

Heuristics for Optimal Placement and Migration of Virtual Machines

SATORU OHTA

Department of Information Systems Engineering,
Toyama Prefectural University,

5180 Kurokawa, Imizu-shi, Toyama 939-0398
JAPAN

ohta@pu-toyama.ac.jp

Abstract: Virtualization is widely used owing to its advantages, such as flexibility, scalability, and cost reduction.
One important advantage is the decrease in power consumption, which is obtained by concentrating virtual
machines (VMs) into a fewer physical machines (PMs). This is done by optimally placing VMs to their hosts.
This placement problem is an intractable combinatorial optimization problem. The optimal placement will also
change if the load on the VMs changes with time. This change necessitates the migrations of VMs among PMs.
The number of executed migrations should be small because migrations offer load on the network. Thus, both
power consumption and number of migrations should be minimized. This research examines algorithms that
solve this optimization problem. The examined algorithms include two metaheuristics: simulated annealing and
tabu search methods. The method previously presented by the author is also tested for comparison. These methods
are evaluated through a computer simulation wherein problems are randomly generated.

Key-Words: virtualization; optimization; metaheuristic; algorithm; cloud computing; tabu search

1 Introduction
Currently, virtualization [1] is widely used as the
basis of cloud computing owing to its multiple
advantages, including high flexibility, scalability,
security, and low cost [2]. Multiple virtual machines
(VMs) are generally hosted on a physical machine
(PM) in a virtualized environment. The
computational resources assigned to each VM are
provided by the host PM and shared among VMs.
The resources of the host PM should not be
excessively consumed to run a VM with good
performance.

Let us assume that multiple VMs are hosted by
multiple PMs and that the load is varied among VMs.
Each VM should be placed to its host PM to obtain a
satisfactory performance and avoid the excessive
consumption of PM resources. The required number
or electric power consumption of PMs then depends
on the placement of VMs among PMs. The problem
of efficiently placing VMs over PMs is a
combinatorial optimization problem, which cannot
be easily resolved. In a special case, the VM
placement optimization becomes a bin-packing
problem [3]. Thus, the problem is NP-hard.

The optimal VM placement will change when the
load on VMs varies. This necessitates the migrations
of VMs among PMs. The live migration technique
[4] enables VMs to be moved among PMs without
stopping services. However, as migrations offer load

on the network, the placement and migration against
load changes must be determined by minimizing not
the power consumption as well as the network load
generated by migrations.

The optimization of the VM placement and
migration was reported in [5-8]. Reference [5] aims
at minimizing the combination of several efficiency
metrics. However, it is unclear whether the objective
function used in [5] is practical. The optimization
reported in [6, 7] minimizes the power consumption;
however, it does not consider the load due to
migrations. Meanwhile, the method proposed in [8]
optimizes the placement considering both the power
consumption and migrations. However, the method
assumes that the computational capability of each
PM is identical. The optimization should be executed
considering the heterogeneity of computational
capability because the specification of usable PMs
may not be uniform in a real world.

This study investigates the optimization of VM
placement and migrations assuming time-varying
load, multiple computational resources affecting
performance, and heterogeneous PM specifications.
The objective function is defined to consider the
power consumption and load offered by migrations.
As for the algorithm, the study examines two
metaheuristics: the simulated annealing and tabu
search methods. The method of [8], which has been
modified for a heterogeneous PM performance, is
also tested. The algorithms are assessed through a

WSEAS TRANSACTIONS on COMPUTERS Satoru Ohta

E-ISSN: 2224-2872 63 Volume 16, 2017

computer simulation. The result shows that two
metaheuristics provides better solutions than the
method of [8].

The paper is organized as follows: Section 2
describes the problem to be tackled in this paper. The
examined algorithms are explored in Section 3.
Section 4 evaluates these algorithms through a
computer simulation. Related work is briefly
reviewed in Section 5. Section 6 concludes the study.

2 Problem Description
Suppose that m VMs, which are denoted by VM1,
VM2,…, VMm, are operated. Each VM is hosted by
one of the n PMs, which are denoted by PM1, PM2,…,
PMn. The computational capability may be varied
among these PMs. Let us assume that one of the PMs
has a standard computational capability. Consider
that the computational capability of PMj is j
(1)j n times larger than that of the PM with a
standard capability.

The performance of the VMs depends on the
consumption of K computational resources indexed
as 1, 2, …, K. Let ui, k(t) (1 ,i m 1)k K denote
the consumption of resource k at time t assuming that
VMi runs on the standard capability of PM. The value
ui, k(t) is expressed in percent. The resource k of PMj
is consumed by ui, k(t) / j % by VMi if VMi is hosted
by PMj. The load on VMi is specified by ui, 1(t),…,
ui, K(t).

Let Uj, k(t) denote the percentile consumption of
resource k on PMj at time t. Clearly, from the above
definition:

,
,

{ | VM is assigned to PM }

()
()

i j

i k
j k

i i j

u t
U t (1)

The resource consumption Uj, k(t) should not be
too large to provide a sufficient amount of resources
to VMs and achieve a good performance. Thus, this
study introduces a constant C, and the VMs are
assigned satisfying the following restriction.

, ()j kU t C (2)

The electric power consumption depends on the
utilization of computational resources [9]. PMj can be
turned off if no VMs are hosted on PMj; thus, the
power turns to 0. Let Pj(t) denote the electric power
consumed by PMj. Pj(t) is defined as follows to
express the abovementioned characteristic:

, ,
,0

1

0, PM is turned off
() ()

, otherwise
100

j

K
j j k j k

j
k

P t P U t
P

 (3)

where Pj, 0 is the portion not affected by the load, and
Pj, 1,…, Pj, K are the coefficients showing how the
consumptions of resources 1,…, K affect the power.

The placement of the VMs is expressed by a 0–1
variable xi, j(t) defined as follows:

,

1, if VM is placed to PM at
()

0, otherwise
i j

i j

t
x t (4)

Assume that the VM load is given at a discrete
time t0, t1, t2, … The problem then is to determine
xi, j(t) at t = t0, t1, t2, … so as to minimize Pj and
migration load as well as satisfy Eq. (2).

The network load offered by migrations is roughly
determined by the memory size assigned to the
moved VM [10]. The network load is proportional to
the number of moved VMs if the memory size is
identical for every VM. Let us introduce the 0–1
variable yi(t) for VMi and time t to estimate this
number. At time ts (s = 1, 2,…), yi(ts) is 1 if VMi
migrates; otherwise, yi(ts) is 0. xi, j(ts) turns to 1 and
differs from xi, j(ts – 1) if VMi migrates to PMj.
Therefore, yi(ts) for s > 0 is expressed as follows:

, , 1() () (), 1i s i j s i j sy t x t x t j n (5)

At t0, yi(t0) is 0 because no previous placement
exists. Let v(t) denote the number of the moved VMs.
v(t) is the sum of yi(t) and is expressed as follows:

1

() ()
m

i
i

v t y t (6)

Let x denote the vector of decision variables,
including xi, j(t), yi(t), v(t), Uj, k(t), and Pj(t). Let us
define the objective function f(t, x) as the weighted
sum of power consumed by the system and the
number of migrations.

1

(,) () ()
n

j
j

f t P t w v tx (7)

where w (0)w is the weight parameter. The
problem is to determine x that minimizes f(ts, x) for a
given ui, k(ts) and xi, j(ts – 1) at time ts (0)s .

3 Algorithms
3.1 Greedy Method for Initial Placement
The two metaheuristics examined in this study
requires an initial solution. We employ a greedy
algorithm to obtain an initial solution. For a given

WSEAS TRANSACTIONS on COMPUTERS Satoru Ohta

E-ISSN: 2224-2872 64 Volume 16, 2017

ui, k(t), the method assigns VMs to their hosts as
follows:

Algorithm greedy-fit
1. Uj, k(t):= 0 for all (j, k);
2. V:= set of all VMs.
3. while V Ø do
4. max:=– ;
5. for each pair of VMi in V and PMj do
6. U*

k:= Uj, k(t) + ui, k(t)/ j for all k;
7. Compute Pj for resource consumption U*

k;
8. Compute efficiency metric ej;

9. if ej > max then
10. max:= ej;
11. VMbest:= VMi;
12. PMbest:= PMj;
 end if
 end for
13. Assign VMbest to PMbest;
14. V:= V – {VMbest};
 end while

The efficiency metric ej is defined for PMj as
follows:

*
1

KK
j kk

j
j

U
e

P
, (8)

where U*
k is the tentative resource utilization

obtained assuming that VMi is assigned to PMj. With
this metric, the priority is higher for the placement
that achieves a low power consumption, higher
resource utilization, and higher performance. Thus, a
good solution is expected.

3.2 Method of Reference [8]
The first examined method is a modified version of
the algorithm described in [8]. The method calculates
the placement at time ts by modifying ts – 1 through
two types of migrations:

 Type 1: migrations for overload avoidance, and

 Type 2: migrations for decreasing electric power
consumption by integrating VMs into as few PMs
as possible.

The solution at t0 is found by the greedy-fit
algorithm. The algorithm chooses the source PM,
destination PM, and VM to be moved by evaluating
the efficiency metric for the migration. The
efficiency metric employed in this study is made
slightly different from that used in [8] to assess the
heterogeneous PM performance. In other words, the
PM and VM selection is performed using the metrics
of Eq. (8).

3.3 Simulated Annealing
Simulating annealing [11] is a powerful
metaheuristic for solving complex optimization
problems. This method repeatedly updates a solution
by searching a neighborhood of the current solution.
In the update process, the neighborhood solution is
accepted as a new solution if the objective function
decreases. The neighborhood solution is accepted
with some probability p even for the increase of the
objective function. Let T denote the parameter that
controls p. Moreover, let xn°w and xbest be the decision
variables of the current solution and the best
discovered solution, respectively. The method is then
written as follows:

Algorithm simulated-annealing
1. xbest:= xn°w:= the output of greedy-fit;
2. T:= T0;
3. for q:= 1 to Q do
4. while the system is not in equilibrium do
5. xnext:= neighborhood of xn°w;
6. if f(t, xnext) < f(t, xbest)
7. then xbest:= xn°w:= xnext
8. else with probability p, xn°w:= xnext;
 end while
9. T:= T;
 end for
10. Output xbest and f(t, xbest);

The method enables the solution to escape from a
local minimum by allowing the degradation of the
tentative solution. The acceptance probability p for
the objective function increase is defined by the
increase rate of the objective function f and
temperature T.

/f Tp e (6)

The increase rate f is defined as follows:
next now

now

(,) (,)
(,)

f t f tf
f t

x x
x

 (7)

Temperature T is first set to a large value T0. The
process is then repeated with a decreasing T. Thus,
the acceptance probability p also decreases as
implied by Eq. (6). A near-optimal solution is
obtained when T becomes sufficiently low.

xnext is generated herein from xn°w by randomly
executing one of the following methods:

 Method 1: A VM is randomly selected. A PM is
then randomly selected from the PMs, which are
not hosting the selected VM in xn°w. Subsequently,
xnext is created by reassigning the VM to the
selected PM.

WSEAS TRANSACTIONS on COMPUTERS Satoru Ohta

E-ISSN: 2224-2872 65 Volume 16, 2017

 Method 2: Two VMs hosted by different PMs are
randomly chosen from xn°w. xnext is then created
by exchanging the PMs for these VMs.

 Method 3: Two VMs hosted by different PMs are
randomly chosen from xn°w. A PM that differs
from the hosts of these VMs is also randomly
selected. xnext is then generated by reassigning the
first VM to the PM that hosts the second VM and
reassigning the second VM to the third PM.

The probabilities of selecting methods 1, 2, and 3
were tuned to 0.7, 0.1, and 0.2, respectively, through
a simulation. The state for each value of T is judged
to be in equilibrium if the neighbor solution is
accepted by X times or unaccepted by Y times. T0 was
set to 0.07 in the computer simulation. Parameters X,
Y, , and Q were set to 100mn, 400mn, 0.998, and
3000, respectively.

3.3 Tabu Search
Tabu search [12] is another powerful metaheuristic
used for optimization problems. This method
repeatedly updates a solution by searching for a
neighborhood of the current solution. The update is
performed according to a rule, which is determined
to effectively search for the solution space. That is,
recently examined variable changes are recorded in
the “tabu” list and avoided. The frequency of a
variable change is also considered, and a less
frequent change has a higher priority. Even for a
change that does not satisfy these rules, the
neighborhood solution is accepted if it improves the
solution. Thus, the algorithm is written as follows:

Algorithm tabu-search
1. xbest:= xn°w:= the output of greedy-fit;
2. for r:= 1 to R do
3. G1:= {x | neighborhood of xn°w and x satisfies the

rule};
4. G2:= {x | neighborhood of xn°w and x does not satisfy

the rule};
5. xn°w:= x that minimizes f(t, x) for x in G1;
6. if f(t, x) < f(t, xbest) and f(t, x) < f(t, xn°w) for some x

in G2 then xn°w:= x;
7. if f(t, xn°w) < f(t, xbest) then xbest:= xn°w;
 end for
8. Output xbest and f(t, xbest);

In this study, steps 4 and 5 are executed by
randomly selecting one of the following methods
with equal probability:

 Method 1: Sets G1 and G2 are constructed by every
pair of VMi and PMj that does not host VMi in xn°w.
x is obtained for each pair by reassigning VMi to

PMj. x is added to G2 if VMi is listed in the tabu
table or the frequency of assigning VMi to PMj
excesses a threshold; otherwise, x is added to G1.

 Method 2: A neighborhood is found by every pair
of two VMs hosted by different PMs in xn°w. x is
obtained for such a pair by changing the hosting
PMs. x is add to G2 if the change from xn°w to x is
included in the tabu list; otherwise, x is added to
G1.

The tabu table and frequency for the accepted
neighbor solution are updated. The tabu table used in
Method 1 lists the VMs recently used in creating the
new solution. Its size is denoted by S1. The table of
Method 2 also lists the VMs affected in the recently
accepted neighbor solution. The size is denoted by S2.
In Method 1, let F1, i, j and R1 denote the frequency of
reassigning VMi to PMj and the frequency of
executing the method, respectively. The frequency
criteria for creating G1 as follows:

1
1, ,i j

RF
mn

 (10)

where is a constant, and is the smallest integer
that is not less than .

Parameters S1, S2, , and R were set to 7, 8, 2.8,
and 6 106, respectively, in the computer simulation.

4 Evaluation
The optimization algorithms were evaluated through
a computer simulation. The algorithms were
executed for randomly generated problems. The
obtained solutions were then compared among the
algorithms.

The simulation model is specified as follows: the
number of VMs, m, was 40, while that of PMs, n, was
20. The number of computational resources was 2.
The constant C was 90. The performance parameter

j and the electrical power coefficients Pj, k for PMj
was set as summarized in Table 1.

Table 1 PMj parameters.
Range of j j Pj, 0 Pj, 1 Pj, 2

1 5j 1.0 80.0 40.0 10.0
6 10j 1.5 120.0 60.0 20.0

11 20j 1.0 120.0 60.0 20.0

The load on the VMs is provided at times t0, t1, …,
t14. The placement is determined when the load is
provided. The load on VMi is specified by ui, k(t). The
base value denoted by ũi, k was randomly selected
from integers in [1, 50] for every pair of i and k with

WSEAS TRANSACTIONS on COMPUTERS Satoru Ohta

E-ISSN: 2224-2872 66 Volume 16, 2017

equal probability to determine ui, k(t). ui, k(t) was then
determined as summarized in Table 2.

Table 2 Resource consumption by VM.
VMs ui, k(t)

VM1, …, VM20
Randomly selected integer
from [1, ũi, k]

VM21,…,
VM40

ũi, k, for t5, t6, …, t9
ũi, k / 2, otherwise

A total of 30 problems were generated by
changing the random seed for ũi, k and ui, k(t). The
algorithms described in Section 3 were programmed
in the C language and executed for the problems. The
programs were executed on a Linux (CentOS 7) PC
that held Core i5 CPU and 16GB RAM.

The optimization was also formulated into a
mixed-integer programming problem for comparison
and solved by an optimization software [13]. The
formulation is similar to the one presented in [8],
except for using parameter j. GAMS/CPLEX [14],
which runs on MS Windows PC, was used as the
optimization software. This approach is referred to as
the MIP.

Fig.1 compares the objective function value
obtained for each method. The x axis is the weight
parameter, w, while the y axis is the objective
function value. The value is the average of the sum
for t0, t1, …, t14 over 30 problems.

Fig.1 Objective function values obtained by the
algorithms.

Fig.1 clearly shows that the simulated annealing
and tabu search methods provide good solutions,
which are very close to those obtained by the mixed
integer programming. These metaheuristics are
superior over the algorithm of [8] in solution
goodness. The tabu search method provides better
solutions for 10,w whereas the simulated
annealing method is superior for 15w . Thus, it is
inconclusive which of these two metaheuristics is

more advantageous. The best method should be
determined considering which of the power and
network load is more important.

Fig.2 shows a plot for the power consumption
against the number of migrations for different w
values. The figure clearly shows that the number of
migrations is larger for the simulated annealing
method to obtain smaller power consumption (i.e., a
smaller value of w). The method yields worse
solutions than the MIP or tabu search methods for
small values of w because of this characteristic. By
contrast, the simulated annealing method yields a
solution that is very close to that of the MIP approach
if w is large. The reason for this behavior of the
simulated annealing method is unclear. A further
study is needed to discuss this problem.

Fig.2 Relation between power consumption and the
number of migrations.

Table 3 compares the computational time. The
time is the average over 15 time periods of 30
problems. The computational time is much larger for
the simulated annealing and tabu search methods
than the method of [8]. However, the time will be
acceptable if the placement interval is longer than
several minutes. The computational time for the one-
time period for the MIP approach becomes larger
than 3 h for some problems. Thus, the assessed
heuristics are more advantageous and practical than
the MIP approach in computational time.

Table 3 Computational time for one time period.

Method of [8] Simulated
annealing Tabu search

0.000311 s 100.60 s 52.82 s

5 Related Work
The optimization of the VM placement and migration
was reported in several studies [3, 5-8, 14]. Reference

12000

13000

14000

15000

16000

17000

18000

0 5 10 15 20 25 30

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Weight Parameter, w

MIP
Method of [8]
Simulated Annealing
Tabu Search

13000

13500

14000

14500

15000

15500

16000

16500

0 100 200 300

Su
m

 o
f P

ow
er

 C
on

su
m

pt
io

n

Number of Migrations

MIP

Method of [8]

Simulated Annealing

Tabu Search
w = 30

w = 1

WSEAS TRANSACTIONS on COMPUTERS Satoru Ohta

E-ISSN: 2224-2872 67 Volume 16, 2017

[3] explored multiple aspects of the problem: demand
characteristics, benefit evaluation of the dynamic
VM placement, demand forecasting, and placement
algorithm. The algorithm of [3] aimed to reduce the
number of PMs as well as satisfy the service level
agreement.

The method of [5] considered three efficiency
metrics associated with temperature, performance,
and electrical power. The method decides the initial
and dynamic VM placement to maximize the utility
that combined these metrics. The considered
computational resources include a CPU, I/O, and
network. However, the validity of their utility
definition is unclear.

Reference [6] presented a VM placement
optimization method assuming heterogeneous power
consumption and computational capability
represented by the MIPS. The objective of
optimization is to minimize power consumption.
Thus, the method does not consider the network load
offered by migration. Moreover, the method only
considers CPU utilization as the resource that affects
the performance.

Reference [7] applied the ant colony heuristic to
the VM placement problem. This method also did not
consider the network load offered by migration.

The author’s previous research [8] aimed at
optimizing both the power consumption and the
migration load. However, the method assumes a
uniform computational ability for PMs. In addition,
the algorithm does not necessarily provide good
solutions compared with the MIP approach.

6 Conclusion
This study investigated algorithms to optimize the
placement and migrations of VMs over PMs. The
algorithms decided on the placement and migration
to minimize the cost, assuming the heterogeneous
power consumption and computational performance
for PMs. The cost was defined by the weighted sum
of power and the number of migrations. The
examined algorithms included the method of [8] and
two metaheuristics: simulated annealing and tabu
search methods. These methods were evaluated
through a computer simulation. The results showed
that the metaheuristics yielded a better solution than
the method of [8].

References:
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T.

Harris, A. Ho, R. Neugebauery, I. Pratt, and A.

Warfield, “Xen and the art of virtualization,” in
Proc. SOSP’03, Bolton Landing, New York,
USA, 2003, pp. 164-177.

[2] J. Sahoo, S. Mohapatra, and R. Lath,
“Virtualization: a survey on concepts, taxonomy
and associated security issues,” in ICCNT 2010,
Bangkok, Thailand, 2010, pp. 222-226.

[3] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic
placement of virtual machines for managing
SLA violations,” in Proc. IM’07, Munich,
Germany, 2007, pp. 119-128.

[4] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E.
Jul, C. Limpach, I. Pratt, and A. Warfield, “Live
migration of virtual machines,” in Proc.
USENIX NSDI’05, Boston, MA, USA, 2005, pp.
273-286.

[5] J. Xu and J. A. B. Fortes, “A multi-objective
approach to virtual machine management in
datacenters,” in Proc. ICAC’11, Karlsruhe,
Germany, 2011, pp. 225-234.

[6] D. G. D. Lago, E. R. M. Madeira, and L. F.
Bittencourt, “Power-aware virtual machine
scheduling on clouds using active cooling
control and DVFS,” in Proc. MGC2011, Lisbon,
Portugal, 2011.

[7] S. R. M. Amarante, F. M. Roberto, and A. R.
Cardos, “Using the multiple knapsack problem
to model the problem of virtual machine
allocation in cloud computing,” in Proc. CIT
2013, Sidney, Australia, 2013, pp. 476-483.

[8] S. Ohta, “Strict and heuristic optimization of
virtual machine placement and migration,” in
Proc. WSEAS CEA’15, Dubai, UAE, 2015, pp.
42-51.

[9] S. Ohta, “Obtaining the knowledge of a server
performance from non-intrusively measurable
metrics,” International Journal of Engineering
and Technology Innovation, 6, 2, Apr. 2016, pp.
135-151.

[10] T. Tanabe and S. Ohta, “Experimental
evaluation of network load caused by live
migration,” in Proc. 2015 Joint Conference of
Hokuriku Chapters of Electrical Societies,
Nonoichi, Japan, 2015, E-31 (in Japanese).

[11] S. Kirkpatrick, C. D. Gellat, and M. P. Vecchi,
“Optimization by simulated annealing,” Science,
220, 4598, May 1983, pp. 671-680.

[12] F. Glover, “Tabu search: a tutorial,” Interfaces,
20, 4, Jul. 1990, pp.74-94.

[13] J. J. More and S. J. Wright, Optimization
Software Guide, Philadelphia: SIAM, 1993.

[14] GAMS, https://www.gams.com, 2017.

WSEAS TRANSACTIONS on COMPUTERS Satoru Ohta

E-ISSN: 2224-2872 68 Volume 16, 2017

