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Abstract: Virtualization is widely used owing to its advantages, such as flexibility, scalability, and cost reduction. 
One important advantage is the decrease in power consumption, which is obtained by concentrating virtual 
machines (VMs) into a fewer physical machines (PMs). This is done by optimally placing VMs to their hosts. 
This placement problem is an intractable combinatorial optimization problem. The optimal placement will also 
change if the load on the VMs changes with time. This change necessitates the migrations of VMs among PMs. 
The number of executed migrations should be small because migrations offer load on the network. Thus, both 
power consumption and number of migrations should be minimized. This research examines algorithms that 
solve this optimization problem. The examined algorithms include two metaheuristics: simulated annealing and 
tabu search methods. The method previously presented by the author is also tested for comparison. These methods 
are evaluated through a computer simulation wherein problems are randomly generated. 
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1 Introduction 
Currently, virtualization [1] is widely used as the 
basis of cloud computing owing to its multiple 
advantages, including high flexibility, scalability, 
security, and low cost [2]. Multiple virtual machines 
(VMs) are generally hosted on a physical machine 
(PM) in a virtualized environment. The 
computational resources assigned to each VM are 
provided by the host PM and shared among VMs. 
The resources of the host PM should not be 
excessively consumed to run a VM with good 
performance. 

Let us assume that multiple VMs are hosted by 
multiple PMs and that the load is varied among VMs. 
Each VM should be placed to its host PM to obtain a 
satisfactory performance and avoid the excessive 
consumption of PM resources. The required number 
or electric power consumption of PMs then depends 
on the placement of VMs among PMs. The problem 
of efficiently placing VMs over PMs is a 
combinatorial optimization problem, which cannot 
be easily resolved. In a special case, the VM 
placement optimization becomes a bin-packing 
problem [3]. Thus, the problem is NP-hard. 

The optimal VM placement will change when the 
load on VMs varies. This necessitates the migrations 
of VMs among PMs. The live migration technique 
[4] enables VMs to be moved among PMs without 
stopping services. However, as migrations offer load 

on the network, the placement and migration against 
load changes must be determined by minimizing not 
the power consumption as well as the network load 
generated by migrations. 

The optimization of the VM placement and 
migration was reported in [5-8]. Reference [5] aims 
at minimizing the combination of several efficiency 
metrics. However, it is unclear whether the objective 
function used in [5] is practical. The optimization 
reported in [6, 7] minimizes the power consumption; 
however, it does not consider the load due to 
migrations. Meanwhile, the method proposed in [8] 
optimizes the placement considering both the power 
consumption and migrations. However, the method 
assumes that the computational capability of each 
PM is identical. The optimization should be executed 
considering the heterogeneity of computational 
capability because the specification of usable PMs 
may not be uniform in a real world. 

This study investigates the optimization of VM 
placement and migrations assuming time-varying 
load, multiple computational resources affecting 
performance, and heterogeneous PM specifications. 
The objective function is defined to consider the 
power consumption and load offered by migrations. 
As for the algorithm, the study examines two 
metaheuristics: the simulated annealing and tabu 
search methods. The method of [8], which has been 
modified for a heterogeneous PM performance, is 
also tested. The algorithms are assessed through a 
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computer simulation. The result shows that two 
metaheuristics provides better solutions than the 
method of [8]. 

The paper is organized as follows: Section 2 
describes the problem to be tackled in this paper. The 
examined algorithms are explored in Section 3. 
Section 4 evaluates these algorithms through a 
computer simulation. Related work is briefly 
reviewed in Section 5. Section 6 concludes the study. 

 
 

2 Problem Description 
Suppose that m VMs, which are denoted by VM1, 
VM2,…, VMm, are operated. Each VM is hosted by 
one of the n PMs, which are denoted by PM1, PM2,…, 
PMn. The computational capability may be varied 
among these PMs. Let us assume that one of the PMs 
has a standard computational capability. Consider 
that the computational capability of PMj is j 
(1 )j n  times larger than that of the PM with a 
standard capability. 

The performance of the VMs depends on the 
consumption of K computational resources indexed 
as 1, 2, …, K. Let ui, k(t) (1 ,i m 1 )k K  denote 
the consumption of resource k at time t assuming that 
VMi runs on the standard capability of PM. The value 
ui, k(t) is expressed in percent. The resource k of PMj 
is consumed by ui, k(t) / j % by VMi if VMi is hosted 
by PMj. The load on VMi is specified by ui, 1(t),…, 
ui, K(t). 

Let Uj, k(t) denote the percentile consumption of 
resource k on PMj at time t. Clearly, from the above 
definition: 

,
,

{  | VM is assigned to PM }

( )
( )

i j

i k
j k

i i j

u t
U t  (1) 

The resource consumption Uj, k(t) should not be 
too large to provide a sufficient amount of resources 
to VMs and achieve a good performance. Thus, this 
study introduces a constant C, and the VMs are 
assigned satisfying the following restriction. 

, ( )j kU t C  (2) 

The electric power consumption depends on the 
utilization of computational resources [9]. PMj can be 
turned off if no VMs are hosted on PMj; thus, the 
power turns to 0. Let Pj(t) denote the electric power 
consumed by PMj. Pj(t) is defined as follows to 
express the abovementioned characteristic: 
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where Pj, 0 is the portion not affected by the load, and 
Pj, 1,…, Pj, K are the coefficients showing how the 
consumptions of resources 1,…, K affect the power. 

The placement of the VMs is expressed by a 0–1 
variable xi, j(t) defined as follows: 

,

1,  if VM  is placed to PM  at 
( )

0, otherwise
i j

i j

t
x t  (4) 

Assume that the VM load is given at a discrete 
time t0, t1, t2, … The problem then is to determine 
xi, j(t) at t = t0, t1, t2, … so as to minimize Pj and 
migration load as well as satisfy Eq. (2). 

The network load offered by migrations is roughly 
determined by the memory size assigned to the 
moved VM [10]. The network load is proportional to 
the number of moved VMs if the memory size is 
identical for every VM. Let us introduce the 0–1 
variable yi(t) for VMi and time t to estimate this 
number. At time ts (s = 1, 2,…), yi(ts) is 1 if VMi 
migrates; otherwise, yi(ts) is 0. xi, j(ts) turns to 1 and 
differs from xi, j(ts – 1) if VMi migrates to PMj. 
Therefore, yi(ts) for s > 0 is expressed as follows: 

, , 1( ) ( ) ( ),  1i s i j s i j sy t x t x t j n   (5) 

At t0, yi(t0) is 0 because no previous placement 
exists. Let v(t) denote the number of the moved VMs. 
v(t) is the sum of yi(t) and is expressed as follows: 

1

( ) ( )
m

i
i

v t y t  (6) 

Let x denote the vector of decision variables, 
including xi, j(t), yi(t), v(t), Uj, k(t), and Pj(t). Let us 
define the objective function f(t, x) as the weighted 
sum of power consumed by the system and the 
number of migrations. 

1

( , ) ( ) ( )
n

j
j

f t P t w v tx  (7) 

where w ( 0)w  is the weight parameter. The 
problem is to determine x that minimizes f(ts, x) for a 
given ui, k(ts) and xi, j(ts – 1) at time ts ( 0)s . 
 
3 Algorithms 
3.1 Greedy Method for Initial Placement 
The two metaheuristics examined in this study 
requires an initial solution. We employ a greedy 
algorithm to obtain an initial solution. For a given 
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ui, k(t), the method assigns VMs to their hosts as 
follows: 

Algorithm greedy-fit 
1. Uj, k(t):= 0 for all (j, k); 
2. V:= set of all VMs. 
3. while V  Ø do 
4.  max:=– ; 
5.  for each pair of VMi in V and PMj do 
6.   U*

k:= Uj, k(t) + ui, k(t)/ j for all k; 
7.   Compute Pj for resource consumption U*

k;  
8.   Compute efficiency metric ej; 

9.   if ej > max then  
10.     max:= ej; 
11.     VMbest:= VMi; 
12.     PMbest:= PMj; 
   end if 
  end for 
13.  Assign VMbest to PMbest; 
14.  V:= V – {VMbest}; 
 end while 

The efficiency metric ej is defined for PMj as 
follows: 

*
1

KK
j kk

j
j

U
e

P
, (8) 

where U*
k is the tentative resource utilization 

obtained assuming that VMi is assigned to PMj. With 
this metric, the priority is higher for the placement 
that achieves a low power consumption, higher 
resource utilization, and higher performance. Thus, a 
good solution is expected. 
 
 
3.2 Method of Reference [8] 
The first examined method is a modified version of 
the algorithm described in [8]. The method calculates 
the placement at time ts by modifying ts – 1 through 
two types of migrations: 

 Type 1: migrations for overload avoidance, and 

 Type 2: migrations for decreasing electric power 
consumption by integrating VMs into as few PMs 
as possible. 

The solution at t0 is found by the greedy-fit 
algorithm. The algorithm chooses the source PM, 
destination PM, and VM to be moved by evaluating 
the efficiency metric for the migration. The 
efficiency metric employed in this study is made 
slightly different from that used in [8] to assess the 
heterogeneous PM performance. In other words, the 
PM and VM selection is performed using the metrics 
of Eq. (8). 
 

3.3 Simulated Annealing 
Simulating annealing [11] is a powerful 
metaheuristic for solving complex optimization 
problems. This method repeatedly updates a solution 
by searching a neighborhood of the current solution. 
In the update process, the neighborhood solution is 
accepted as a new solution if the objective function 
decreases. The neighborhood solution is accepted 
with some probability p even for the increase of the 
objective function. Let T denote the parameter that 
controls p. Moreover, let xn°w and xbest be the decision 
variables of the current solution and the best 
discovered solution, respectively. The method is then 
written as follows: 

Algorithm simulated-annealing 
1. xbest:= xn°w:= the output of greedy-fit; 
2. T:= T0; 
3. for q:= 1 to Q do 
4.  while the system is not in equilibrium do 
5.   xnext:= neighborhood of xn°w; 
6.   if f(t, xnext) < f(t, xbest)  
7.    then xbest:= xn°w:= xnext 
8.    else with probability p, xn°w:= xnext; 
  end while 
9.  T:= T; 
 end for 
10. Output xbest and f(t, xbest); 

The method enables the solution to escape from a 
local minimum by allowing the degradation of the 
tentative solution. The acceptance probability p for 
the objective function increase is defined by the 
increase rate of the objective function f and 
temperature T. 

/f Tp e  (6) 

The increase rate f is defined as follows: 
next now

now

( , ) ( , )
( , )

f t f tf
f t

x x
x

 (7) 

Temperature T is first set to a large value T0. The 
process is then repeated with a decreasing T. Thus, 
the acceptance probability p also decreases as 
implied by Eq. (6). A near-optimal solution is 
obtained when T becomes sufficiently low. 

xnext is generated herein from xn°w by randomly 
executing one of the following methods: 

 Method 1: A VM is randomly selected. A PM is 
then randomly selected from the PMs, which are 
not hosting the selected VM in xn°w. Subsequently, 
xnext is created by reassigning the VM to the 
selected PM. 
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 Method 2: Two VMs hosted by different PMs are 
randomly chosen from xn°w. xnext is then created 
by exchanging the PMs for these VMs. 

 Method 3: Two VMs hosted by different PMs are 
randomly chosen from xn°w. A PM that differs 
from the hosts of these VMs is also randomly 
selected. xnext is then generated by reassigning the 
first VM to the PM that hosts the second VM and 
reassigning the second VM to the third PM. 

The probabilities of selecting methods 1, 2, and 3 
were tuned to 0.7, 0.1, and 0.2, respectively, through 
a simulation. The state for each value of T is judged 
to be in equilibrium if the neighbor solution is 
accepted by X times or unaccepted by Y times. T0 was 
set to 0.07 in the computer simulation. Parameters X, 
Y, , and Q were set to 100mn, 400mn, 0.998, and 
3000, respectively. 

 
 

3.3 Tabu Search 
Tabu search [12] is another powerful metaheuristic 
used for optimization problems. This method 
repeatedly updates a solution by searching for a 
neighborhood of the current solution. The update is 
performed according to a rule, which is determined 
to effectively search for the solution space. That is, 
recently examined variable changes are recorded in 
the “tabu” list and avoided. The frequency of a 
variable change is also considered, and a less 
frequent change has a higher priority. Even for a 
change that does not satisfy these rules, the 
neighborhood solution is accepted if it improves the 
solution. Thus, the algorithm is written as follows: 

Algorithm tabu-search 
1. xbest:= xn°w:= the output of greedy-fit; 
2. for r:= 1 to R do 
3.  G1:= {x | neighborhood of xn°w and x satisfies the 

rule}; 
4.  G2:= {x | neighborhood of xn°w and x does not satisfy 

the rule}; 
5.  xn°w:= x that minimizes f(t, x) for x in G1; 
6.  if f(t, x) < f(t, xbest) and f(t, x) < f(t, xn°w) for some x 

in G2 then xn°w:= x; 
7.  if f(t, xn°w) < f(t, xbest) then xbest:= xn°w; 
 end for 
8. Output xbest and f(t, xbest); 

In this study, steps 4 and 5 are executed by 
randomly selecting one of the following methods 
with equal probability: 

 Method 1: Sets G1 and G2 are constructed by every 
pair of VMi and PMj that does not host VMi in xn°w. 
x is obtained for each pair by reassigning VMi to 

PMj. x is added to G2 if VMi is listed in the tabu 
table or the frequency of assigning VMi to PMj 
excesses a threshold; otherwise, x is added to G1. 

 Method 2: A neighborhood is found by every pair 
of two VMs hosted by different PMs in xn°w. x is 
obtained for such a pair by changing the hosting 
PMs. x is add to G2 if the change from xn°w to x is 
included in the tabu list; otherwise, x is added to 
G1. 

The tabu table and frequency for the accepted 
neighbor solution are updated. The tabu table used in 
Method 1 lists the VMs recently used in creating the 
new solution. Its size is denoted by S1. The table of 
Method 2 also lists the VMs affected in the recently 
accepted neighbor solution. The size is denoted by S2. 
In Method 1, let F1, i, j and R1 denote the frequency of 
reassigning VMi to PMj and the frequency of 
executing the method, respectively. The frequency 
criteria for creating G1 as follows: 

1
1, ,i j

RF
mn

 (10) 

where  is a constant, and is the smallest integer 
that is not less than . 

Parameters S1, S2, , and R were set to 7, 8, 2.8, 
and 6 106, respectively, in the computer simulation. 
 
 
4 Evaluation 
The optimization algorithms were evaluated through 
a computer simulation. The algorithms were 
executed for randomly generated problems. The 
obtained solutions were then compared among the 
algorithms. 

The simulation model is specified as follows: the 
number of VMs, m, was 40, while that of PMs, n, was 
20. The number of computational resources was 2. 
The constant C was 90. The performance parameter 

j and the electrical power coefficients Pj, k for PMj 
was set as summarized in Table 1. 

Table 1 PMj parameters. 
Range of j j Pj, 0 Pj, 1 Pj, 2 

1 5j  1.0 80.0 40.0 10.0 
6 10j  1.5 120.0 60.0 20.0 

11 20j  1.0 120.0 60.0 20.0 

The load on the VMs is provided at times t0, t1, …, 
t14. The placement is determined when the load is 
provided. The load on VMi is specified by ui, k(t). The 
base value denoted by ũi, k was randomly selected 
from integers in [1, 50] for every pair of i and k with 
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equal probability to determine ui, k(t). ui, k(t) was then 
determined as summarized in Table 2. 

Table 2 Resource consumption by VM. 
VMs ui, k(t) 

VM1, …, VM20 
Randomly selected integer 
from [1, ũi, k] 

VM21,…, 
VM40 

ũi, k, for t5, t6, …, t9 
ũi, k / 2, otherwise 

A total of 30 problems were generated by 
changing the random seed for ũi, k and ui, k(t). The 
algorithms described in Section 3 were programmed 
in the C language and executed for the problems. The 
programs were executed on a Linux (CentOS 7) PC 
that held Core i5 CPU and 16GB RAM. 

The optimization was also formulated into a 
mixed-integer programming problem for comparison 
and solved by an optimization software [13]. The 
formulation is similar to the one presented in [8], 
except for using parameter j. GAMS/CPLEX [14], 
which runs on MS Windows PC, was used as the 
optimization software. This approach is referred to as 
the MIP. 

Fig.1 compares the objective function value 
obtained for each method. The x axis is the weight 
parameter, w, while the y axis is the objective 
function value. The value is the average of the sum 
for t0, t1, …, t14 over 30 problems. 

 
Fig.1 Objective function values obtained by the 
algorithms. 

Fig.1 clearly shows that the simulated annealing 
and tabu search methods provide good solutions, 
which are very close to those obtained by the mixed 
integer programming. These metaheuristics are 
superior over the algorithm of [8] in solution 
goodness. The tabu search method provides better 
solutions for 10,w  whereas the simulated 
annealing method is superior for 15w . Thus, it is 
inconclusive which of these two metaheuristics is 

more advantageous. The best method should be 
determined considering which of the power and 
network load is more important. 

Fig.2 shows a plot for the power consumption 
against the number of migrations for different w 
values. The figure clearly shows that the number of 
migrations is larger for the simulated annealing 
method to obtain smaller power consumption (i.e., a 
smaller value of w). The method yields worse 
solutions than the MIP or tabu search methods for 
small values of w because of this characteristic. By 
contrast, the simulated annealing method yields a 
solution that is very close to that of the MIP approach 
if w is large. The reason for this behavior of the 
simulated annealing method is unclear. A further 
study is needed to discuss this problem. 

 
Fig.2 Relation between power consumption and the 
number of migrations. 

Table 3 compares the computational time. The 
time is the average over 15 time periods of 30 
problems. The computational time is much larger for 
the simulated annealing and tabu search methods 
than the method of [8]. However, the time will be 
acceptable if the placement interval is longer than 
several minutes. The computational time for the one-
time period for the MIP approach becomes larger 
than 3 h for some problems. Thus, the assessed 
heuristics are more advantageous and practical than 
the MIP approach in computational time. 

Table 3 Computational time for one time period. 

Method of [8] Simulated 
annealing Tabu search 

0.000311 s 100.60 s 52.82 s 
 
 
5 Related Work 
The optimization of the VM placement and migration 
was reported in several studies [3, 5-8, 14]. Reference 
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[3] explored multiple aspects of the problem: demand 
characteristics, benefit evaluation of the dynamic 
VM placement, demand forecasting, and placement 
algorithm. The algorithm of [3] aimed to reduce the 
number of PMs as well as satisfy the service level 
agreement. 

The method of [5] considered three efficiency 
metrics associated with temperature, performance, 
and electrical power. The method decides the initial 
and dynamic VM placement to maximize the utility 
that combined these metrics. The considered 
computational resources include a CPU, I/O, and 
network. However, the validity of their utility 
definition is unclear. 

Reference [6] presented a VM placement 
optimization method assuming heterogeneous power 
consumption and computational capability 
represented by the MIPS. The objective of 
optimization is to minimize power consumption. 
Thus, the method does not consider the network load 
offered by migration. Moreover, the method only 
considers CPU utilization as the resource that affects 
the performance. 

Reference [7] applied the ant colony heuristic to 
the VM placement problem. This method also did not 
consider the network load offered by migration. 

The author’s previous research [8] aimed at 
optimizing both the power consumption and the 
migration load. However, the method assumes a 
uniform computational ability for PMs. In addition, 
the algorithm does not necessarily provide good 
solutions compared with the MIP approach. 
 
 
6 Conclusion 
This study investigated algorithms to optimize the 
placement and migrations of VMs over PMs. The 
algorithms decided on the placement and migration 
to minimize the cost, assuming the heterogeneous 
power consumption and computational performance 
for PMs. The cost was defined by the weighted sum 
of power and the number of migrations. The 
examined algorithms included the method of [8] and 
two metaheuristics: simulated annealing and tabu 
search methods. These methods were evaluated 
through a computer simulation. The results showed 
that the metaheuristics yielded a better solution than 
the method of [8].  
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