

Behavioral and Structural Model Composition Techniques: State of Art
and Research Directions

NISRINE EL MARZOUKI1, 2, YOUNES LAKHRISSI 2, OKSANA NIKIFOROVA3, MOHAMMED
EL MOHAJIR1, KONSTANTINS GUSAROVS3

1 LIMS Laboratory, Faculty of Sciences Dhar el Mehraz, Sidi Mohammed Ben Abdellah University

Fez, MAROCCO
2 ERSI Laboratory, ENSA of Fez, Sidi Mohammed Ben Abdellah University

Fez, MAROCCO
3 Faculty of Computer Science and Information Technology, Riga Technical University

Riga, LATVIA

elmarzoukinisrine@gmail.com, younes.lakhrissi@usmba.ac.ma, m.elmohajir@ieee.ma,
Oksana.Nikiforova@rtu.lv, konstantins.gusarovs@rtu.lv

Abstract: - MDA [1] allows developers to build models without knowledge of other models in the system and
then combine those models to create a system community in order to handle the complexity of a model-driven
design process. In this context, we assert that developers need support for composing and manipulating their
models to expose how elements of functionality relate to one other. To address this need, we present in this
paper the state of art of model composition techniques based on earlier works by focusing on t he various
parameters that governed and characterize their behavior, then we describe the results of this survey on the
future use of composing UML class diagrams based on the two-Hemisphere Model driven approach [2,3]. The
motivation for this study derives from the desirability of discovering more and new effective ways in reusing or
adapting the existing methods to create a novel composer framework involving in the MDA concept and
answering the key criteria of model composition.

Key-Words: - Model Driven Architecture, Model Composition, Multi-modeling, Two-Hemisphere
Model Driven Approach, Behavioral Composition, Structural Composition

1 Introduction
In many disciplines, when a problem becomes more
complex, there is a natural tendency to try to break
it down into smaller, distinct but connected pieces.
The concept of breaking down a system into smaller
components is generally referred to decomposition.
Indeed, the activity of decomposing problems needs
a step of composition at a specific time to get a
global representation of a system under construction
and to reason about the system as a w hole for
verification, validation and consistency checking
purposes. That’s why model composition is a
challenging topic of interest in which the definition
of new approaches should benefit from existing
composition model techniques.
This paper, therefore, aims at classifying,
identifying publication fora, and performing
thematic analysis of the current literature in the
model composition for creating an extensive and

detailed understanding about this area, thereby
determining gaps by graphing and pinpointing in
which research areas and for which study types a
shortage of publications still exits. We have
conducted this study to first scrutinize the model
composition contributions produced over time, and
then use this study to create a n ew composer
framework for composing the UML class diagrams
available from the two-hemisphere model driven
approach, which is presented in the form of business
process model and the concept model.
The outline of the paper is the following. Section 2
provides the background of our research in the form
of some common concepts and definitions related to
model composition activities and MDA approach.
The different types of multi-modeling approaches
are given in Section 3. Section 4 exposes the design
approaches and the mechanism of composition
implemented in those approaches. Section 5 gives a

WSEAS TRANSACTIONS on COMPUTERS
Nisrine El Marzouki, Younes Lakhrissi, Oksana Nikiforova,

Mohammed El Mohajir, Konstantins Gusarovs

E-ISSN: 2224-2872 39 Volume 16, 2017

mailto:m.elmohajir@ieee.ma
mailto:Oksana.Nikiforova@rtu.lv
mailto:konstantins.gusarovs@rtu.lv

global overview of existing model composition, and
discussing their main behavior and structure.
Section 6 draws some conclusions and points out the
two-hemisphere model driven approach as a
direction for future work.
2 Background

2.1 Introduction
There is little compromise in model composition
and MDA jargon, and even less on t he basic
specifications of a model composition solution. To
address this need, the authors present in this section
a common set of concepts and definitions for model
composition in order to use this characteristics to
identify the assessment criteria of existing model
composition techniques.

2.2 Complexity
The increasing complexity of systems has led in
recent years to numerous proposals of expressive
structuring mechanisms such as m odules,
viewpoints, components, software architecture, or
models. The corresponding entities are designed
separately, which increases their reusability while
making their integration more complicated.
Indeed, a real software system is too much complex
to be described in a single model. Multiple models
should be created for the system specification.
Increased system complexity typically brings with it
the following problems:
• Longer development times;
• More complex assembly due to number of

components and number of people involved;
• Increased cost and time for testing;
• Increased maintenance costs.
Overall, this results in an increased time to market
for any system, and increased development and
maintenance costs in order for there to be any
confidence that the quality of the system is not
compromised.
For software systems, as well as the problems
outlined above which relate to the fundamental
increase in lines of code, there is an additional
qualitative difference to the systems being
developed today compared to those of decades past.
Modern systems are increasingly distributed in
nature, as demonstrated by the ubiquity of enterprise
applications.
This adds another dimension to software
complexity, and brings added challenges of
communication and security to those listed above.
Since the challenge of managing complexity is the
main topic

2.3 Diversity
The challenge of diversity reflects how developers
have to manage in a non-homogenous environment.
Life would be much easier if there would be only
one programming language and one deployment
platform, but of course this is not the case, and for
very good reasons.
Therefore, this complexity has an obvious
consequence on the developed systems, which
hampers their development and reuse. This problem
is characterized by symptoms known under the
names of scattering and tangling (identified for the
first time by [4] and used as justification for the
programming approach aspects).
• Scattering: in this case a concern (functional or

transversal) is distributed throughout the
system, and not placed in a cl early identified
unit. For example, if a feature is distributed over
several components, the cost of an update of this
feature can be considerable.

• Tangling: in this case a unit contains several
elements from different concerns. We have in
the same component an inter-connection
between multiple features, and therefore the
management cost of the various interactions
between these features can be important. [4]

To address this need, several approaches adopting
the principle of separation of concerns have been
proposed. They allow a decomposition of modeling,
especially in the design phase where several models
can be developed separately to represent a particular
perspective of the system. [5, 6].

2.4 Decomposition
The idea of decomposition can be considered as an
effective strategy for changing the representation of
a classification problem. Indeed, [5] considers
decomposition as the most useful form of
transformation of data sets. [2, 3]
The decomposition approach is frequently used in
economics, finance and engineering. For instance,
decomposition of systems is considered to be a
practical way to improve forecasting. The usual
decomposition into trend, cycle, seasonal and
irregular components was motivated mainly by
MDA, who wanted to improve computational
efficiency and robustness of systems.
Although decomposition is a promising technique
and presents an obviously natural direction to
follow, since there are any works in MDA literature
that consider the subject directly. Instead, there are
abundant practical attempts to apply decomposition
methodology to specific, real life applications.
Decomposition approaches are not the object of the
current paper but it is one of our future

WSEAS TRANSACTIONS on COMPUTERS
Nisrine El Marzouki, Younes Lakhrissi, Oksana Nikiforova,

Mohammed El Mohajir, Konstantins Gusarovs

E-ISSN: 2224-2872 40 Volume 16, 2017

investigation. Decomposition alone is never enough:
it is always necessary to recombine the decomposed
parts. At first sight it may seem that subproblem
requirements can be combined by logical
conjunction, and subproblem machines by
concurrent execution: subproblem domain
projections need no composition because they are
projections of an already composed physical reality,
and software implementation demands no more than
a mechanism for appropriate distribution of shared
events. However, this optimistic view is far too
simple. Wherever two subproblems have problem
domain phenomena in common there is a potential
interaction that must be appropriately handled in the
composition. The composition task, then, may
demand introduction of an appropriate
communication mechanism, or the choice and
enforcement of requirement precedence to resolve
conflict, or even the recognition and analysis of the
composition itself as an additional subproblem.

2.4 Behavior
In RM-ODP [7] specification, the behavior is
defined as a collection of actions with a set of
constraints that may occur.

2.5 Behavioral composition
In RM-ODP specification, the behavioral
composition is defined as an operation that creates a
new behavior from a combination of two or more
behaviours. The characteristics of this new behavior
depend on:
• The features of each combined behavior
• The way in which these behaviors are combined

3 Multi-Model Approaches

Separation of concerns paradigm is an essential key
to ensure the smooth running of a composition
process, it can be done in different manners, but
with the same goal— be able to identify relatively
independent “parts”, so that they can be distributed
among different actors of the process, be designed
independently, and at the end, be integrated in a way
which allows future maintenance and evolution.
However, in this section, we present the four major
multi-modeling approaches: Views modeling,
Aspects Modeling, Subject Modeling and Role
modeling.

3.1 Views Modeling
The concept of views has been studied in several
areas related to databases, knowledge
representation, modeling, programming languages

and software engineering. In the field of databases,
the views are operated by the query language as a
selection function on the data [8, 9]. In knowledge
representation, the views are used to represent the
taxonomic classificatory reasoning and knowledge
representation. In the views approaches [14, 15, 16],
the level of decomposition is different from that
adopted by the aspects approach. The
decomposition is done according to the actors
views. The views are developed independently of
each other and without making any distinction
between the basic functionality and cross-
functionality.

3.2 Aspects Modeling
The Aspect-Oriented Modeling (AOM) is an
approach of multi modeling based on the separation
between functional concerns and preoccupations
called "cross" in the software development. The idea
of modeling aspects results from the AOP (Aspect
Oriented Approach) and proposes to consider
aspects in models [14].
The aspects approach decomposes the system into
functional units and non-functional units and also
separates the core functionality (or trades) of an
application from the business requirements.

3.3 Subject Modeling
Subject Modeling or SOP (Subject Oriented
Programming) is another separation of concern
technique introduced by [10, 11]. This approach is
based on a multidimensional separation of concerns,
to cover different types of concerns (business,
technology, business rules, etc.). It identifies a set of
specifications and behaviors that reflect the
perception of the real world corresponding to a
generic vision of an actor. The subject approach [8]
extended by MDSoC approach (Multidimensional
Separation of Concerns) offers a decomposition of
the system into more arbitrary dimensions, where
each dimension is a collection of particular
concerns.

3.4 Role modeling
The concept of role modeling comes from the need
that extrinsic properties of an object can change
over time [9]. Indeed, an object can be a subject of
multiple classifications during its life cycle.
Therefore, [8] Defines a role as a temporary
viewpoint.
The decomposition in role approach aims to
represent an entity of the model through multiple
objects. Each object models a particular role. Unlike
modeling by views, roles are objects resulting from
local entities without being linked to actors.

WSEAS TRANSACTIONS on COMPUTERS
Nisrine El Marzouki, Younes Lakhrissi, Oksana Nikiforova,

Mohammed El Mohajir, Konstantins Gusarovs

E-ISSN: 2224-2872 41 Volume 16, 2017

4 Design approaches
In this part we present a n on-exhaustive set of
approaches for designing infrastructure. These
infrastructures allow applications to benefit from a
set of technical services. The ability to design
adaptable infrastructure is based on techniques that
make the infrastructure modular and compostable.
These techniques are based on the separation of
concern principle.
For this purpose we will go through six design
approaches that have an impacts in Software
Engineering in order to clarify some of their criteria.
These criteria only concern the composition, they
allow us to ignore the other less relevant details of
the approach. The proposed criteria are the
following:
• Concept: The composition is always inherent

from the previous phase of decomposition. In
this phase a system is divided into entities,
called bean, component or bundle.

• Coupling: This property measures the degree of
coupling between two units. Often we talk about
strong coupling and weak coupling. In the
strong coupling, it is difficult to understand the
isolation units; any change may force a unit to
change all the associated units; reuse of these
units is difficult. However, the weak coupling
overcomes all these drawbacks.

• Communication: This concept relates generally
to the sending and receiving of data, events, or
messages.

• Customizing modules: This criterion
characterizes the ability of the approach to allow
the variation of an existing module.

• Mechanism of composition: This criterion refers
to the composition mechanism used in order to
obtain the final composite model

• Type of composition: This criterion allows to
determine the type of composition used by the
approach. Referring to the previous sections, we
identify two types of composition—structural
and behavioral.

4.1 The modular approach
This approach is based on the module concept that
is defined as a task manager (responsibility
assignment) [12]. The construction of a system is to
set all modules that perform different tasks. A
module is characterized by the following features:
• A module is associated with a set of interfaces:

interfaces expose the components (resources)
provided and required by the module. These
resources could be global variables or

procedures with parameters and without the
implementation.

• A module has an implementation portion which
is a set of sub programs and data structures that
are accessible through the interfaces.

• A module can be compiled separately: this
allows work in parallel and allows easy
replacement of a module with another in a
system. Generally, a module communicates with
another through the procedure calls and access
to global variables declared in the interfaces of
the other. The idea of the modular approach is
the assembly of modules through their
interfaces. This work resulted in the
interconnection modules languages (MILs).

4.2 Architectural Description Approach
The Architectural Description approach is the
successor of the modular approach. It focuses on the
modeling of the architecture of software in terms of
abstract system specification consisting primarily of
functional components Described in terms of Their
Behaviors and component-component interfaces and
interconnections [12, 13].
In the approach of Architectural description,
architectures are expressed by the architecture
description languages (ADL 10) [13]. ADL provides
a formal notation for specifying architectural bricks.
An architectural brick is a conceptual software unit,
which shows parts of a system regardless of their
implementation.
The system is constructed by assembling these
bricks. This will then enable the design of
applications by detaching the details specific to the
environment techniques.
The components are connected either by the
connector or by the direct connection interface.
In the first case, the component provides and / or
requires one or more ports. The connector connects
the ports of components.

4.3 The software engineering component-
based
The software engineering based on components
(CBSE) is based on the construction of complex
systems by integrating prefabricated software
components. The principle of this approach is
simple: "do not reinvent reuse purpose" [10].
"Components are for composition. This approach is
based on the concept of Component-namely that “A
component (composition) is an artifact that allows
you to group and isolate a graph of objects in the
model, defining explicit responsibility and needs
with respect to the rest of the application, allowing it

WSEAS TRANSACTIONS on COMPUTERS
Nisrine El Marzouki, Younes Lakhrissi, Oksana Nikiforova,

Mohammed El Mohajir, Konstantins Gusarovs

E-ISSN: 2224-2872 42 Volume 16, 2017

to evolve independently [46]. This depends on the
component technology, for example, CORBA or
DCOM RPC use, EJB uses RMI, Web Services uses
SOAP RPC-28 etc.
The composition is made by connecting each
component when analyzing (declarative), when
designing (scripting and programming) and at
runtime (visual).

4.4 Aspects Oriented Programming
Aspect-Oriented Programming (AOP) [14] is a
software development technique that aims to
improve software modularity through the separation
of crosscutting concerns into modular units called
aspects.
In an object-oriented application, it is common for
application features that they are scattered in
different places and do not receive adequate
encapsulation at both design models of
programming languages. Such functionality is called
a crosscutting concern.
Aspects Oriented Programming aims to solve this
problem by proposing to write the program into two
parts: a functional part that encapsulates the core
business application code, and a secondary part
which includes cross-functionality disseminated.
Communication is done by the event invoked
implicitly calls between the core curriculum and
aspects. In this approach, the basic program code
and code aspects are completely separate. A third
language is used to establish relationships between
them.

4.5 Reflexive approach
Reflexivity is the ability of a system to reason and
act on itself in its own execution [12]. A reflective
system is divided into two levels: a base level that
corresponds to the functional application and a
meta-level corresponding to the non-functional
properties.
Introspection is the ability of a program to observe
its own state and therefore to reason about it.
Intercession is the ability of a program to modify its
own state of reification execution. Reification is the
mechanism that gives the program the ability to act
on its execution state.
A Meta level can be seen as the interpreter running
baseline and it’s indicated by the meta-objects that
implement the functionality of the interpreter. The
base level and meta-level are connected by a meta-
link symbolizing the relationship between objects of
the base level and meta-objects.

This link is represented by the definition of a MOP
(Meta-Object Protocol) [12, 13].

4.6 Interaction composition Approach
This approach focuses on the problem of dynamicity
in the composition. It can provide an architecture for
dynamic integration (the execution) of components
in infrastructure such as infrastructure-based EJB.
The interaction composition is based on t he
mechanisms of Behavioral fusion allows generating
the behavior resulting from the interactions
composition, the fusion occurs only where the
interactions are enabled on a same trigger message
and the fusion is a mechanism placed in the work to
resolve the non-orthogonal paradigm.
Behavioral fusion is composed from rewriting rules
applied on the patterns interactions and based on the
semantics operators.
For simple illustration, one of the rules is that a
fusion may result in parallelization of calling
services. The composition in the approach oriented
interactions is behavioral. The rewrite rules define
the interleaving of the execution interactions. The
grain of the scheduling is performed at the level of
the instructions defined in the pattern of interaction.
In the implementation of this model, these rules can
be executed dynamically.
The current prototype is limited in the sense that it
does not offer the ability to define and apply
(statically / dynamically) new fusion rules of
sequential interactions; the result is a competitive
runtime behavior interaction.
Therefore, there is no mechanism to set this fusion;
such as execute in sequential way the behavior
interactions (according to a defined order) [15].
The composition in the interaction approach is
based on a composition of interaction (Called
fusion) that allows the composition of the technical
services.
The interaction software approach differs from other
approaches in that the fusion interaction allows
interleaving their executions.

4.7 Synthesis
In this part, we made a cl assification of the
approaches we have studied through six criteria.
The Table I summarizes the characteristics of these
approaches.
This classification will be a good way for us to
create an extensive and detailed understanding about
this area, thereby determining gaps by graphing and
pinpointing in which research areas and for which
study types a shortage of publications still exits.

WSEAS TRANSACTIONS on COMPUTERS
Nisrine El Marzouki, Younes Lakhrissi, Oksana Nikiforova,

Mohammed El Mohajir, Konstantins Gusarovs

E-ISSN: 2224-2872 43 Volume 16, 2017

TABLE I. BEHAVIORAL AND STRUCTURAL COMPOSITION APPROACHES REVIEWS

 Modular Architectural CBSE AOP Reflexive Interaction

Concept Module Brick Component Aspect Meta-Object Model
object

Coupling Low Low Low Low Low Low

Communication

calling
function
and access
of global
variables

defined by the
types of
connector and
/ or links

defined by
the types of
connector
and / or links

Calling
event
between the
basic
program and
aspects

Meta link
symbolizing the
relationship
between objects of
the base level and
meta-objects

calling
services

Customizing
modules No No Yes Yes Yes No

Mechanism of
composition

Connection
of the
modules
after the
design
phase.

Connection of
the
components
during the
analysis
phase.

connection
of the
component
during the
analysis
phase

Weaving static and dynamic
reification Fusion

Type of
composition Structural Structural Structural Behavioral - Behavioral

5 Model composition approaches

5.1 Introduction
The model composition is a new research topic in
the MDA. The work is ongoing development and
evolution. So there is still no mature foundation to
date for this. Our goal through this part is to study
existing model composition approaches by
analyzing and identifying 1) what are the elements
involved in the composition process, and 2) how the
model composition is made in these approaches.
The ultimate goal is to arrive at an understanding of
what is done for model composition in these
approaches.

5.2 Classification criteria
The approaches mentioned below are evaluated
according to several assessment criteria, which are
selected based on the need to promote the
reusability and the automation of model elements, as
well as building a generic composition operator.
However, the assessment of how a composition
approach proceeds to manage conflicts and ensure
model consistency during the composition process is
also an important coefficient. The criteria are the
following:
• The area: currently there are three major areas

that are actively working on the model—

Aspect-oriented modeling: The uniqueness of
this area is the application of separation of
concerns principle; the weaving operation which
is central key in the composition process of
aspect-oriented modeling and the relationship
between the aspect model and the base model
which is relative in most cases.

• Management Model: This criterion interested in
providing a generic MDA platforms
manipulation operators such as merging,
comparison and conflicts.

• Metamodeling: Meta-modeling approaches
allow the definition of metamodels. As the
relationship between model / metamodel is
relative [30], it is necessary to ensure that if
these mechanisms are applicable to the meta-
level, it should also be applied on the model
level.

• The composition effect: It can be transformed or
preserved. The compositions can transform the
structure of the source models or preserve it.

• Type of composition: We identified two types
of composition—by operators or relationships.
By operators can be a melting, weaving or
replacing the union; by relationships establish
relations such as association, aggregation and
inheritance. In the first type, the composition is
prepared by performing the composition of
operators on the source models; whereas in the
second type, the source models are composed

WSEAS TRANSACTIONS on COMPUTERS
Nisrine El Marzouki, Younes Lakhrissi, Oksana Nikiforova,

Mohammed El Mohajir, Konstantins Gusarovs

E-ISSN: 2224-2872 44 Volume 16, 2017

by using the relationship in order to connect
them. The difference is that the operators are not
part of the final model; while relationships
really are part of this model.

• Mechanism of composition: melting, replacing
the union, weaving etc.

• Composition element: Defines the additional
elements involved in the composition. There are
two classification axes: the type and formality
of these elements.

• Language of composition: The composition of
elements need formalisms to express them.
These formalisms are very diverse because each
approach has its own elements of composition.
It can be a w eaving language, a metamodel of
composition rules [31] or a UML profile for
model composition.

•
5.3 Classification of Model Composition
Techniques

6.3.1 AMW (Atlas Model Weaver)
AMW uses a l anguage called weaving language
(weaving language) (formalism), which has a core
part of providing basic generic concepts to create
structural links between the models. These links are
saved in the weaving patterns (weaving models)
(composition element). The basic weaving
metamodel AMW contains the basic weaving
concepts. WElement is the basic element of all
weaving metamodel elements; WModel represents
the root of the weaving pattern. WLink represents
links between elements of the models. WLinkEnd
indicates the type of items that can be dialed [16].
This approach offers a weaving generic metamodel
that defines the composition of links to a higher
level of abstraction, the extension of this metamodel
for defining the semantics of links depending on the
application domain.

6.3.2 EMF (Eclipse Modeling Framework)
is an open source modelling framework, integrated
into Eclipse. It allows to specify the structural
models, single, platform independent, and from
which the code can be generated. One of the
supports default EMF is the generation of
publisher’s code for models. EMF editors are able to
compose models by reference [17].

6.3.3 EML (Epsilon Merging Language)
Is a rule language based on the Epsilon platform
(Extensible Platform for Integrated Specification of
Languages for model management). It allows the
composition of models according to different

metadata models. Epsilon is a basic platform: it is a
core on w hich it is possible to define models
management languages, focused on specific tasks
(task-specific language) such as validation,
transformation, generation, comparing and merging
models. [18]

6.3.4 GME
Generic Modeling Environment (GME) is a generic
modeling environment that using modeling
paradigms (modeling languages dedicated to DSML
areas). A modeling paradigm formalizes a
metamodel by defining the syntax, semantics and
concrete presentation of DSML [18].

6.3.5 Kompose
Kompose is a framework that implements an aspect-
oriented modeling approach for model composition
through a set of guidelines. The composition process
is structured in two parts: the mapping, which
identifies the model elements describing the same
concept and composition for creating new items.
The mapping phase is based on the implementation
of a set of operations that are specialized depending
on the field and the composition phase is based on a
conventional method that is implemented in a
generic way using introspection. The elements
having the same signature are compounds and their
content (properties and methods) are compared in
turn then compounds. The items with no
corresponding are simply copied to the model
compound. [19]

6.3.6 XMF-Mosaic
XMF-Mosaic (eXecutable Metamodeling Facility)
is a meta modeling framework invented by the
company Xactium 14. XMF provides two mapping
types: unidirectional mapping and synchronized
mapping. Unidirectional mapping is based on the
vision processing. The unidirectional mappings take
one (or a set) model (s) as input (s) and generates an
output model. Unidirectional mappings are often
used in code generation, for example to convert a
model to Java or C ++. From the perspective of
composition, we are not interested in this kind of
mapping. Synchronized mapping which is a
mapping for managing synchronization between two
models. As we said above, the synchronized
mappings can be used for several purposes; the
consistency management is only one of several
applications of this type of mapping. Other typical
applications are synchronized mapping multiple
models for the management of a system, the support
of the "round trip engineering" etc. [20].

WSEAS TRANSACTIONS on COMPUTERS
Nisrine El Marzouki, Younes Lakhrissi, Oksana Nikiforova,

Mohammed El Mohajir, Konstantins Gusarovs

E-ISSN: 2224-2872 45 Volume 16, 2017

6.3.7 ECL
ECL (Epsilon Comparison Language) is a language
based on rules for building links, based on the
Epsilon platform. Epsilon is a platform on which it
is possible to define models for managing
languages, focused on specific tasks (task-specific
language), such as validation, transformation,
generation, comparing and merging models. ECL
rule takes as input two parameters referring to the
model items to compare. It is performed on the set
of pairs of Meta class instances that satisfy these
parameters. The body of an ECL rule consists of

three parts: a comparison (compare), a co mpliance
(conform) and an optional third party "guard" [20].

6.3.8 AML
AML (AtlanMod Matching Language) is an
extension of AMW for obtaining a matching pattern.
Assembles different mapping strategies that are
implemented as sets of model transformations. Each
of these transformations takes a set of input and
produces an output matching pattern models. [20]

TABLE II. MODEL COMPOSITION APPROACHES REVIEWS

 Composition
domain

Composition
Types

Element
composition

Composition
Language

Mechanism
composition Composition effect Inputs

AMW
Management
models

by operators

Weaving and
transformation
Hot Model

Weaving AMW
language

Weaving and
transformation

structure of source
models transformed

2

EMF
Editor

Meta
Modeling

By
relationship

References Language
Reference Ecore

Establishment
references

structure of source
models preserved 2

EML
Management
models

Specification
of
composition
rules

Weaving Melting language
EML Weaving structure of source

models transformed 2

GME
Meta
Modeling

References Establishment
references

References of
FCOs

Establishment
references

structure of source
models preserved 2

Kompose
Aspect
oriented
modeling

Specification
Of
compositiona
l directives

Weaving Fusion language
kompose Weaving structure of source

models transformed 2

XMF-
Mosaic

Meta
Modeling

By relations Mappings xSync

Establishment
references
And execution
mapping

structure of source
models preserved 2

AML Management
models By operators Weaving AML Language Weaving and

transformation
structure of source
models transformed 2

ECL Meta
Modeling By rules

Validation,
Transformation,
Generation,
Comparison

ECL Language
Comparison
Conformity
Guard

structure of source
models transformed 2

6.3.9 Synthesis

It is clear that with the model composition there is a
huge potential and a lot of possibilities that have not
been exploited or even investigated until now.
The approaches mentioned above are evaluated
according to several assessment criteria, which are
selected based on the need to promote the
reusability and the automation of model elements, as
well as building a generic composition operator.
However, the assessment of how a composition
approach proceeds to manage environmental

constraints and ensure model consistency during the
composition process is also an important coefficient.
The criteria are the following:
• Heterogeneity: This criterion checks the ability

of an approach to stow the parameters of
heterogeneous models. We consider that two
specific models are heterogeneous if their
modeling languages are themselves
heterogeneous. Expressivity: The choice of this
criterion is justified by the need to identify
approaches allowing designers to express and
customize different types of links.

WSEAS TRANSACTIONS on COMPUTERS
Nisrine El Marzouki, Younes Lakhrissi, Oksana Nikiforova,

Mohammed El Mohajir, Konstantins Gusarovs

E-ISSN: 2224-2872 46 Volume 16, 2017

• Reusability: This criterion is analyzed on two
different planes. The foreground is used to study
whether the approach provides ways for
defining a g eneric part / variable in the
modeling elements used. This property
promotes reuse and structuring systems. The
second plan involves the mechanisms offered by

an approach to define generic operators’ models
of the composition process.

• Pre-alignment phase: This criterion verifies
whether the approach implements precedent
phases.

Table III summarizes the ability of approaches in
expressing the criteria above.

TABLE III. THE ABILITY OF MODEL COMPOSITION APPROACHES

 Heterogeneity Expressivity

Reusability Pre-alignment
phase

AMW Yes Yes No No
EMF editor Yes Yes No No
EML Yes Yes No No
GME Yes Yes No No
Kompose No Yes No Yes
XMF-Mosaic No Yes No No
AML Yes No Yes No
ECL Yes Yes No Yes

5.6 Discussion

The Table III shows that the fields of investigation
are still very broad and the possibilities of
implementing the approaches in different ways are
still important. The modular approach allows to
build systems by assembling modules. The idea is to
connect these modules through their interfaces. The
main interest of the modular approach is to facilitate
the construction of systems by allowing 1) to write
the module with little knowledge about the other
code modules, and 2) to replace one or more
modules without reassemble all the system.
Therefore, with this technique the construction of
the system is more understandable, manageable, and
maintainable but this approach doesn’t allow to
personalize a module which may be a real
limitation.
The Architectural Description approach focuses on
designing systems by assembling architectural
bricks and we can use these portions when the
system is in the analysis phase to allow create the
architecture description. This description can help
later to make simulations on the system or allows
other people to analyze the system.
The software engineering based on components
approach strongly promotes the concept of
composition. The applications are built by
assembling components through their interfaces.
The main interest of this approach is the high reuse
of components but the concept of component is not
clearly defined, which make difficult to define
composition standards and mechanisms. Indeed, the
composition of the components is a fundamental

and important activity in the component approach
but there are not enough research efforts for
achieving the composition, compared to the efforts
to define new models components.
The AOP approach [21] enables to encapsulate
crosscutting code of an application in the separate
software units called aspects and build these units
within the core program. The interest of the AOP
approach is to avoid redundant codes that frequently
appear in several places in the application, and thus
increase the reuse of these in different applications.
By cons, he resulting code can be very complicated,
difficult to understand, test and debug. However, the
composition mechanisms still need lots of
improvements to better manage discrepancies and
conflicts during the weaving process.
After analyzing the different approaches in the
context of model composition [22, 23, 24], we can
notice that there is a correlation between the power
of the approach and its complexity: approaches that
have a satisfactory result are difficult to handle and
require in most cases h uman intervention; the
simplest approaches do not produce accurate results.

6 Cnclusion and Future Work

By studying the different approaches, we have been
identified some criteria that influence their
implementation. Some approaches deal only with
the matching problem, while others feel this issue
pre-board as a step in a larger process.
To synthesize, we can defined the composition as a
model management operation, which generate a

WSEAS TRANSACTIONS on COMPUTERS
Nisrine El Marzouki, Younes Lakhrissi, Oksana Nikiforova,

Mohammed El Mohajir, Konstantins Gusarovs

E-ISSN: 2224-2872 47 Volume 16, 2017

single model by the combination of the contents of
at least two models.
We think that this article is a good way to find a
new and more difficult effective way of action. In
the light of these six composition techniques, we
intuitively identify four similarities as follows:
• Every technique composes a pair of models.
• Every technique proposes a m echanism for

detecting similar or equivalent model element.
• Every technique proposes a m echanism that

uses matching for combining models.
• Every approach proposes a m echanism of

composition based on the components detected
in the beginning.

So, this study allows us to realize that there are two
categories of composition: the white box
composition which is involved in the internal
structure of the components, and the black box
composition which comprises components as they
are without any change. We can find it even in the
model composition in which there are also two types
of composition: one allows to compose component
as they are, and the other composes them but after
that their structure is transformed.
This part was interested in assessing different
approaches by different criteria. In conclusion, each
approach has its own design model for
implementing services.
According to this assessment, structural composition
mechanisms are clearly defined in the approaches
oriented components. Behavioral composition
mechanisms are very different depending on t he
approaches and are based on the notion of
scheduling.
As we mentioned before it is observed that some
composition techniques already proposed various
operations on a set of models. In special cases,
reusing or adapting these techniques seems an
interesting path to build a new composition model
operation. Indeed several techniques of composition
method have been suggested in the literature.
However, there is no work that considers the
coexistence of these different composition methods
in order to answer practical questions such as: when
should we prefer one composition method over the
other? Is it possible to solve a given problem of a
several composition methods?
So in our future work we will the focus on MDA
approach as a whole concept through a novel
methodology for automatic model composition
based on the two-hemisphere model driven
approach, which is an approach involved in the
context of model driven architecture and proposes to
create the UML class diagram from initial
presentation of problem domains. The idea of the

two-hemisphere-model driven approach comes from
the necessity to implement the concept of
separation—be able to create specifications that
capture requirements in a form that is
understandable by less technical stakeholders; for
example, the project manager; these people were not
comfortable with UML class diagrams, but were
perfectly able to understand the required
information represented in a simple graphical
manner. Indeed, our conceptual prototype start from
the point where we have several UML class
diagrams made by several team development
process and we need to combine them in order to
have a g lobal representation of the system through
one class diagram. If we take the example of two
operations in two models that appear with the same
signature (name, type, parameters), so to remedy
this problem, it is necessary to include a step of
reconciliation between the separate designs or
strengthen semantics associated with the input
metamodel, so that we can implement finer
comparison strategies that address the behaviors
described by the methods.
In this context we are working in collaboration with
Riga Technical University of Latvia in this
taxonomy to create a novel composer framework
based on T wo Hemisphere Model Approach in
order to compose several UML class diagrams. The
approach is a sequence of the two-hemisphere
model driven approach and answers in its turn the
standards defined by MDA. The first phase will be a
general analysis to build the system requirement
which. The second phase is decentralized on design
phase, during this phase several teams can work
separately to achieve design templates for blocks
belonging to the same system. The third phase is a
conflict resolution phase between design models
which aims to identify and treat addresses conflicts
of modelling between models in the frame of
“Multi-modelling paradigm” [25]. We are primarily
concerned with this syntactic conflicts over naming
modelling elements problems, and structural
inconstancies. The last step is to merge bricks in
order to achieve the overall model. The two-
hemisphere model driven approach on w hich our
future work is based proposes using of business
process model and concept model to represent
systems in the platform independent manner and
describes how to transform these models into UML
diagrams. The strategy supports gradual model
transformation from problem domain models into
program components, where problem domain
models reflect two fundamental things: system
functioning (processes) and structure (concepts and
their relations).

WSEAS TRANSACTIONS on COMPUTERS
Nisrine El Marzouki, Younes Lakhrissi, Oksana Nikiforova,

Mohammed El Mohajir, Konstantins Gusarovs

E-ISSN: 2224-2872 48 Volume 16, 2017

Fig. 1. Transformations from two hemisphere model into class
diagram under two hemisphere model driven approach [47]

As shown in Figure 1 the two-hemisphere model
driven approach proposes to start process of
software development based on the representation of
problem domain by two models, where one model
reflects functional (procedural) aspects of the
business and software system, and another model
reflects the corresponding concept structures. The
co-existence and inter-relatedness of these models
enables use of knowledge transfer from one model
to another, as well as utilization of particular
knowledge completeness and consistency checks
[26].

Therefore, when the models are small enough and
developed by a single or a couple of designers, they
can be composed manually. However, in most cases,
the models are too large to be composed manually
and it’s necessary to develop an automatic
composition method to ensure that all the elements
in the model are handled. Indeed, our methodology
can be used to build the model for a large system,
where the modellers identify different class
diagram. However, they model each piece
separately to deal with complexity. Once all these
models have been correctly built in isolation, it is
necessary to compose them, however four main
ideas for composition are identified:
• Better understand the interactions between the

elements to compose: Model comparison.
• Match equivalent: weaving.
• Analyze interactions to identify conflicts and

undesirable emergent behaviors: Repository for
conflicts management.

• Check the global consistency of the system’s
model (as shown in Fig.2).

Our future approach intend to create the interactions
of structural and behavioral type of composition:
when there is a structural dependency between two
components, a link is created between the interfaces
and when there is a behavioral dependency between
two components, an order relation can be applied.

Fig. 2. The application of model composition on two hemisphere model driven approach

The definition of these interactions makes possible
to have a high degree of composability.
Furthermore, considering the change in a level of
abstraction as a criteria of comparison, in Two

Hemisphere Model Approach the transformation is
vertical because it causes a ch ange in level of
abstraction, it is the case of refining PIM to PSM in
MDA, and in our composition approach the
transformation will be horizontal because it includes

WSEAS TRANSACTIONS on COMPUTERS
Nisrine El Marzouki, Younes Lakhrissi, Oksana Nikiforova,

Mohammed El Mohajir, Konstantins Gusarovs

E-ISSN: 2224-2872 49 Volume 16, 2017

changes designed to incorporate models from
multiples sources.

References:
[1] OMG: Object Management Group – MDA (Model

Driven Architecture) Guide Version 1.0.1; 2001
Available at (http://www.omg.org/mda/)

[2] Oksana Nikiforova Two Hemisphere Model Driven
Approach for Generation of UML Class Diagram in
the Context of MDA- e-Informatica Software
Engineering Journal, Volume 3, Issue 1, 2009

[3] [24] Nikiforova O., Kozacenko L., Ahilcenoka D.,
Gusarovs K., Ungurs D., Jukss M., Comparison of
the Two-Hemisphere Model-Driven Approach to
Other Methods for Model-Driven Software
Development, Scientific Journal of Riga Technical
University: Applied Computer Systems,
Grundspenkis J. et al. (Eds), Vol.18, 2015, pp. 33-
42

[4] G.KICZALES."Aspect-Oriented Programming".
European Conference on Object-Oriented
Programming (ECOOP), Springer-Verlag LNCS
1241, Finland, June 1997.

[5] Fischer, B., “Decomposition of Time Series -
Comparing Different Methods in Theory and
Practice”, Eurostat Working Paper, 1995.

[6] Fredrik Milani et al, “High-order statistics in global
sensitivity analysis: Decomposition and model
reduction-Computer Methods in Applied Mechanics
and Engineering”, Volume 301, 1 April 2016, Pages
80-115

[7] ISO.ITU/ ISO Referebce Model of Open Distributed
Processing –Part 2: Foundations, International
Stanndards ISO/IEC 10746-2,ITU-T
Recommendation X.902.Technical report ISO,
1995.

[8] M. Acher, P. Collet, P. Lahire, and R. France.
Comparing approaches to implement feature model
composition. Modelling Foundations and
Applications, pages 3–19, 2010.

[9] A. Anwar, S. Ebersold, B. Coulette, M. Nassar, and
A. Kriouile. A rule-driven approach for composing
viewpoint-oriented models. Journal of Object
Technology, 9(2):89–114, 2010.

[10] P.L. Tarr, H. Ossher, W. Harrison, M. Stanley, Jr.
Sutton. "N Degrees of Separation: Multi-
Dimensional Separation of Concerns". International
Conference on Software Engineering, pp. 107-119,
1999.

[11] H. Ossher, P. Tarr. "Using multidimensional
separation of concerns to (re)shape evolving
software". Communications of the ACM, Vol. 44,
No. 10, pp. 43-50, October 2001.

[12] J. Klein. "Behavioral Aspects and weaving". Thesis
of Rennes University, December 2006.

[13] S. Clarke. "Composition of Object-Oriented
Software Design Models". PhD thesis, Dublin City
University, 2001.

[14] G. KICZALES. "Aspect-Oriented Programming".
European Conference on Object-Oriented

Programming (ECOOP), Springer-Verlag LNCS
1241, Finland, June 1997.

[15] L. Cavallaro, E. Di Nitto, C.A. Furia, and M.
Pradella. A tile-based approach for self-assembling
service compositions. In Engineering of Complex
Computer Systems (ICECCS), 2010 15th IEEE
International Conference on, pages 43–52. IEEE,
2010.

[16] Eclipse AMW plugin, In: Eclipse Modeling
Symposium, Eclipse Summit Europe 2006
(Esslingen, Germany), 2006.

[17] C. Clasen, F. Jouault, J. Cabot, et al. Virtual
Composition of EMF Models. In 7èmes Journées
sur l’Ingénierie Dirigée par les Modèles, 2011.

[18] M. Dahchour, H. Rayd, Y. Lakhrissi, A. Kriouile,
"Extension d'UML par les rôles". Proc. of the 9th
Maghrebian Conference on Information
Technologies (MCSEAI 2006), Agadir, Morocco,
December 2006.

[19] F. Fleurey. Kompose: a generic model composition
tool. 2007. Available from:
http://www.kermeta.org/kompose/

[20] Jeanneret, C., France, R., & Baudry, B. (2008,
April). A reference process for model composition.
In Proceedings of the 2008 AOSD workshop on
Aspect-oriented modeling (pp. 1-6). ACM.

[21] Reddy, Y. R., Ghosh, S., France, R. B., Straw, G.,
Bieman, J. M., McEachen, N & Georg, G. (2006).
Directives for composing aspect-oriented design
class models. In Transactions on Aspect-Oriented
Software Development I (pp. 75-105). Springer
Berlin Heidelberg.

[22] Alberto Rodrigues da Silva, Model-driven
engineering: A survey supported by the unified
conceptual model- Computer Languages, Systems &
Structures, Volume 43, October 2015, Pages 139-
155

[23] D. Calegari, N. Szasz, Institution-based foundations
for verification in the context of model-driven
engineering, Science of Computer Programming.
107 (2015) 41–63.

[24] D.Calegari et al, Heterogeneous verification in the
context of model driven engineering-Science of
Computer Programming, In Press, Accepted
Manuscript, Available online 26 February 2016.

[25] G.Coutinho Sousa Ferreira et al, On the use of
feature-oriented programming for evolving software
product lines — A comparative study-Science of
Computer Programming, Volume 93, Part A, 1
November 2014, Pages 65-85

[26] Hanine Tout-AOMD approach for context-adaptable
and conflict-free Web services composition
Computers & Electrical Engineering, Volume 44,
May 2015, Pages 200-217

WSEAS TRANSACTIONS on COMPUTERS
Nisrine El Marzouki, Younes Lakhrissi, Oksana Nikiforova,

Mohammed El Mohajir, Konstantins Gusarovs

E-ISSN: 2224-2872 50 Volume 16, 2017

http://www.omg.org/mda/
http://www.kermeta.org/kompose/

