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Abstract: - Two problems that are often studied and researches in computer science algorithms are the 

knapsack problem and the shortest paths on weighted graphs problem. Their combination is often 

addressed by dynamic programming solutions for the knapsack problem, using shortest path problem, 

with the creation of a knapsack graph. But these researches consider only two aspects of weight and 

value for an item/vertex, and here we address a different kind of problem in which we are taking into 

consideration three properties:  item weight, item value and edge weight (that connects two items, but 

its weight is not depended on its vertices). Every vertex in this specific graph is a set of knapsack 

items. This situation is viable for real-life circumstances, in which a path has a non-dependent 

attribute (physical distance, travel time, etc.), and there are different kinds of items to be picked in 

different locations on this path.  The problem presented here is finding the most efficient path between 

two vertices (source and target), in three aspects- minimal edge wise, maximum knapsack value wise, 

and a combination of maximal efficiency for both properties. An algorithm for finding these optimal 

paths is presented here along with specific explanations on its decision stages, and several examples 

for it. 
. 

 

Key-Words: - Knapsack problem; Shortest paths on weighted graphs; Dijkstra's algorithm; 0-1 knapsack 

problem; All paths between two vertices in a graph;   

 

1 Introduction 

 
Within the scope of theoretical algorithms there are 
two well known problems that are: 

 

a. The knapsack problem dating back far as 

more than a century ago ([1]), which is that 

for a set of items, each with a weight and a 

value, we have to determine the number of 

each item to include in a collection so that 

the total weight is less than or equal to a 

given limit and the total value is as large as 

possible. The name is based on a real-life 

problem in which someone has weight-

limited knapsack, and is supposed to 

maximize the value of given fixed-size 

items that are put in the knapsack. It is a 

problem in combinatorial optimization and 

it arises in resource allocation aspects that 

include financial or other allotted criteria 

restraints. Knapsack-type problems are 

portrayed in decision-making processes, 

such as selecting financial portfolios, and 

cutting of raw materials in the least wasteful 

manner.  

To this problem there are three main 

versions: 

 

1. The most common problem being 

solved is the 0-1 knapsack problem, 

which restricts the number of copies of 

each kind of item to 0 or 1 (hence its 

name), meaning we are able to pick 

only one item from each kind. This is 

the specific problem to which this paper 

addresses. 

 

2. The bounded knapsack problem (BKP) 

in which there is no limit of one copy 

per item, but a limit for the number of 

copies of each kind of item extends to a 

maximum finite amount. 

 

WSEAS TRANSACTIONS on COMPUTERS Nadav Voloch

E-ISSN: 2224-2872 163 Volume 16, 2017



3. The unbounded knapsack 

problem (UKP) places no upper bound 

on the number of copies of each kind of 

item. 

b. The shortest path problem is the problem 

of finding a path between two vertices in 

a graph such that the sum of the weights of 

its constituent edges is minimized as 

summarized in [2]. The shortest path 

problem can be defined for directed or 

undirected graphs, and even for mixed ones. 

In this paper we relate to the undirected 

graphs definition of the problem. Shortest 

path algorithms are used for several 

applications such as finding the shortest 

path between two physical locations (for 

geographic navigation applications), finding 

the shortest path of routing in network 

communication. In civil engineering this 

problem is often used to manifest the roads 

as the graph's edges, and the nodes as 

intersections, the edges' weights can 

represent to the length of the road or the 

time needed to travel it. Other applications 

of the problem are designing facility 

layouts, robotics and VLSI design.  

 

There are several algorithms that handle these 

problems, some more efficient than others.  

For example, to UKP there is 

a greedy approximation algorithm proposed by 

George Dantzig ([3]). His version sorts the items in 

decreasing order of value per unit of weight, vi/ wi, 

where v represents the value of each item i of n 

items (for 1≤  i ≤ n) and w represents its weight . It 

then proceeds to insert them into the sack, starting 

with as many copies as possible of the first kind of 

item until there is no longer space in the sack for 

more. Provided that there is an unlimited supply of 

each kind of item, if m is the maximum value of 

items that fit into the sack, then the greedy 

algorithm is guaranteed to achieve at least a value 

of m/2.  

For the 0-1 knapsack problem there is a pseudo-

polynomial dynamic programming algorithm, 

suggested in different papers such as [4], in which at 

every step, the maximization process is re-assessing 

the current status limit-wise, and optimizing the 

result, by picking the best item for the current stage.   

A solution for the shortest path problem is the well 

known Dijkstra's algorithm, which finds the shortest 

path between nodes in a graph, conceived by Edsger 

W. Dijkstra ([5]). The algorithm was optimized in 

many researches such as [6]. 

There have also been papers about dynamic 

programming solutions for the knapsack problem, 

using shortest path problem, with the creation of a 

knapsack graph such as [7] and [8], and also with 

other applications of it such as [9]. 

These papers gave a solution to the knapsack 

problem using the shortest path problem. A problem 

arises when a knapsack graph, that its edge weights 

are non-dependent in the vertices values, is built. 
This situation can apply for real-life circumstances, 

in which a path has a non-dependent attribute 

(physical distance, travel time, etc.), and there are 

different kinds of items to be picked in different 

locations on this path.   
The decision of finding the most efficient path, 

attributing sets of knapsack-items as vertices, has to 

take additional factors into consideration – the 

knapsack weight limit, and maximizing the value of 

items. While most papers mentioned above consider 

only two aspects of knapsack weight and value, here 

we take into consideration three properties:  item 

weight, item value and edge weight (that connects 

two items, but its weight is not depended on its 

vertices). A graph having the three attributes 

mentioned above was first shown in [10], and in it 

the vertices themselves were knapsack items 

(singular). Here we find the different possibilities of 

paths from a source vertex to a target vertex, having 

the vertices as sets of knapsack items, considering 

the preferred attribute we choose to apply.  

 

2 Problem Formulation- The 

knapsack weight-independent graph 

 
Given a weighted graph G = (V, E), where V 

represents the vertices of the graph, and E its edges, 

we first constrain the edges' weights to be non-

negative ones. The second stage is adding to each 

vertex a set of items with the properties of weight 

(wi) and value (vi) to all of these knapsack items. We 

take into consideration the difference between the 

weight of the items in the vertex, that is marked w, 

as mentioned before, and the weight of the edge, 

that will be marked as w
E
. In addition to these 

properties, we will add to the graph G a limit m, that 

represents the knapsack limit of maximum weight. 

We now have a suitable graph for the integrated 

problem that is defined as finding the most efficient 

path between two vertices that are sets of knapsack 

items, which will be marked G
D
. An example of 

such a G
D
 is shown in Fig.1, were the items in the 

vertices are presented as wi/vi, the source vertex is A, 

and the target vertex is F. 
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Fig. 1. GD – Items in the vertices marked wi/vi , source-A, target- F 

 

2.1 Finding the most efficient path between 

two vertices 
 

Given a graph G
D
 as described above, we wish to 

find a path between two chosen vertices (source 
vertex-vs and target vertex-vt), that with a given 
knapsack weight limit (m), will achieve optimal 
results, by choosing the maximal value of items 
from this path.  

Here we divide the meaning of "optimal" into three 
different cases: 

 

 

a. The main priority is given to the minimal 

edge weight between the two vertices.  
For this specific case, a possible solution is 

a two-step algorithm, in which we find the 

shortest path between two vertices in G
D
, by 

using Dijkstra's algorithm, and then we 

unite the items in the vertices from the 

chosen sub-graph (the path), limiting the 

vertices weights with m- the knapsack limit, 

and then use the pseudo-polynomial 

dynamic programming algorithm for the 0-1 

knapsack, to choose the items from the 

path.  

 

b. The main priority is given to the maximal 

knapsack value of items in the path 

between the two vertices. In this case, we 

have to take into consideration all of the 

paths between the two vertices, to achieve 

an optimal knapsack-value choice of items 

from all of the vertices. 

 

 

c. An equal priority is given to both aspects – 

minimal edge weight, and maximal 

knapsack value of items.  
In this case we also have to consider all 

possible paths between two vertices, and 

calculate the optimal difference between the 

two aspects.  

 

 

3 Problem Solution- The algorithm 

for the integrated problem 

 
For solving the problem described above, on all of 

its three different cases, we use an algorithm that 

first finds all of the possible paths between the two 

vertices, and then gives attributes to each path, that 

will help us choose the optimal path.  

These attributes are: total edge weight of the path, 

and total value of knapsack chosen items, given a 

knapsack limit (m).  

For the first part, of finding all possible paths, we 

can use the Ford-Fulkerson algorithm ([11]), or 

another one that finds all of the paths from a source 

vertex to a target vertex, such as the Edmonds–Karp 

algorithm ([12]) for computing the maximum 

flow in a flow network in O (V E
2
) time, V being the 

number of vertices in the graph/network, and E 

being the number of edges, or the Dinic's algorithm 

([13]), also for a maximum flow network, that 

achieves a better time of O (V
2 
E).  

Since the Dinic's algorithm is the most efficient one, 

we will use it in our algorithm. 

For the second part we unite all of the items of the 

vertices to one set and then use the pseudo-

polynomial Knapsack 0-1 dynamic programming 

algorithm, to choose the items from every path.  

The last step is choosing the priority case (a, b or c, 

as describes in the previous part).  

During this process, it is convenient to manifest all 

of the attributes to the complex object of path. 

 

The algorithm is as follows: 

 

Finding most efficient path in a knapsack-item 

weight-independent graph (Graph G
D
, Vertex 

source, Vertex target, integer max_item_weight, 

char priority): 
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1. Create a list of all paths source to target : 

 

1.1.  Lpath
 = Dinic (G

D
, source,  target ) 

 

2. For each path Li 
path

 where 1 ≤ i ≤ | Li 
path

 | set 

attribute of total edge weight: 

2.1.  tewi = 


||

0

E

j

w
E
 j (Li 

path
) 

3. For each path Li 
path

 create chosen items list: 

 

3.1.  LK
(Li 

path
) = Knapsack 0-1 ( V (Li 

path
), 

max_item_weight ) 

 

4. For each L
K
(Li 

path
), set attributes of total 

knapsack value: 

4.1.  tkvi = 


|_|

0

PathL

j

vj (L
K
(Li 

path
)) 

5. If (priority='a'): 

 

5.1. Find min tewi (L
path

) 

5.2. Return Li 
path

 

 

6. If (priority='b'): 

 

6.1. Find max tkvi (L
path

) 

6.2. Return Li 
path

 

 

7. If (priority='c'): 

7.1. Find max (tkvi- tewi)(L
path

) 

7.2. Return Li 
path

 

For example, given the graph G
D
, shown in Fig.1, 

and its data as presented in Table 1, using A as the 
source vertex and F as the target vertex, and a 
knapsack weight limit of m=42, the first step is 
finding all of the paths between A and F. An item is 
presented as its vertex and an index 1 ≤ i ≤ |Vi|, e.g. 
the items of vertex A are marked A1, A2, A3. An edge 
is marked by its source vertex and its target vertex, 
e.g. A-B. There are 7 possible paths between A and 
F in G

D
, L

path
 is presented in Table 2, with all of the 

properties of the paths, including the chosen 
knapsack items, tkvi, and tewi as described above. 

In every path we choose the vertex- items that 

maximize the knapsack value- these are the chosen 

items of the path that add up to tkvi, while the 

weights of the edges is summed up to tewi. In 

addition there are the three paths chosen by the 

different priorities ('a', b', and 'c' as described 

above). The three chosen paths are seen in Fig.2 (Li 
path

 (G
D
), priority 'a' (minimal edge weight)), Fig.3 

(Li 
path

 (G
D
), priority 'b' (maximal knapsack value)), 

and Fig.4 (Li 
path

 (G
D
), priority 'c' (maximal 

difference between knapsack value and edge 

weight)). Looking at the table and figures, we can 

now see that for priority 'a', the minimal edge 

weight achieved by L3 
path

 is 14, and that for priority 

'b', the maximal knapsack value achieved by L7 
path

 

is 90, and that for priority 'c', the maximal 

difference between the knapsack value and edge 

weight achieved by L6 
path

 is 88-15=73. The bold 

items in the figures are the chosen items. 

 

3.1 Complexity analysis 

 
We will now analyze the different parts of the 
algorithm as described in the previous part, 
considering V being the number of vertices in the 
graph/network, E being the number of edges, m the 
maximal knapsack weight, and n the number of 
knapsack-items.  

The first stage of the algorithm is finding all of the 
paths using the Dinic's algorithm. This stage has an 
O (V

2 
E) running time as explained in the previous 

part. The second stage of the algorithm is finding 
the entire edge weight total of the paths, and its 
approximation is O (E). For the third stage we use 
the pseudo-polynomial Knapsack 0-1 dynamic 
programming algorithm that has an O (nm) 
complexity, and similarly to stage 2, in the fourth 
stage we have to set the entire edge weight total of 
the paths' knapsack-items, so its approximation is of 
O (nE) complexity.  For stages 5-7 (we choose only 
one stage) we have to find the max attribute of the 
paths created in the previous stages, hence achieving 
a complexity of O (E). The summation of these 
stages gives us the complexity of O(V

2
E)+ 2O(E)+ 

O (nm)+ O (nE), meaning O((m+V
2
)E+mn). 

For example, we can take the graph presented in 
Fig.1, that its scheme is presented in Table 1, and 
calculate the estimated running time by the given 
parameters: 

 
V = 6, E = 10, m = 42, and n = 17. 
 
The calculation is as follows: 
 
 (m + V

2
) E + mn = (42 + 6

2
) ∙ 10 + 42 ∙ 17 = 

 
     780 + 714 = 1494. 
 
This means that for the graph shown in Fig.1, that 
its scheme is presented in Table 1, the estimation of 
the number of elementary operations performed by 
the algorithm is 1494, where an elementary 
operation takes a fixed amount of time to perform. 
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Table 1: GD Scheme Example No.1 

G
D
- knapsack-item weight-independent graph 

Vertices-items (Vi) 

V(G
D
)i v 

w 

A1 14 
13 

A2 15 
12 

A3 19 
18 

B1 10 
9 

B2 14 
11 

C1 9 
8 

C2 12 
10 

D1 14 
7 

D2 18 
8 

D3 20 
10 

E1 13 
9 

E2 17 
12 

E3 9 
5 

F1 19 
8 

F2 21 
10 

F3 14 
8 

F4 23 
11 

Edges 

E(G
D
) 

w
E 

A-B 
3 

B-C 
2 

A-C 
7 

A-E 
10 

B-D 
8 

C-E 
4 

D-E 
11 

E-F 
5 

D-F 
6 

A-D 
9 

m 
Source vertex Target vertex 

42 
A F 

 
Table 2: LPATH for GD Scheme Example No.1 

L
path

 ( G
D) For AF, with m=42 

Paths 

No. V(L
path)

 
Chosen items tkvi 

tew

i 

1 AB DF D1, D2, F1 , F3, 

F4 
88 17 

2 
AB DE 

F D2, E3, F1 , F2, 

F4 
90 27 

3 
ABCE

F E3, F1 , F2, F3, 

F4 
86 14 

4 ACE F E3, F1 , F2, F3, 
F4 

86 16 

5 AE F E3, F1 , F2, F3, 

F4 
86 15 

6 AD F D1, D2, F1 , F3, 

F4 
88 15 

7 A DEF D2, E3, F1 , F2, 

F4 
90 25 

Chosen Li 
path

 by priority 

Priority 
Li 

path 

a 
No.3 

b 
No.7 

c 
No.6 

 
 

 

Fig. 2. L3 
path

( G
D

)  , priority 'a' (minimal 

edge weight) 
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Fig. 3. L7 
path

 ( G
D

)  , priority 'b' (maximal 

knapsack value) 

 

 

Fig. 4 L6 
path

( G
D

)  , priority 'c' (maximal 

difference between  knapsack value and edge 

weight) 

 

3.2 Algorithm correctness proof 

3.2.1 Invariant 

For Finding the most efficient paths in G
D
 

algorithm, the invariant is "At iteration i, the Li
path

( 
G

D
)  is the most efficient path, and has the maximal 

attribute value (tkvi- tewi), or tkvi or tewi , decided by 
the priority choice. ". 

3.2.2 Completeness/ Correctness 

3.2.2.1 Initialization 

For i = 1, the invariant is respected: in the first 

iteration, L1
path

( G
D

)  is the most efficient path, and 

has the maximal attribute value (tkv1- tew1), or tkv1 

or tew1, decided by the priority choice, since , 

trivially, it is the only path checked. 

3.2.2.2 Maintenance 
 
For i = n, Given 1 ≤ k ≤ n-1, assuming the Lk

path
( 

G
D

) is the most efficient path, and has the maximal 
attribute value (tkvk- tewk), or tkvk or tewk. decided 
by the priority choice. Without the loss of generality 
we take tewk.  Iteration n inserts a new path- Ln

path
( 

G
D

). Three possible cases for Ln
path

( G
D

) :  
a. tewk< tewn, meaning the new maximal 

attribute path is tewn. 
b. tewk> tewn,  meaning the maximal attribute 

path is preserves as tewk . 
c. tewk= tewn, meaning either a or b is 

acceptable. 
Thus the invariant is preserved. 

3.2.2.3 Termination 
 

At the last iteration, Given 1 ≤ i ≤ size-1 assuming 

the Li
path

( G
D

) is the most efficient path, we insert the 

last path and then take into consideration the three 

different cases above (6.2.2) , thus the Li
path

( G
D

)  or 

the last path is the most efficient path, and has the 

maximal attribute value (tkvi- tewi), or tkvi or tewi , 

decided by the priority choice. Hence the algorithm 

gives us the most efficient path. 

 

3.3 More results and examples for G
D
 

In Tables 3 (vertices) and 4 (edges), we can see a 

another example for G
D
 – its item-vertices by their 

properties of value (v) and weight (w)  and the edges 

by their weight (w
E
), then the source and the target 

vertices are shown, and the knapsack weight limit 

(m). 

Table 5 is ordered in the same manner as Table II 

described above, and displays a different, bigger 

graph G
D
 , with 8 vertices, 13 edges, and 13 

different paths from the source vertex A to the target 

vertex H, and its results after performing the 

algorithm, and choosing the paths by the three 

different priorities. 
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Given the graph G
D
, presented in Tables 3, 4 and 5, 

using A as the source vertex and H as the target 
vertex, and a knapsack weight limit of m=50, the 
first step is finding all of the paths between A and H. 

 An item is presented as its vertex and an index 1 ≤ i 
≤ |Vi|, e.g. the items of vertex A are marked A1, A2, 
A3. An edge is marked by its source vertex and its 
target vertex, e.g. A-B.  

There are 13 possible paths between A and H in G
D
, 

L
path

 is presented in Table 5, with all of the 
properties of the paths, including the chosen 
knapsack items, tkvi, and tewi as described above. 

In every path we choose the vertex- items that 

maximize the knapsack value- these are the chosen 

items of the path that add up to tkvi, while the 

weights of the edges is summed up to tewi.  

In addition there are the three paths chosen by the 

different priorities ('a', b', and 'c' as described 

above).  

The three chosen paths are seen in Table 5, priority 

'a' (minimal edge weight)) is marked in blue, 

priority 'b' (maximal knapsack value) is marked in 

green, and priority 'c' (maximal difference between 

knapsack value and edge weight) is marked in 

red/orange. 

 Looking at the tables, we can now see that for 

priority 'a', the minimal edge weight achieved by L11 
path

 is 31, and that for priority 'b', the maximal 

knapsack value achieved by L9 
path

 is 103, and that 

for priority 'c', the maximal difference between the 

knapsack value and edge weight achieved by L8 
path

 

is 70-32=38. 

All of these results, including the ones presented in 

Table 1 and Figures 1-4, were achieved by an 

automated system, built in Java, for the purpose of 

this research.  

The system gets the numeric inputs of the 

parameters (vertex-items and edges values, 

knapsack limit), and the graph's configuration 

(edges-items-vertices), and outputs the 3 different 

paths and their values, chosen by the 3 different 

priority types. 

 

 

Table 3:GD Scheme Example  No.2-Vertices 

G
D
- knapsack-item weight-independent graph 

Vertices-items (Vi) 

V(GD)i v 
w 

A1 12 
11 

A2 14 
13 

A3 16 
15 

B1 8 
9 

B2 18 
11 

C1 6 
7 

C2 5 
13 

C3 8 
19 

C4 9 
12 

C5 8 
10 

D1 12 
23 

D2 8 
14 

D3 22 
7 

D4 7 
6 

E1 13 
9 

E2 13 
7 

E3 17 
8 

F1 7 
8 

F2 12 
9 

F3 14 
13 

F4 9 
18 

F5 16 
12 

G1 12 
11 

G2 20 
9 

G3 23 
21 

H1 12 
8 

H2 15 
14 

H3 17 
16 

H4 18 
9 
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Table 4:GD Scheme Example  No.2-Edges 

G
D
- knapsack-item weight-independent graph 

Edges 

E(GD) 
wE 

A-B 
15 

B-C 
21 

C-D 
13 

A-C 
9 

B-D 
14 

D-E 
12 

E-F 
23 

F-G 
19 

F-H 
20 

G-H 
18 

B-H 
17 

C-H 
22 

C-F 
25 

m 
Source vertex Target vertex 

50 
A H 

 

4 Conclusion- Scope and optimization 

of the algorithm 

 

In cases of equality between two possible paths, for 

all three possible priority types, we find ourselves in 

a bit of a problem. For example, in Table 2, we can 

easily see that for priority 'b' (maximal knapsack 

value), there are two possible solutions- L2 
path

 and 

L7 
path

, both achieve tkvi of 90. In a case like this, the 

algorithm has a supplement of checking the other 

property- meaning tewi for this case of 'b' priority, 

thus preferring L7 
path

, achieving tewi of 25 over L2 
path

, achieving tewi of 27. For priority 'a', in case of 

equality, the tkvi is checked to prioritize, and for 

priority 'c', any of the properties of tewi and tkvi can 

be checked. 
. 

 

 

 

Table 5: LPATH for GD Scheme Example No.2 

L
path

 ( G
D) For AF, with m=42 

Paths 

No.  V(L
path)

 
Chosen items tkvi 

tew

i 

1 

ABCD

EFG
H 

D3, E1, E2 , E3, 

G2, H4 
103 121 

2 
ABCD

EF H B2, D3, E2 , E3, 

H1, H4 
100 104 

3 ABCH A2, B1 , B2, H1, 

H4 
70 58 

4 
ABC 

FGH B2, F2 , F5, G2, 
H4 

84 98 

5 
ABC F 

H B2, F2 , F5, H1, 

H4 
76 81 

6 
ABDE

FGH D3, E1, E2 , E3, 

G2, H4 
103 101 

7 
ABDE

F H B2, D3, E2 , E3, 

H1, H4 
100 84 

8 A BH A2, B1 , B2, H1, 

H4 
70 32 

9 
ACDE
FGH D3, E1 , E2, E3, 

G2, H4 
103 94 

10 
ACDE

F H D3, E1, E2 , E3, 

F2, H4 
95 77 

11 A CH A1, A3, C1 , H1, 
H4 

64 31 

12 
AC F 

GH A1, F2, F5 , G2, 

H4 
78 71 

13 AC FH A1, F2, F5 , H1, 

H4 
70 54 

Chosen Li 
path

 by priority 

Priority 
Li 

path 

a 
No.11 

b 
No.9 

c 
No.8 
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4.1 Ongoing work 

For G
D
, and the algorithm for finding the most 

efficient path between two vertices, there could be 

much more applications and expansions, like using 

the vertices labels as strings, or other data structures 

(a stack on each vertex, for example).  

An implementation of a simpler version of the 

graph, in which the vertices are IoT (Internet of 

Things) objects, such as routers, other end-points or 

web services is currently being developed. A basic 

configuration example is shown in Fig.5 using A as 

the source vertex, that represents the client, and G as 

the target vertex that represents the host, whilst the 

other vertices represent the routers, and a knapsack 

weight limit of m=17 is given. The edges' weights 

represent the physical distance of the end-points, 

and for the vertices- the property of weight 

represents the data size (di), and the value represents 

the processing time (pi). 

Another possible problem inferred is a one in which 

a weight is added to each edge when an item is 

chosen from its source vertex, which can be handled 

in dynamic programming. A Java system was built 

for manufacturing the results shown in this paper, 

based on the algorithm described in part 4. 

Improving and expanding it as described here is a 

work in progress. 

 

 

 
 

Fig.5 IoT graph-Vertices marked (pi/ di), 

source-A, target- G 
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