
Models of M2M Device Management

IVAYLO ATANASOV, EVELINA PENCHEVA

Faculty of Telecommunications

Technical University of Sofia
8 Kliment Ohridski blvd, Sofia

BULGARIA
iia@tu-sofia.bg; enp@tu-sofia.bg

Abstract: - Machine-to-Machine (M2M) stands for networking of machines and devices that gather information

from their environment and share it over the communication network. Devices must be set up and configured
correctly, and they need to use available network bearers efficiently. The growth of connected devices makes

the device management a challenging task. Reduction in M2M device deployment time and operational costs

may be achieved by automation of management processes. In this paper, we propose context-ware models for

connectivity management and study aspects of autonomous behaviour in the context of bearer selection

procedure based on policies. Connectivity management models are formally described and verified using the

concept of weak bi-simulation. The autonomous behaviour which includes monitoring of device connectivity

parameters and policy-based bearer selection is modelled and formalized by temporal logic. The validation

process is based on a suit of unit tests that allow comparing the expected message exchange traces to the

observed ones.

Key-Words: - Machine-to-Machine communications, Connectivity management, Finite state machines, Formal

verification, Weak bi-simulation, Autonomous agent, REST

1 Introduction
Machine-to-Machine (M2M) communications have

various application areas in almost any

environment. Despite the differences, all these areas

set common requirements for connected devices.

Devices must be set up and configured correctly,

and they need to use available network bearers

efficiently [1]. The increased amount of equipment

and the explosion of M2M services become

business and technical challenges for network

operators [2].

Device management includes functions like

automated device configuration, over-the-air

firmware updates, remote reboots, remote

diagnostics and troubleshooting, security and

integrity. Different protocols and proprietary

solutions have fragmented the M2M market and

have added complexity, time and cost to integration
process [3]. The variety of platforms addressing

different activation, billing, monitoring and device

management functions do not provide an abstraction

required for scalable platform that adheres to

standards and addresses a broad range of common

M2M functions [4]. Such an abstraction is provided
by OMA Lightweight M2M [5].

Lightweight M2M (LWM2M) is a protocol from

the Open Mobile Alliance (OMA) for M2M device

management. It defines device management

procedures between a LWM2M server in a cloud

and a LWM2M client, which is located in a device.

In this paper, we study aspects of device

connectivity management. The motivation for the

research is that the device connectivity management

comprises complex operations that are quite

different from the application business logic. It is a

complex task due to a large and growing category of

connected devices with limited computing power

and memory, and limited battery lifetime. Devices

may be connected using cellular bearers such as

GSM, TD-SCDMA, WCDMA, CDMA2000,

WiMAX, or LTE, wireless bearers like WLAN,

Bluetooth or IEEE 802.15.4, or may use wire line

ones as Ethernet, DSL or PLC. Monitored

connectivity parameters include the line voltage and

signal strength at the device side [6]. Different

technologies have different requirements for quality

of service (QoS), which complicates the logic for

bearer selection. Furthermore, the logic for bearer

selection may be based on different policies such as

the device location and the account balance of the
M2M device provider in case of prepaid payment.

The reduction of device connectivity

management complexity can be achieved by

embedding autonomic features in operation support

systems [7]. The autonomic system exposes reactive

WSEAS TRANSACTIONS on COMPUTERS Ivaylo Atanasov, Evelina Pencheva

E-ISSN: 2224-2872 1 Volume 16, 2017

or proactive behaviour based on external stimuli,

following goals that are required to fulfil, policies,

capabilities, principles of operation, experience and

knowledge.

To mitigate the issues related to device

management, we propose a connectivity

management model which is compliant with OMA

Lightweight M2M. The model reflects both the

device and server views on connectivity

management. It includes details related to

configuration of observation procedure, notification

about monitored parameters, bearer change, and

configuration of a new Access Point Name (APN).

In addition, we propose a model of autonomous

agent responsible for device connectivity

management. The agent observes device

connectivity parameters and based on preliminary

defined policies determines the best bearer that has

to be used by the device. Models are formally

described and verified. The model validation is

based on the Google’s REST toolkit.

The paper is organized as follows. In the next

section, we discuss in brief the related work. Section

3 presents the client and server views on device

connectivity management and a method for formal

verification of the models. Section 4 studies

autonomic feature of device connectivity
management and describes the knowledge base of

an autonomous agent that controls bearer selection

for M2M devices. In Section 5, the validation

process based on RESTful architecture is discussed.

The conclusion summarizes the author’s

contribution.

2 Related Work
In [8], the authors investigate how existing IP-based

network management protocols can be implemented

on resource-constrained devices. A lightweight

RESTful Web service approach to enable device

management of wireless sensor devices, based on

constrained application protocol is proposed in [9].

In [10], the authors use field device integration

technology to achieve seamless maintenance by

cooperation of device management systems and

computerized maintenance management systems. In

[11], the authors present an out-of-box device

management to automatically add and remove

devices from the system, based on the connectivity.

The Ericsson Device Connection Platform which

provides the operator with access to key

functionalities to manage the connectivity of the

M2M business, including device management,

subscription management and self-service is

discussed in [12]. In [13], the authors describe a

smart M2M gateway based architecture to manage

the huge volume of M2M devices and endpoints,

which is compliant with both ETSI and one M2M

standards recommendations. A solution for

dynamical provisioning of communication

parameters between M2M endpoints using a device

management protocol is presented in [14], where

OMA LWM2M was chosen for its energy

efficiency. An M2M service platform architecture of

a home automation system is proposed in [15]

which M2M service enablement, M2M device

management, and M2M communication

management subsystems. In [16], the authors

propose a dynamic device connection method that

can connect services with devices located close to

users by installing the device drivers and/or protocol

adapters dynamically.

The proposed solutions, based on LWM2M,

consider high level architectural aspects and do not

provide details on behavioural models that follow

the M2M device management procedures. In this

paper, we suggest an approach to formal verification

of LWM2M server and client behaviour related to

device management.

Currently, there is a lot of work conducted on

autonomics by the research community. In [17], the

authors discuss challenges and enablers that allow
connected machines to evolve and act in a more

autonomous way and propose architectural approach

based on situational knowledge acquisition and

analysis techniques in order to make machines

aware of conditions and events affecting systems

behaviour. In [18], the authors propose a

middleware architecture that connects the

appropriate devices and applications, and is based

on software agents representing devices and

applications negotiating between each other on the

terms by which the data can be used. In [19], the

authors propose network architecture for remote

monitoring and surveillance M2M networks with

broadband satellite connection. In [20], it is

proposed a flexible multi-agent approach,

leveraging semantic-based resource discovery and

orchestration for home and building automation

applications. In [21], a generic architecture for

multi-goal, adaptable and open autonomic systems,

exemplified via the development of a concrete

autonomic application for the smart micro-grid is

proposed. Cognitive and mathematical models of

data, information, knowledge, and intelligence are

proposed in [22]. In [23], the authors present

methodology for formal verification of hardware

security requirements of remote attestation

architecture for embedded systems. In [24], the

authors claim that agent-based, adaptive Parallel and

WSEAS TRANSACTIONS on COMPUTERS Ivaylo Atanasov, Evelina Pencheva

E-ISSN: 2224-2872 2 Volume 16, 2017

Distributed Simulation (PADS) approaches are

needed, together with multi-level simulation of

machine type communications, which provide

means to perform highly detailed simulations, on

demand. A dynamic service arbitration scheme

based on autonomic computing, which allows only

selected devices to be utilized instead of all

deployed devices, is proposed in [25].

While presenting high level architectural aspects

of autonomous systems, these works discuss

proprietary solutions and do not consider

autonomics in generic M2M communications.

3 M2M Device Connectivity

Management

3.1 Connectivity management models as

seen by the server and device
Typical sequence of procedures performed by the

server and device in the context of connectivity

management is as follows.

1. The server establishes an observation

relationship with the device to acquire

periodical or triggered notifications about

line voltage and signal strength.

2. The device sends periodical or triggered

notifications about line voltage and signal

strength.

3. The server queries about used and available

network bearers.

4. The server initiates bearer selection.

5. The server queries about connectivity

parameters.

6. The server creates and enables a new APN

profile.

7. The server cancels observation.

Deployment of LWM2M requires modeling of
state machines maintained in the device and in the

network. In the following sections we model the

behavior in the context of M2M connectivity

management and using formal models’ description

we provide functional verification of the proposed

models. The aim is to prove that the M2M device

(client) and the remote server are synchronized.

The connectivity management model as seen by

the server is shown in Fig.1.

In OperationalS state, the device is registered and

operational. In ObservationConfiguration state, the

server sets observation policy in the device. In

ObservationAck state, the server waits for

acknowledgment that the observation is active. In

QueryNetConnectivity state, the server has sent a

query for device connectivity parameters and waits

for the requested information. In Preferred-

BearerAck state, the server has requested preferred

bearer selection and waits for the acknowledgement.

In BearerReregistration state, the server waits for

device re-registration after bearer selection. In

APNprofile state, the server has requested creation

of new APN profile and waits for acknow-

ledgement. In APNReregistration state, the server

waits for device re-registration after new APN

profile selection. In APNactivation state, the server

has activated the new APN and waits for

acknowledgement. In QueryAPNConnectivity state,

the server waits for the requested information about

APN connectivity. In CancelAck state, the server

has cancelled the observational relationship and

waits for acknowledgement.

We use the notation of Labeled Transition

System (LTS) to formally describe the model.

By CMS= (SS, АctS, →S, s0
S
) it is denoted an LTS

representing the server’s view on connectivity

management state model as follows:

Observation

configuration

selectBearer/

selectBearerreq

regreq/regres,

set(Treg)

OperationalS

Observation

Ack

Bearer

reregistration

Preferred

BearerAck

APNprofile

CancelAck

APN

reregistration

QueryAPN

Connectivity

APN

activation

QueryNet

Connectivity

setMonitorParameters/

setParametersreq

setParametersres/

observereq

observeack

selectBearerres

configureAPN/

createAPNreq

createAPNres

regreq/regres,set(Treg),

activateAPNreq

activateAPNres/

apnConnectivityreq

apnConnectivityres

OperationalS
cancelObservationreq

cancel/

cancelObservationreq

notifyreq/notifyresqueryConnectivity/

netConnectivityreq

netConnectivityres

Fig.1 Connectivity management model as seen by

the server

SS ={OperationalS, ObservationConfiguration,

ObservationAck, QueryNetConnectivity,

PreferredBearerAck, BearerReregistration,

APNReregistration, APNprofile,

APNactivation, QueryAPNConnectivity,

CancelAck};

WSEAS TRANSACTIONS on COMPUTERS Ivaylo Atanasov, Evelina Pencheva

E-ISSN: 2224-2872 3 Volume 16, 2017

ActS = {queryConnectivity, netConnectivityres,

setMonitorParameters, notifyreq,

setParametersres, observeack, selectBearer,

selectBearerres, regreq, configureAPN,

createAPNres, activateAPNres,

apnConnectivityres, cancel,
cancelObservationres};

→S = {
S

1τ ,
S

2τ ,
S

3τ ,
S

4τ ,
S

5τ ,
S

6τ ,
S

7τ ,
S

8τ ,
S

9τ ,
S

10τ ,

S

11τ ,
S

12τ ,
S

13τ ,
S

14τ ,
S

15τ ,
S

16τ };

s0
S
 = { OperationalS }.

where
S

1τ = (OperationalS setMonitorParameters

ObservationConfiguration),
S

2τ = (ObservationConfiguration setParametersres

ObserveAck),
S

3τ = (ObserveAck observeack OperationalS),

S

4τ = (OperationalS notifyreq OperationalS),

S

5τ = (OperationalS queryConnectivity

QueryNetConnectivity),
S

6τ = (QueryNetConnectivity netConnectivityres

OperationalS),
S

7τ = (OperationalS selectBearer

PreferredBearerAck),
S

8τ = (PreferredBearerAck selectBearerres

BearerReregistration),
S

9τ = (BearerReregistration regreq OperationalS),

S

10τ = (OperationalS configureAPN APNprofile),

S

11τ = (APNprofile createAPNres APNReregistration),

S

12τ = (APNReregistration regreq APNactivation),

S

13τ = (APNactivation activateAPNres

QueryAPNConnectivity),
S

14τ = (APNactivation apnConnectivityres

OperationalS),
S

15τ = (OperationalS cancel CancelAck),

S

16τ = (CancelAck cancelObservationres

OperationalS).

The connectivity management model as seen by

the device is shown in Fig.2.

In OperationalD state, the device is registered and

operational. In this state, the server may set the

observation policy and activate observation, as well

as it may cancel observation. In OperationalD state,

the device sends responses of queries on network

connectivity. In NotifyAck state, the device has

notified the server about requested information and
waits for response. In UpdateBearer state, the device

is in a process of used network bearer switching and

re-registration. In APNconfiguration state, the

device is in a process of creation and enablement of

a new APN profile.

By CMD= (SD, АctD, →D, s0
D
) it is denoted an

LTS representing the device’s view on connectivity

management state model as follows:

SD = { OperationalD, NotifyAck, UpdateBearer,

APNconfiguration };

ActD = { setParamatersreq, observereq,

netConnectivityreq, cancelObservationreq, Tmon,

trigger, notifyres, selectBearerreq, regres,

activateAPNreq, createreq, apnConnectivityres };

→D = {
D

1τ ,
D

2τ ,
D

3τ ,
D

4τ ,
D

5τ ,
D

6τ ,
D

7τ ,
D

8τ ,

D

9τ ,
D

10τ ,
D

11τ ,
D

12τ ,
D

13τ }

s0
D
 = { OperationalD },

setParametersreq/ setParametersres

observereq/ observeack, set(Tmon)

netConnectivityreq/ netConnectivityres

cancelObservationreq/

cancelObservationack, reset(Tmon)

OperationalD

NotifyAck

UpdateBearer

APNconfiguration

selectBearerreq/

selectBearerres,

regreq

Tmon,

trigger/

notifyreq

notifyres/

set(Tmon)

regres/

set(Treg)

regres/ set(Treg)

activateAPNreq/

activateAPNres

createreq/ createres, regreq

apnConnectivityreq/

apnConnectivityres

OperationalD

Fig.2 Connectivity management model as seen by

the device

where
D

1τ = (OperationalD setParamatersreq OperationalD),

D

2τ = (OperationalD observereq OperationalD),

D

3τ = (OperationalD netConnectivityreq

OperationalD),
D

4τ = (OperationalD cancelObservationreq

OperationalD),
D

5τ = (OperationalD selectBearerreq UpdateBearer),

D

6τ = (UpdateBearer regres OperationalD),

D

7τ = (OperationalD Tmon NotifyAck),

D

8τ = (OperationalD trigger NotifyAck),

D

9τ = (NotifyAck notifyres OperationalD),

WSEAS TRANSACTIONS on COMPUTERS Ivaylo Atanasov, Evelina Pencheva

E-ISSN: 2224-2872 4 Volume 16, 2017

D

10τ = (OperationalD createreq APNconfiguration)

D

11τ = (APNconfiguration regres APNconfiguration)

D

12τ = (APNconfiguration activateAPNreq

APNconfiguration)
D

13τ =(APNconfiguration apnConnectivityreq

OperationalD).

In order to prove that both state machines are

synchronized, we use the concept of weak

bisimulation.

3.2 Formal verification of Connectivity

Management models
Intuitively, in terms of observed behaviour, two

state machines have bi-similar relation if one state

machine displays a final result and the other state

machine displays the same result [26]. Strong bi-
similarity requires existence of homomorphism

between transitions in both state machines. In

practice, strong bi-similarity puts strong conditions

for equivalence which are not always necessary. For

example, internal transitions can present actions,

which are internal to the system (i.e. not
observable). In weak bi-similarity, internal

transitions can be ignored. The concept of weak bi-

similarity is used to study the modelling aspects of

M2M device registration.

We will use the following notations:

- s
а

→ s’ stands for the transition (s, a, s’);

- s
а

→ means that ∃ s’: s
а

→ s’;

- s

µ

⇒ sn , where µ = а1, а2, ..., аn : ∃ s1, s2, …, sn,

such that s
1а

→ s1 ...
nа

→ sn;

- s

µ

⇒ means that ∃ s’, such as s

µ

⇒ s’;

-
⇒

µ̂
means ⇒ if µ ≡ τ or

µ

⇒ otherwise,

where τ is one or more internal (invisible) actions.

Definition 2: Two labelled transition systems T =

(S, A, →, s0) and T’ = (S’, A, →’, s0’) are weakly bi-

similar (T~T’) if there is a binary relation U ⊆ S×S’

such that if s1 U t1 : s1 ⊆ S and t1 ⊆ S’ then ∀a ∈

Act:

- s1
⇒

a s2 implies ∃ t2 : t1 ⇒′
â

 t2 and s2 U t2;

- t1⇒′
a

 t2 implies ∃ s2: s1
⇒

a s2 and s2 U t2.

So, in order to prove that considered LTSs

expose equivalent behaviour, it is necessary to

identify a bi-similar relation between their states

that satisfies the above conditions.

Proposition: The labelled transition systems

CMS and CMD are weakly bisimilar.

Proof: To prove that both LTSs bisimulate each

other it is necessary to identify a bisimilar relation

between their states.

Let UDS = {(OperationalD, OperationalS),

(UpdateBearer, PreferredBearerAck),

(APNconfiguration, APNprofile)},

then:

1. For OperationalD ∃{
D

1τ ,
D

2τ } and for

OperationalS ∃ {
S

1τ ,
S

2τ ,
S

3τ } - setting

observation policy;

2. For OperationalD ∃{
D

7τ ,
D

9τ } and for

OperationalS ∃{
S

4τ } - periodic reporting of

signal strength and line voltage;

3. For OperationalD ∃{
D

8τ ,
D

9τ } and for

OperationalS ∃ {
S

4τ } – the same as in 2 but

triggered case;

4. For OperationalD ∃{
D

4τ } and for OperationalS ∃

{
S

15τ ,
S

16τ } - observation cancelation;

5. For OperationalD ∃{
D

3τ } and for OperationalS ∃

{
S

5τ ,
S

6τ } - network connectivity queries;

6. For OperationalD ∃{
D

5τ } and for OperationalS ∃

{
S

7τ } – preferred bearer selection;

7. For UpdateBearer ∃{
D

6τ } and for

PreferredBearerAck ∃{
S

8τ ,
S

9τ } – re-registration

after preferred bearer selection;

8. For OperationalD ∃{
D

10τ } and for OperationalS ∃

{
S

10τ } – creation a new APN profile;

9. For APNconfiguration ∃{
D

11τ ,
D

12τ ,
D

13τ } and for

APNprofile ∃ {
S

11τ ,
S

12τ ,
S

13τ ,
S

14τ } – re-

registration, APN activation and checking the

APN connectivity.

Therefore CMD and CMS are weakly bisimilar,

which means that both state machines, representing
the server and device views on connectivity

management, are synchronized..

WSEAS TRANSACTIONS on COMPUTERS Ivaylo Atanasov, Evelina Pencheva

E-ISSN: 2224-2872 5 Volume 16, 2017

4 Adding Intelligence to Device

Connectivity Management

4.1 OMA Trap Framework
The control logic for device connectivity

management is complex because the bearer

selection procedure may depend on multiple factors.

Connectivity management is a part of diagnostics

and monitoring function. A device can be remotely
invoked to execute a diagnostics related logic and to

return results. For the aims of connectivity

management, the remote server may employ a trap

mechanism to enable the device to capture and

report events and other relevant information related

to device connectivity. Each event that is specified

as a trap is assigned an identifier. If the device

supports a trap, it means that the device is capable

of monitoring the event and sending notifications

whenever it detects the event.

OMA DiagMon Trap Events specification

defines a number of standardized traps [27], [28].

OMA traps that may be used for connectivity

management are geographic traps, received power

trap, call drop trap, QoS trap, and data speed trap.

Geographic trap may be used for location based

bearer selection. It goes to active when a device

enters into a specific geographic area. Whenever

the device leaves that specific geographic area, the

trap goes to inactive. The received power trap may

be used for bearer selection based on received signal

strength at the device. It can helpful in connectivity

optimization process when the received power of

the device drops below the server-specific value.

Whenever a device’s received power drops below

an agent-specified value (TrapActivePower), it

causes this trap to go active. Alternatively, when

device senses power rises above another agent-

specified value (TrapInactivePower), it causes this

trap to go inactive. In cases that the trap goes active

or inactive, the device notifies the registered agent.

The device can have several instances of this kind of

trap to monitor various network types (e.g. WiFi,

WCDMA, LTE etc). Call drop trap may be used for

bearer selection based on data session drops which

occur in the predefined period. Similarly, QoS trap

may be used for bearer selection based on received
QoS at the device side. Different access

technologies have different QoS parameters that

maybe monitored. Data rate trap may be used for

bearer selection procedure to optimize the device’s

data rate.

OMA traps are defined as management objects.

Each trap management object has unique identifier

and a tree structure that allows manipulation of its

parameters.

The connectivity management control logic can

query the device about the connectivity parameters,

i.e. the used network bearer, available network

bearers, signal strength as well as network identities.

Following preliminary defined policies, the

connectivity management logic may decide on the

most appropriate bearer to be used, based on

diagnostics and monitoring information received by

any of the above described traps.

Due to the complexity of device connectivity

management, agent technology may be used.

4.2 Agent technology for device connectivity

management

An agent is a thing that perceives from and acts on

an M2M device in such way that the device goes

through a sequence of states maximizing the

performance measures. The problem in M2M device

connectivity management includes a goal and set of

means to achieve the goal. The goal is for the device

to use the most appropriate network bearer based on

policies. The Connectivity Management Agent

reasons about and follows actions in order to

achieve the goal. The process of reasoning what

means it can do is called search. The Connectivity

Management Agent is goal-based and solves the

problem deciding what to do by finding sequences

of actions that lead to the desirable operational state

of M2M devices with cellular or wireless

connectivity. The agent actions can be viewed as

transitions between M2M device states.

The problem solving of an M2M Connectivity
Management Agent includes four stages: goal

formulation, problem formulation, searching

solution and execution. On receiving a diagnostics

and monitoring trap, the Agent explores the current

situation and draws the goal which helps to organize

behaviour by rejecting actions that result in a failure

to achieve the operational state of the M2M device.

The Agent draws the problem by deciding what

transitions and states to consider following the

operational state of M2M device. In general, an

M2M Connectivity Management Agent faces with

several options of possible sequences of actions

because it does not know enough about the current

device state. For example, there may be different

reasons for device not answering (a connectivity

problem, low battery level, a firmware failure, etc.).

The Agent searches the solution space by examining

different sequences of action. Once the solution is

WSEAS TRANSACTIONS on COMPUTERS Ivaylo Atanasov, Evelina Pencheva

E-ISSN: 2224-2872 6 Volume 16, 2017

found, the agent carries out the identified actions in

the execution stage.

The Connectivity Management Agent in a role of

LWM2M server is responsible for observation of

device connectivity parameters and selection of best

bearer for the device. We assume that the devices’

operator has determined preferred bearers for both

specific and normal areas. Each device supports

traps, which means that the device is capable of

monitoring the event and sending notifications

whenever it detects the event. The Connectivity

Management Agent has to register for the capability

in order to use it.

One of the policies of choosing the best network

bearer may be based on device location. If the

device is in a specified area and the signal strength

of the preferred bearer in area is higher than the

specified value of TrapActivePower, then the best

bearer is the preferred one for this area. When the

device is out of the specified area and the signal

strength of the preferred bearer out of area is higher

than the specified value of TrapActivePower, then

the best bearer is the preferred out of area one. If the

signal strength of the preferred bearer is lower than

the specified value of TrapActivePower, then the

best bearer is the available bearer with highest

signal strength.
The logic behind the Connectivity Management

Agent behaviour might be described as a temporal

sequence. On successful device registration, the

agent configures geographic traps and received

power traps. The agent queries the device about its

location and about connectivity parameters. Based

on the location, the signal strength of the used

network bearer and available bearers, and the best

bearer policy the agent performs a bearer selection

procedure for the device. After selecting the best

bearer the device is in operational state. During this

state, the device may send notifications about traps

in case of occurrence of the respective event and the

agent performs the bearer selection procedure.

Fig.3 shows a simplified model of Connectivity

Management Agent where the bearer selection logic

is based on device location and received power at

the device side. Cognitive behaviour is required

when the signal strength of the used bearer is bad

but there are no available other bearers.

4.3 Knowledge-base model for device

connectivity management
The device and agent have a client-server

relationship. We use predicates to express the facts,

to show the exchange of messages between the

client and server, and to describe the device states as

seen by the agent.

Excellent(b, x) becomes true when the received

signal strength of bearer b by the device x is higher

than the specified value of TrapInactivePower.

Good(b, x) becomes true when the received

signal strength of bearer b by the device x is

between the specified values of TrapActivePower

and TrapInactivePower.

If the device senses signal strength of b below

the specified value of TrapActivePower then the

Bad(b, x) gets true.

In case the device x uses bearer b then Used(b, x)

is true.

InArea(a, x) is true when the device x is in the

area a.

Predicates PreferredIn(b, a) and PreferredOut(b,

a) are true when bearer b is preferred bearer in area

a and out of area a respectively.

The express the fact that bearer b is available for

device x the Available(b, x) is used.

When there are no available bearers for x except

the used one then AvailableEmpty(x) is true.

BadPreferred(x) is true the received signal

strength of preferred bearer by the device x is bad.

Best(b, x) is true if the received signal strength of

b is the maximal one for device x.
PowerTrapActive(x, b) gets true when the power

trap goes active and the signal strength of used

bearer b by device x becomes bad.

PowerTrapInactive(x, b) gets true when the

power trap goes inactive and the signal strength of

used bearer b by device x becomes excellent.

The behaviour of the Connectivity Management

Agent is described by temporal logic. We use a

minimal set of standard notations G for always, U

for until, and N for next.

The agent considers the following statement

when explores the current device state, formulates

the problem, searches the solution and performs

actions.

The device x is unregistered until a registration

request is received:

G(Unregistered(x)→⊤U regreq(x)) (26)

After successful device registration, the agent

configures geo trap and power trap.

If the device x is unregistered and a registration

request is received then a registration response is

sent, and a request for geo trap configuration is sent,

and the state becomes WaitGeoAck:

G(Unregistered(x)∧regreq(x)→regres(x)∧

¬BadPreferred(x)∧configGeoTrapres(x)∧

NWaitGeoAck(x)) (27)

WSEAS TRANSACTIONS on COMPUTERS Ivaylo Atanasov, Evelina Pencheva

E-ISSN: 2224-2872 7 Volume 16, 2017

Fig.3 A simplified model of Connectivity Management Agent (bearer selection is driven by device location and

received power at the device side)

The device x is in WaitGeoAck state until the

agent receives a response of geo trap configuration:

G(WaitGeoAck(x)→⊤U configGeoTrapres(x)) (28)

If the state is WaitGeoAck and a response of geo

trap configuration is received then a request for

configuration of power trap is sent and the state

becomes WaitPowerAck:

G(WaitGeoAck(x)∧configGeoTrapres(x)→

configPowerTrapreq(x)∧ NWaitPowerAck(x)) (29)

The device x is in WaitPowerAck state until the

agent receives a response of power trap

configuration:

G(WaitPowerAck(x)→

⊤UconfigPowerTrapres(x)) (30)

After successful configuration of geo and power

traps the agent requests the device location and the

device connectivity parameters.

G(WaitPowerAck(x)∧configPowerTrapres(x)→

getLocationreq(x)∧NWaitLocation(x)) (31)

The device x is in WaitLocation state until a

location response is received.

G(WaitLocation(x)→⊤U getLocationres(x)) (32)

The location response will allow the agent to

determine whether the device x is in are a.

G(WaitLocation(x)∧getLocationres(x)→

connParametersreq(x)∧N WaitConnectivity(x)) (33)

The device x is in WaitConnectivity state until a

connectivity parameters response is received. The

connectivity parameters response will contain the

signal strength of used bearer b by device x and

available bearers for device x.

G(WaitConnectivity(x)→

⊤UconnParametersres(x)) (34)

Equations from (35) to (38) refer to bearer

selection procedure when the device x is in area a.

WSEAS TRANSACTIONS on COMPUTERS Ivaylo Atanasov, Evelina Pencheva

E-ISSN: 2224-2872 8 Volume 16, 2017

When the used bearer of x is b, and b is the

preferred bearer in area a, and the signal strength of

b is excellent or good, then the state becomes

Operational:

G(WaitConnectivity(x)∧connParametersres(x)∧

InArea(a, x)∧PreferredIn(b, a)∧Used(b, x)

∧(Excellent(b, x)∨Good(b, x))→

NOperational(x)) (35)

When the used bearer b of x is the preferred one,

and the signal strength of b is bad, and c is available

bearer for device x and c is the best bearer then a

request to select bearer c is sent, and the state

becomes WaitBearerAck:

G(WaitConnectivity(x)∧connParametersres(x)∧

InArea(a,x)∧PreferredIn(b,a)∧Used(b,x)∧Bad(b,x)

∧ Available(c, x)∧Best(c, a) → selectreq(x,c)∧

BadPreferred(x)∧NWaitBearerAck(x)) (36)

The bearer c selection procedure takes place

when c is available and preferred bearer, and the

received signal strength of c by device x is not bad:

G(WaitConnectivity(x)∧connParametersres(x)∧

InArea(a,x)∧Used(b,x)∧¬PreferredIn(b,a)∧

Available(c,x)∧PreferredIn(c, a)∧

¬BadPreferred(x)→selectreq(x, c)∧

NWaitBearerAck(x)) (37)

When the used bearer of x is not the preferred

one, and c is available and preferred bearer in area

a, and the received signal strength of c by device x
is bad, and d is the best available bearer then the

agent initiates bearer d selection procedure:

G(WaitConnectivity(x)∧connParametersres(x)∧

InArea(a, x)∧ Used(b,x)∧¬PreferredIn(b,a)∧

Available(c,x)∧PreferredIn(c,a)∧BadPreferred(x)∧

Best(d,a)∧ Available(d,x) → selectreq(x,d)∧

NWaitBearerAck(x)) (38)

Equations from (39) to (42) refer to bearer selec-

tion procedure when the device x is out of area a.

When the used bearer b of x is the preferred one,

and the signal strength of b is excellent or good,

then the state becomes Operational:

G(WaitConnectivity(x)∧connParametersres(x)∧

¬InArea(a, x)∧PreferredOut(b, a) ∧Used(b,

x)∧ (Excellent(b, x)∨Good(b, x)) →

NOperational(x)) (39)

When the used bearer b of x is the preferred one,

and the signal strength of b is bad, and c is the best

available bearer then a bearer c selection procedure

take place:

G (WaitConnectivity(x)∧connParametersres(x)∧

¬InArea(a,x)∧PreferredOut(b,a)∧Used(b,x)∧

Bad(b,x)∧ Available(c,x)∧Best(c,a) →

selectreq(x,c)∧BadPreferred(x)∧

NWaitBearerAck(x)) (40)

In case the used bearer b of x is not the preferred

one, and c is available preferred bearer, and the
received signal strength of c by device x is not bad,

then the agent request selection of bearer c:

G(WaitConnectivity(x)∧connParametersres(x)∧

¬InArea(a,x)∧Used(b,x)∧¬PreferredOut(b,a)∧

Available(c, x)∧PreferredIn(c, a)∧

¬BadPreferred(x)→selectreq(x,c)∧

NWaitBearerAck(x)) (41)

When the signal strength for the preferred bearer

c is bad and d is the best available bearer then the

agent request selection of bearer d:

G(WaitConnectivity(x)∧connParametersres(x) ∧

¬InArea(a,x)∧Used(b,x)∧¬PreferredOut(b,a) ∧

Available(c,x)∧ PreferredIn(c, a)∧

BadPreferred(x)∧Best(d,a)∧ Available(d,x) →

selectreq(x, d)∧NWaitBearerAck(x)) (42)

When there are no available bearers for device x,

and the received signal strength of b by device x is

good the state becomes Operational:

G(WaitConnectivity(x)∧connParametersres(x)∧Use

d(b,x) ∧(Excellent(b, x)∨Good(b, x))∧

AvailableEmpty(x)→ N Operational(x)) (43)

The agent considers the device x unregistered

when the received signal strength of the used bearer

b is bad and there are no available bearers:

G(WaitConnectivity(x)∧connParametersres(x)∧

Used(b,x)∧Bad(b,x)∧AvailableEmpty(x)→

 NUnregistered(x)) (44)

The device x is in WaitBearerAck state until the

agent receives a response of bearer selection

procedure:

G(WaitBearerAck(x)→

⊤UselectBearerreq(x, b)) (45)

When a beater selection response is received, the

agent waits for device re-registration:

G(WaitBearerAck(x)∧selectBearersres(x)→

 NWaitReregistration(x)) (46)

The device x is in WaitReregistration state until

the agent receives a registration request:

G(WaitReregistration(x)→⊤Uregreq(x)) (47)

Upon successful device re-registration the agent

request device location:

G(WaitReregistration(x)∧regreq(x)→regres(x)∧

¬BadPreferred(x)∧getLocationreq(x)∧

NWaitLocation(x)) (48)

The device x is in Operational state until the

agent receives a notification about signal strength

WSEAS TRANSACTIONS on COMPUTERS Ivaylo Atanasov, Evelina Pencheva

E-ISSN: 2224-2872 9 Volume 16, 2017

change of used bearer by x or a notification about

change of x location:

G(Operational(x)→

⊤U (notifyPowerreq(x)∨notifyGeoreq(x))) (49)

In Operational state, when a notification about
location change of device x is received, the agent

sends a response of geo trap notification and

requests device connectivity parameters:

G(Operational(x)∧notifyGeoreq(x)→

notifyGeores(x)∧connParametersreq(x)∧

NWaitConnectivity(x)) (50)

When the power trap becomes inactive in

Operational state, the agent sends a response of

power trap notification and the state remains

Operational:

G(Operational(x)∧notifyPowerreq(x,b)∧

PowerTrapInactive(x)→notifyPowerres(x,b)∧

NOperational(x)) (51)

Activation of power trap in Operational state

means that the signal strength becomes bad and the

agent sets the margin timer:

G(Operational(x)∧notifyPowerreq(x,b)∧

PowerTrapActive(x)→notifyPowerres(x,b)∧

setTmargin(x)∧NWaitMargin(x)) (52)

The device x is in WaitMargin state until the

agent receives a notification about signal strength

change of used bearer by x or a notification about

change of x location:

G(WaitMargin(x)→⊤U(notifyPowerreq(x,b)∨

notifyGeoreq(x)∨Tmargin(x))) (53)

Notification that the power trap is inactive in

WaitMargin state means that the signal strength

becomes excellent and the agent and resets the

margin timer:

G(WaitMargin(x)∧notifyPowerreq(x,b)∧

PowerTrapInactive (x)→notifyPowerres(x,b)∧

resetTmargin(x)∧NOperational(x)) (54)

In WaitMargin, when the margin timer expires,

the agent sends requests device connectivity

parameters:

G(WaitMargin(x)∧Tmargin(x) →

connParametersreq(x)∧NWaitConnectivity(x)) (55)

The device may change its location while it is in

WaitMargin state:

G(WaitMargin(x)∧notifyGeoreq(x)→

notifyGeores(x)∧NWaitMargin(x)) (56)

When the device is unregistered due to

connectivity problems, it may wait for some time

and try to register again.

5 Model validation
In order to validate the models, we defined OMA

management objects related to device connectivity

management as resources in REST architecture,

following the ETSI approach [29].

Fig.4 A part of simplified structure of device

connectivity management object

Representational State Transfer (REST) is an

architectural style that applies principles of

distributed systems for loose coupling of

components and stateless interactions. In REST, a

distributed application (e.g. for connectivity

management) is composed of resources, which are

stateful pieces of information residing on one or

WSEAS TRANSACTIONS on COMPUTERS Ivaylo Atanasov, Evelina Pencheva

E-ISSN: 2224-2872 10 Volume 16, 2017

more servers. Resource manipulation is through a

uniform interface that is composed of four basic

interactions: CREATE, READ, UPDATE and

DELETE. The most common implementation of

REST is HTTP, whereby the REST primitives are

mapped onto HTTP methods, HTTP POST, HTTP

GET, HTTP PUT and HTTP DELETE respectively.

We defined resources representing the device

connectivity management objects at the client and

server sides. Fig.4 shows a part of the resource

structure. The structure is simplified.

The validation process is based on a suit of unit

tests that allow comparing the expected message

exchange traces to the observed ones.

For illustrative purposes, the Google’s Advanced

REST client [30] is used in order to depict two basic

operations READ and UPDATE.

Fig.5 shows the GET request about query geo

trap configuration for Wi-Fi access technology and

the result is in JSON format.

Fig.6 shows the HTTP PUT method for updating

the geo trap parameters and the respective response.

Fig.5 HTTP GET request for query geo trap

configuration parameters

Fig.6 HTTP PUT request for update of geo trap

configuration parameters

6 Conclusion
Automation of procedures related to M2M device

connectivity management reduces operational costs.

The basic paper contribution is the proposition of

device connectivity management model, which may

be shared by different applications. We model

functions for optimization of bearer selection

procedure. These functions may be exposed to

applications through a set of open interfaces. The

model is compliant to OMA LWM2M device
management framework. It is based on device

capabilities to provide connectivity information

such as supported access technologies, used bearer,

signal strength, device’s location. The model

reflects both client (device) and server (cloud) views

on connectivity management. It is formally verified

using the mathematical methods of bi-simulation.

The model is expanded with features that allow

designing of autonomous agent. The agent follows a

goal related to device connectivity optimization,

draws a problem on occurrence of monitoring

events and reasons on appropriate actions that have

to be executed.

Our future work will include study on service

interaction in the context of M2M device

management. While the service interaction problem

is thoroughly studied for telecommunication

services, there is a lack of enough knowledge on the

WSEAS TRANSACTIONS on COMPUTERS Ivaylo Atanasov, Evelina Pencheva

E-ISSN: 2224-2872 11 Volume 16, 2017

kind of service interactions that occur in the world

of M2M communications. Undesired service

interaction manifests itself as a function of services

which is neither exactly the sum of every service

nor behaves as expected. Autonomic resolution of

service interactions during service execution is

critical task for service continuity.

References:

[1] C. Pereira, A. Aguiar, Towards Efficient

Mobile M2M Communications: Survey and

Open Challenges, Sensors no. 14, 19582-

19608; 2014, pp.19582-19608.

[2] J. Holler, V. Tsiatsis, C. Mulligan, S. Avesand,

S. Karnouskos, D. Boyle, IoT Architecture –

State of the Art, In edited book From Machine-

to-Machine to the Internet of Things:

Introduction to a New Age, Elsevier, 2014,

pp.145-165.

[3] M. Elkhodr, S. Shahrestani, Hon Cheung, The

Internet of Things: New Interoperability,

Management and Security Challenges,

International Journal of Network Security & Its

Applications (IJNSA),vol.8, No.2, 2016.

[4] H. Park, H Kim, H Joo, J.S. Song, Recent

advancements in the Internet-of-Things related
standards: A oneM2M perspective, ICT

Express, Special Issue on ICT Convergence in

the Internet of Things (IoT), vol.2, issue 3,

2019, pp.126-129.

[5] G. Klas, F. Rodermund, Z. Shelby, S. Akhouri,

J. Höller, Lightweight M2M: Enabling Device

Management and Applications for the Internet

of Things, 2014, Available at:

http://archive.ericsson.net/service/internet/pico

v/get?DocNo=1/28701-FGB101973.

[6] Open Mobile Alliance, Enabler Test

Specification for Lightweight M2M Candidate

Version 1.0 – 03 Feb 2015, OMA-ETS-

LightweightM2M-V1_0-20150203-C

[7] J. Sachs, N. Beijar, P. Elmdahl, J. Melen, F.

Militano, P. Salmela, Capillary networks – a

smart way to get things connected, Ericsson

Review, no. 8, 2014, pp. 2-8.

[8] A. Sehgal, V. Perelman, S. Kuryla, J.

Schönwälder. Management of Resource

Constrained Devices in the Internet of Things”

IEEE Communications Magazine, December

2012, pp.144-149.

[9] Z. Sheng, H. Wang, C. Yin, X. Hu, S. Yang, V.

Leung, Lightweight Management of Resource-

Constrained Sensor Devices in Internet of

Things, Internet of Things Journal, Vol.2, Issue

5, 2015, pp.402-411.

[10] D. Schulz, R. Gitzel, Seamless maintenance -

Integration of FDI Device Management &

CMMS, IEEE Conference on Emerging

Technologies & Factory Automation (ETFA),

2013, pp.402-407.

[11] C. S. Shih. C. T. Chou, K. J. Lin, B. L. Tsai, C.

H Lee, D. Cheng, C. J. Chou, Out-of-Box

Device Management for Large Scale Cyber-

Physical Systems, IEEE International

Conference on Internet of Things (iThings),

and Green Computing and Communications

(GreenCom), and Cyber, Physical and Social

Computing (CPSCom), 2014, pp.402 – 407.

[12] V. Cackovic, Z. Popovic, Device Connection

Platform for M2M communications, IEEE

International Conference on Software,

Telecommunications and Computer Networks

(SoftCOM), 2012, pp.1-7.

[13] S. Datta, C. Bonnet, Smart M2M Gateway

Based Architecture for M2M Device and

Endpoint Management, IEEE International

Conference on Internet of Things (iThings),

and Green Computing and Communications

(GreenCom), and Cyber, Physical and Social

Computing (CPSCom), 2014, pp.61-68.

[14] A. A. Corici, R. Shrestha, G. Carella, A.

Elmangoush, R. Steinke, T. Magedanz, A
solution for provisioning reliable M2M

infrastructures using SDN and device

management, International Conference on

Information and Communication Technology

(ICoICT), 2015, pp.81-86.

[15] E. J. Kim, S. Youm, Machine-to-machine

platform architecture for horizontal service

integration, EURASIP Journal on Wireless

Communications and Networking, 2013,

doi:10.1186/1687-1499-2013-79, Available at:

http://jwcn.eurasipjournals.com/content/2013/1

/79

[16] T. Sakamoto and K. Nimura, "Dynamic

connection management between Web apps

and peripheral devices by Web driver," 2016

IEEE International Conference on Pervasive

Computing and Communication Workshops

(PerCom Workshops), Sydney, NSW, 2016, pp.

1-6.

[17] D. Kyriazisa, T. Varvarigoua, Smart,

autonomous and reliable Internet of Things,

International Workshop on Communications

and Sensor Networks (ComSense’2013),

International Workshop on Communications

and Sensor Networks, ComSense’2013,

Procedia Computer Science, 2013, pp. 442 –

448.

WSEAS TRANSACTIONS on COMPUTERS Ivaylo Atanasov, Evelina Pencheva

E-ISSN: 2224-2872 12 Volume 16, 2017

[18] S. Vassaki, G. Pitsiladis, C. Kourogiorgas, M.

Poulakis, A. Panagopoulos, G. Gardikis, S.

Costicoglou, Satellite-based sensor networks:

M2M sensor communications and connecti-

vity analysis, International Conference on

Telecommunications and Multimedia

(TEMU), Greece, 2014, pp.132–137.

[19] K. Misura, M. Zagar, Internet of things cloud

mediator platform, International Convention on

Information and Communication Technology,

Electronics and Microelectronics (MIPRO),

2014, pp.1052-1056

[20] M. Ruta, F. Scioscia, G. Loseto, E. Di Sciascio,

Semantic-Based Resource Discovery and

Orchestration in Home and Building

Automation: A Multi-Agent Approach, IEEE

Transactions on Industrial Informatics, vol. 10,

no. 1, 2014, pp.730-741.

[21] S. Frey, A. Diaconescu, D. Menga1, I.

Demeure, Towards a generic architecture and

methodology for multi-goal, highly-distributed

and dynamic autonomic systems, International

Conference on Autonomic Computing (ICAC),

2013, pp.201-212.

[22] Y. Wang, Formal Cognitive Models of Data,

Information, Knowledge, and Intelligence,

WSEAS Transactions on Computers, 2015,
Vol.14, pp.770-781.

[23] G. Cabodi, P. Camurati, C. Loiacono, G.

Pipitone, F. Savarese, D. Vendraminetto,

Formal Verification of Embedded Systems for

Remote Attestation, WSEAS Transactions on

Computers, 2015, Vol.14, pp.760-769.

[24] G. D’Angelo, S. Ferretti, V. Ghini, Simulation

of the Internet of Things. Proceedings of the

IEEE 2016 International Conference on High

Performance Computing and Simulation

(HPCS 2016)”, pp1-8

[25] Qazi Mamoon Ashraf, Mohamed Hadi

Habaebi, Md. Rafiqul Islam, TOPSIS-Based

Service Arbitration for Autonomic Internet of

Things, IEEE Access, vol.4, 2016, pp.1313-

1320.

[26] L. Fuchun, Z. Qiansheng, C. Xuesong,

Bisimilarity control of decentralized

nondeterministic discrete-event systems,

International Control Conference CCC, 2014,

pp.3898-3903.

[27] Open Mobile Alliance (2009). Diagnostics and

Monitoring management Object, OMA-TS-

DiagMonTrapMO-V1_0-20090414-C

[28] Open Mobile Alliance (2013). Diagnostics and

Monitoring Trap Events Specifications, 2013,

OMA-TS-DiagonTrapEvents-V1_2-20131008-

A

[29] ETSI TS 102 690 Machine-to-Machine

communications (M2M); Functional

architecture. v1.1.1, 2011.

[30] Google Advanced REST client, 2016,

Available at: https://chrome.google.com/web

store/detail/advanced-rest-client/hgmloofddffdn

phfgcellkdfbfbjeloo

WSEAS TRANSACTIONS on COMPUTERS Ivaylo Atanasov, Evelina Pencheva

E-ISSN: 2224-2872 13 Volume 16, 2017

