D) For AF, with m=42

Paths

No. V(L
path)

Chosen items tkvi

tew

i

1 AB DF D1, D2, F1 , F3,

F4
88 17

2
AB DE

F D2, E3, F1 , F2,

F4
90 27

3
ABCE

F E3, F1 , F2, F3,

F4
86 14

4 ACE F E3, F1 , F2, F3,
F4

86 16

5 AE F E3, F1 , F2, F3,

F4
86 15

6 AD F D1, D2, F1 , F3,

F4
88 15

7 A DEF D2, E3, F1 , F2,

F4
90 25

Chosen Li
path

 by priority

Priority
Li

path

a
No.3

b
No.7

c
No.6

Fig. 2. L3
path

(G
D

) , priority 'a' (minimal

edge weight)

WSEAS TRANSACTIONS on COMPUTERS Nadav Voloch

E-ISSN: 2224-2872 167 Volume 16, 2017

Fig. 3. L7
path

 (G
D

) , priority 'b' (maximal

knapsack value)

Fig. 4 L6
path

(G
D

) , priority 'c' (maximal

difference between knapsack value and edge

weight)

3.2 Algorithm correctness proof

3.2.1 Invariant

For Finding the most efficient paths in G
D

algorithm, the invariant is "At iteration i, the Li
path

(
G

D
) is the most efficient path, and has the maximal

attribute value (tkvi- tewi), or tkvi or tewi , decided by
the priority choice. ".

3.2.2 Completeness/ Correctness

3.2.2.1 Initialization

For i = 1, the invariant is respected: in the first

iteration, L1
path

(G
D

) is the most efficient path, and

has the maximal attribute value (tkv1- tew1), or tkv1

or tew1, decided by the priority choice, since ,

trivially, it is the only path checked.

3.2.2.2 Maintenance

For i = n, Given 1 ≤ k ≤ n-1, assuming the Lk

path
(

G
D

) is the most efficient path, and has the maximal
attribute value (tkvk- tewk), or tkvk or tewk. decided
by the priority choice. Without the loss of generality
we take tewk. Iteration n inserts a new path- Ln

path
(

G
D

). Three possible cases for Ln
path

(G
D

) :
a. tewk< tewn, meaning the new maximal

attribute path is tewn.
b. tewk> tewn, meaning the maximal attribute

path is preserves as tewk .
c. tewk= tewn, meaning either a or b is

acceptable.
Thus the invariant is preserved.

3.2.2.3 Termination

At the last iteration, Given 1 ≤ i ≤ size-1 assuming

the Li
path

(G
D

) is the most efficient path, we insert the

last path and then take into consideration the three

different cases above (6.2.2) , thus the Li
path

(G
D

) or

the last path is the most efficient path, and has the

maximal attribute value (tkvi- tewi), or tkvi or tewi ,

decided by the priority choice. Hence the algorithm

gives us the most efficient path.

3.3 More results and examples for G
D

In Tables 3 (vertices) and 4 (edges), we can see a

another example for G
D
 – its item-vertices by their

properties of value (v) and weight (w) and the edges

by their weight (w
E
), then the source and the target

vertices are shown, and the knapsack weight limit

(m).

Table 5 is ordered in the same manner as Table II

described above, and displays a different, bigger

graph G
D
 , with 8 vertices, 13 edges, and 13

different paths from the source vertex A to the target

vertex H, and its results after performing the

algorithm, and choosing the paths by the three

different priorities.

WSEAS TRANSACTIONS on COMPUTERS Nadav Voloch

E-ISSN: 2224-2872 168 Volume 16, 2017

Given the graph G
D
, presented in Tables 3, 4 and 5,

using A as the source vertex and H as the target
vertex, and a knapsack weight limit of m=50, the
first step is finding all of the paths between A and H.

 An item is presented as its vertex and an index 1 ≤ i
≤ |Vi|, e.g. the items of vertex A are marked A1, A2,
A3. An edge is marked by its source vertex and its
target vertex, e.g. A-B.

There are 13 possible paths between A and H in G
D
,

L
path

 is presented in Table 5, with all of the
properties of the paths, including the chosen
knapsack items, tkvi, and tewi as described above.

In every path we choose the vertex- items that

maximize the knapsack value- these are the chosen

items of the path that add up to tkvi, while the

weights of the edges is summed up to tewi.

In addition there are the three paths chosen by the

different priorities ('a', b', and 'c' as described

above).

The three chosen paths are seen in Table 5, priority

'a' (minimal edge weight)) is marked in blue,

priority 'b' (maximal knapsack value) is marked in

green, and priority 'c' (maximal difference between

knapsack value and edge weight) is marked in

red/orange.

 Looking at the tables, we can now see that for

priority 'a', the minimal edge weight achieved by L11
path

 is 31, and that for priority 'b', the maximal

knapsack value achieved by L9
path

 is 103, and that

for priority 'c', the maximal difference between the

knapsack value and edge weight achieved by L8
path

is 70-32=38.

All of these results, including the ones presented in

Table 1 and Figures 1-4, were achieved by an

automated system, built in Java, for the purpose of

this research.

The system gets the numeric inputs of the

parameters (vertex-items and edges values,

knapsack limit), and the graph's configuration

(edges-items-vertices), and outputs the 3 different

paths and their values, chosen by the 3 different

priority types.

Table 3:GD Scheme Example No.2-Vertices

G
D
- knapsack-item weight-independent graph

Vertices-items (Vi)

V(GD)i v
w

A1 12
11

A2 14
13

A3 16
15

B1 8
9

B2 18
11

C1 6
7

C2 5
13

C3 8
19

C4 9
12

C5 8
10

D1 12
23

D2 8
14

D3 22
7

D4 7
6

E1 13
9

E2 13
7

E3 17
8

F1 7
8

F2 12
9

F3 14
13

F4 9
18

F5 16
12

G1 12
11

G2 20
9

G3 23
21

H1 12
8

H2 15
14

H3 17
16

H4 18
9

WSEAS TRANSACTIONS on COMPUTERS Nadav Voloch

E-ISSN: 2224-2872 169 Volume 16, 2017

Table 4:GD Scheme Example No.2-Edges

G
D
- knapsack-item weight-independent graph

Edges

E(GD)
wE

A-B
15

B-C
21

C-D
13

A-C
9

B-D
14

D-E
12

E-F
23

F-G
19

F-H
20

G-H
18

B-H
17

C-H
22

C-F
25

m
Source vertex Target vertex

50
A H

4 Conclusion- Scope and optimization

of the algorithm

In cases of equality between two possible paths, for

all three possible priority types, we find ourselves in

a bit of a problem. For example, in Table 2, we can

easily see that for priority 'b' (maximal knapsack

value), there are two possible solutions- L2
path

 and

L7
path

, both achieve tkvi of 90. In a case like this, the

algorithm has a supplement of checking the other

property- meaning tewi for this case of 'b' priority,

thus preferring L7
path

, achieving tewi of 25 over L2
path

, achieving tewi of 27. For priority 'a', in case of

equality, the tkvi is checked to prioritize, and for

priority 'c', any of the properties of tewi and tkvi can

be checked.
.

Table 5: LPATH for GD Scheme Example No.2

L
path

 (G
D) For AF, with m=42

Paths

No. V(L
path)

Chosen items tkvi

tew

i

1

ABCD

EFG
H

D3, E1, E2 , E3,

G2, H4
103 121

2
ABCD

EF H B2, D3, E2 , E3,

H1, H4
100 104

3 ABCH A2, B1 , B2, H1,

H4
70 58

4
ABC

FGH B2, F2 , F5, G2,
H4

84 98

5
ABC F

H B2, F2 , F5, H1,

H4
76 81

6
ABDE

FGH D3, E1, E2 , E3,

G2, H4
103 101

7
ABDE

F H B2, D3, E2 , E3,

H1, H4
100 84

8 A BH A2, B1 , B2, H1,

H4
70 32

9
ACDE
FGH D3, E1 , E2, E3,

G2, H4
103 94

10
ACDE

F H D3, E1, E2 , E3,

F2, H4
95 77

11 A CH A1, A3, C1 , H1,
H4

64 31

12
AC F

GH A1, F2, F5 , G2,

H4
78 71

13 AC FH A1, F2, F5 , H1,

H4
70 54

Chosen Li
path

 by priority

Priority
Li

path

a
No.11

b
No.9

c
No.8

WSEAS TRANSACTIONS on COMPUTERS Nadav Voloch

E-ISSN: 2224-2872 170 Volume 16, 2017

4.1 Ongoing work

For G
D
, and the algorithm for finding the most

efficient path between two vertices, there could be

much more applications and expansions, like using

the vertices labels as strings, or other data structures

(a stack on each vertex, for example).

An implementation of a simpler version of the

graph, in which the vertices are IoT (Internet of

Things) objects, such as routers, other end-points or

web services is currently being developed. A basic

configuration example is shown in Fig.5 using A as

the source vertex, that represents the client, and G as

the target vertex that represents the host, whilst the

other vertices represent the routers, and a knapsack

weight limit of m=17 is given. The edges' weights

represent the physical distance of the end-points,

and for the vertices- the property of weight

represents the data size (di), and the value represents

the processing time (pi).

Another possible problem inferred is a one in which

a weight is added to each edge when an item is

chosen from its source vertex, which can be handled

in dynamic programming. A Java system was built

for manufacturing the results shown in this paper,

based on the algorithm described in part 4.

Improving and expanding it as described here is a

work in progress.

Fig.5 IoT graph-Vertices marked (pi/ di),

source-A, target- G

References:

[1] Mathews, G. B. (1897). "On the partition of

numbers" . Proceedings of the London

Mathematical Society 28: 486–490.

[2] Abraham, Ittai; Fiat, Amos; Goldberg, Andrew

V.; Werneck, Renato F. (2010) "Highway

Dimension, Shortest Paths, and Provably

Efficient Algorithms". ACM-SIAM Symposium

on Discrete Algorithms, pages 782-793.

[3] Dantzig, George B. (1957). "Discrete-Variable

Extremum Problems". Operations

Research 5 (2): 266–

288.doi:10.1287/opre.5.2.266.
[4] Pisinger ,D. (1993). " A Minimal Algorithm for

the 0-1 Knapsack Problem " . Operations
Research September-October 1997 45(5):758
doi: 10.1287/opre.45.5.758

[5] Dijkstra, E. W. (1959). "A note on two

problems in connexion with

graphs" . Numerische Mathematik 1: 269–

271.doi:10.1007/BF01386390.
[6] Mehlhorn, K., Sanders, P. (2008). "Algorithms

and Data Structures: The Basic Toolbox" .199-
200. Springer.

[7] Frieze, A. M. (1976). "Shortest path algorithms

for knapsack type problems" . Mathematical

Programming 11: 150.

doi:10.1007/BF01580382

[8] Handler, Gabriel Y., Zang, Israel (1980), " A

dual algorithm for the constrained shortest path

problem", Networks- Wiley Subscription

Services, Inc., A Wiley Company 10: 293-309,

doi: 10.1002/net.3230100403
[9] Zhang, X., Huang, S., Hu, Y., Zhang, Y.,

Mahadevan, S., Deng, Y.: (2013) " Solving 0–1
knapsack problems based on amoeboid
organism algorithm." Appl. Math. Comput. 219,
9959–9970

[10] Voloch N. (2017) " Finding the most
efficient paths between two vertices in a
knapsack-item weighted graph ", International
Journal of Advanced Computer Research
(IJACR) Vol.7 Issue 28.
http://dx.doi.org/10.19101/IJACR.2017.728003

[11] Ford, L. R.; Fulkerson, D.
R. (1956). "Maximal flow through a
network" . Canadian Journal of Mathematics. 8:
399–404. doi:10.4153/CJM-1956-045-5.

[12] Edmonds, Jack; Karp, Richard M. (1972).
"Theoretical improvements in algorithmic
efficiency for network flow problems". Journal
of the ACM. Association for Computing
Machinery. 19 (2): 248–
264. doi:10.1145/321694.321699.

[13] Yefim Dinitz (1970). "Algorithm for
solution of a problem of maximum flow in a
network with power estimation". Doklady
Akademii nauk SSSR. 11: 1277–1280.

WSEAS TRANSACTIONS on COMPUTERS Nadav Voloch

E-ISSN: 2224-2872 171 Volume 16, 2017

https://en.wikipedia.org/wiki/Digital_object_identifier
https://en.wikipedia.org/wiki/L._R._Ford,_Jr.
https://en.wikipedia.org/wiki/D._R._Fulkerson
https://en.wikipedia.org/wiki/D._R._Fulkerson
https://en.wikipedia.org/wiki/D._R._Fulkerson
https://en.wikipedia.org/wiki/Canadian_Journal_of_Mathematics
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.4153%2FCJM-1956-045-5

