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Abstract— In construction projects, time, cost and quality are the most important factors to be considered. In the present 
study a hybrid genetic algorithm is used to solve this multiobjective time-cost-quality optimization problem. The 
chromosome representation of the problem is based on random keys. The schedules are constructed using a priority rule in 
which the priorities are defined by the genetic algorithm. The execution mode of each activity is selected by the genetic 
algorithm. Schedules are constructed using a procedure that generates parameterized active schedules. The results indicate 
that this approach could assist decision-makers to obtain good solutions for project duration, cost and incorporating quality 
with minimum function evaluation. 
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1 Introduction and Background 
Construction projects are found throughout business and areas 
such as manufacturing facilities, infrastructure development 
and improvement, and residential and commercial building. 

As projects are unique in nature, the creation of a schedule 
for construction tasks by a planner, for example, should 
consider an array of conditions such as technological and 
organizational methods and constraints, as well as the 
availability of resource to ensure that a client’s needs and 
requirements in terms of time, cost and quality are met 
(Jaskowski and Sobotka [44]). 

In a construction project, there are two main factors, such as 
project duration and project cost. The activity duration is a 
function of resources (i.e. crew size, equipments and 
materials) availability. On the other hand, resources demand 
direct costs. Therefore, the relationship between project time 
and direct cost of each activity is a monotonously decreasing 
curve. It means if activity duration is compressed then that 
leads to an increase in resources and so that direct costs. But, 
project indirect costs increase with the project duration. In 
general, for a project, the total cost is the sum of direct and 
indirect costs and exists an optimum duration for the least 
cost, see Fig.1. Hence, relationship between project time and 
cost is trade-off [36]. 

Since the cost and time are two of the most important 
objectives which are easily quantified in a construction 
project, time-cost tradeoff problem has been researched for a 

long time. Several approaches have been used to solve the 
construction scheduling problem and they can be classified as 
mathematical, heuristic and search methods. 

 
Several mathematical models such as linear programming 

(Kelley [12]; Hendrickson and Au [4]; Pagnoni [2]), integer 
programming, or dynamic programming (Butcher [33]; 
Robinson [8]; Elmaghraby [27]; De et al. [25]) and LP/IP 
hybrid (Liu et al. [21]; Burns et al. [29]), Meyer and Shaffer 
[31] and Patterson and Huber [14] use mixed integer 
programming. However, for large number of activity in 
network and complex problem, integer programming needs a 
lot of computation effort (Feng et al. [6]).  

 
Heuristic algorithms are not considered to be in the category 

of optimization methods. They are algorithms developed to 
find an acceptable near optimum solution. Heuristic methods 
are usually algorithms easy to understand which can be 
applied to larger problems and typically provide acceptable 
solutions (Hegazy [30]). However, they have lack 
mathematical consistency and accuracy and are specific to 
certain instances of the problem (Fondahl [19]; Prager [32]; 
Siemens [23] and Moselhi [24]) are some of the research 
studies that have utilized heuristic methods for solving TCO 
problems. 

 
Some researchers have tried to introduce evolutionary 
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algorithms to find global optima such as genetic algorithm 
(GA) (Feng et al. [6]; Gen and Cheng [22]; Zheng et al. [10]; 
Zheng and Ng [9]; Mendes [39]); the particle swarm 
optimization algorithm (Yang [11]), ant colony optimization 
(ACO) (Xiong and Kuang [34]; Ng and Zhang [29]; Afshar et 
al. [1]) and harmony search (HS) (Geem [36]). 

 
Quality is an important parameter correlating highly with 

time and cost parameters. But it is not a quantitative parameter 
in nature, practical time-cost-quality tradeoff models are 
seldom developed from previous research works of the 
literature [38].  

 
Babu and Suresh [40] proposed a framework to study the 

tradeoff among time, cost, and quality using three interrelated 
linear programming models. Khang and Myint [41] applied 
the linear programming models in an actual cement factory 
construction project, which was depicted by a 52-activity 
CPM incorporated with their time, cost, and quality. Tareghian 
and Taheri [42] developed a solution procedure to study the 
tradeoffs among time, cost and quality in the management of a 
project. This problem assumes the duration and quality of 
project activities to be discrete, non-increasing functions of a 
single non-renewable resource. Three interrelated integer 
programming models are developed such that each model 
optimizes one of the given entities by assigning desired 
bounds on the other two. 

 
Hu and He (37) presented a time-cost-quality optimization 

model that enables managers to optimize multiobjectives. The 
model is from the project breakdown structure method where 
task resources in a construction project are divided into a 
series of activities and further into construction labors, 
materials, equipment, and administration. The resources 
utilized in a construction activity would eventually determine 
its construction time, cost, and quality, and a complex time-
cost-quality trade-off model is finally generated based on 
correlations between construction activities. A genetic 
algorithm tool is applied in the model to solve the 
comprehensive nonlinear time-cost-quality problems. 

 
Narayanan and Suribabu [38] developed a differential 

evolution algorithm to solve the multiobjective time-cost-
quality optimization problem. 

 
El-Rayes and Kandil [43] presented a multiobjective model 

to transform the traditional two-dimensional time-cost tradeoff 
analysis to an advanced three-dimensional time-cost-quality 
trade-off analysis. The model is developed as a multiobjective 
genetic algorithm to provide the capability of quantifying and 
considering quality in construction optimization. An 
application example is analyzed to illustrate the use of the 
model and demonstrate its capabilities in generating and 
visualizing optimal tradeoffs among construction time, cost, 
and quality.  

Although the objectives of cost and time might be 
mentioned frequently by natural numbers, the objective of 

quality is seldom described in quantities, which worsens 
numerical tradeoff among project time, cost, and quality [38]. 
This paper will present a new solution for solving the time-
cost-quality tradeoff problem using a hybrid genetic algorithm 
with an evaluation function based on the work of Mendes [39].  

 
 

2 Problem description and Formulation 
Project time-cost-quality tradeoff problem (PTCQTP) can be 
defined as follows: a project is represented by an activity-on-
node network with n+2 activities that is an acyclic digraph G 
= (A), where A = {0, 1,. . . , n+1} is the set of nodes 
(construction activities). In the network both node (0) and 
node (n+1) are dummy activities. P is the set of all paths in the 
activity-on-node network, starting from activity (0) and ending 
at activity (n+1) and �� is the set of activities contained in path 
� ∈ �. 

Each activity i ∈ A is associated with its time Ti, cost Ci, and 
quality Qi. The project time-cost-quality performance is 
essentially formed from each activity’s time, cost, and quality, 
respectively [37]. 

To model the multiobjective time-cost-quality optimization 
problem an evolutionary technique is used incorporating a 
genetic algorithm. 

With evolutionary techniques being used for single-
objective optimization for over two decades, the incorporation 
of more than one objective in the fitness function has finally 
gained popularity in the research [3]. 

In principle, there is no clear definition of an ‘‘optimum’’ in 
multiobjective optimization (MOP) as in the case of single-
objective issues; and there even does not necessarily have to 
be an absolutely superior solution corresponding to all 
objectives due to the incommensurability and conflict among 
objectives. Since the solutions cannot be simply compared 
with each other, the ‘‘best’’ solution generated from 
optimization would correspond to human decision-makers 
subjective selection from a potential solution pool, in terms of 
their particulars [10]. 

The classical methods reduce the MOP to a scalar 
optimization optimization by using multiobjective weighting 
(MOW) or a utility function (multiobjective utility analysis). 
Multiobjective weighting allows decisions makers to 
incorporate the priority of each objective into decision 
making. Mathematically, the solutions obtained by equally 
weighting all objectives may provide the least objective 
conflicts, but in most cases, each objective is first optimized 
separately and the overall objective value is evaluated 
depending on the weighting factors. The weakness of MOW is 
that the overall optimum is usually at the dominating objective 
only [6].  

In a certain way we can say that the work of Zadeh [20] is 
the first to advocate the assignment of weights to each 
objective function and combined them into a single-object 
function.  

 
In this paper the objective function expressing the cost, time 

and quality of the project can be expressed in the following 
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where, 
 
Wt, Wc and Wq are the new adaptive weights for time, cost and quality given by:
 

; ; .t t c c q qW gene W gene W gene= = =

 

maxC = maximal value for total cost in the current chromosome; 

maxT = maximal value for time in the current chromosome; 

minC = minimal value for total cost in the initial population;

minT = minimal value for time in the initial population;

C     = represents the total cost of the xth 

T   = represents the time of the xth solution in current chromosome;

maxQ = maximal value for quality in the current chromosome; 

minQ = minimal value for quality in the current chromosome; 

Q   = represents the quality of the xth solution in current chromosome.

 
 
 

3 The approach 
The approach presented in this paper is based on a genetic 
algorithm to perform its optimization process.
architecture of approach. 

The approach combines a genetic algorithm, a schedule 
generation scheme and a local search procedure. The genetic 
algorithm is responsible for evolving the chromosomes which 
represent the priorities of the activities. 

For each chromosome the following 
applied: 

 

1) Transition parameters - this phase is responsible 
for the process transition between first level and 
second level; 

2) Schedule parameters - this phase is responsible for 
transforming the chromosome supplied by the 
genetic algorithm into the priorities of the 
activities and delay time; 

3) Schedule generation - this phase makes use o
priorities and the delay time and constructs 
schedules; 

4) Schedule improvement - this phase makes use of a 
local search procedure to improve the solution 
obtained in the schedule generation phase.

 
After a schedule is obtained, the quality is 

feedback to the genetic algorithm. Fig
sequence of phases applied to each chromosome. Details about 

 

 
 

maxmin min

max min max min max min
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adaptive weights for time, cost and quality given by: 

; ; .t t c c q qW gene W gene W gene  

= maximal value for total cost in the current chromosome;  

= maximal value for time in the current chromosome;  

= minimal value for total cost in the initial population; 

= minimal value for time in the initial population; 
th solution in current chromosome; 

solution in current chromosome; 

= maximal value for quality in the current chromosome;  

= minimal value for quality in the current chromosome;  

solution in current chromosome. 

The approach presented in this paper is based on a genetic 
algorithm to perform its optimization process. Fig. 1 shows the 

combines a genetic algorithm, a schedule 
ocedure. The genetic 

algorithm is responsible for evolving the chromosomes which 

For each chromosome the following four phases are 

this phase is responsible 
ition between first level and 

this phase is responsible for 
transforming the chromosome supplied by the 
genetic algorithm into the priorities of the 

this phase makes use of the 
priorities and the delay time and constructs 

this phase makes use of a 
local search procedure to improve the solution 
obtained in the schedule generation phase. 

After a schedule is obtained, the quality is processed 
feedback to the genetic algorithm. Fig. 1 illustrates the 
sequence of phases applied to each chromosome. Details about 

each of these phases will be presented in the next sections.
 
 

 

Fig. 1. Architecture of the approach.

 
 

) (1)

 

 

each of these phases will be presented in the next sections. 

 

Architecture of the approach. 
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3.1 GA Transition Process 

The Genetic Algorithms (GAs) are search algorithms which 
are based on the mechanics of natural selection and genetics to 
search through decision space for optimal solutions. One 
fundamental advantaged of GAs from traditional methods is 
described by Goldberg [7]: in many optimization methods, we 
move gingerly from a single solution in the decision space to 
the next using some transition rule to determine the next 
solution. 

First of all, an initial population of potential solutions 
(individual) is generated randomly. A selection procedure 
based on a fitness function enables to choose the individual 
candidate for reproduction. The reproduction consists in 
recombining two individuals by the crossover operator, 
possibly followed by a mutation of the offspring. Therefore, 
from the initial population a new generation is obtained. From 
this new generation, a second new generation is produced by 
the same process and so on. The stop criterion is normally 
based on the number of generations. 

The GA based-approach uses a random key alphabet U (0, 
1) and an evolutionary strategy identical to the one proposed 
by Goldberg [7].  

Each chromosome represents a solution to the problem and 

it is encoded as a vector of random keys (random numbers). 
Each solution encoded as initial chromosome (first level) is 
made of mn+n genes where n is the number of activities and m 
is the number of execution modes, see Fig. 2.  

The called first level as the capacity to solving the multi-
mode resource constrained project scheduling problem 
(MRCPSP) [16, 18]. 

In this case of study we do not consider the requirements to 
the type and number of resources needed for construction 
mode for each activity as well as the maximum number of 
available resources. 

The transition process between first level and second level 
consists in choosing the option or construction mode mj for 
each activity j. Using this process we obtain the solution 
chromosome (second level) composed by 2n genes+3.  

The called second level as the capacity to solving the 
resource constrained project scheduling problem (RCPSP) [16, 
18].  

In this case of study we do not consider the requirements to 
the type and number of resources needed for each activity as 
well as the maximum number of available resources. 

 

 

 

Fig. 2. Chromosome structure. 

After, we evaluate the quality (fitness) of the solution 
chromosome. 

 
3.2 GA Decoding 

A real-coded GA is adopted in this paper. Compared with the 
binary-code GA, the real-coded GA has several distinct 
advantages, which can be summarized as follows (Y.-Z. Luo 
et al. [35]): 

• It is more convenient for the real-coded GA to denote 
large scale numbers and search in large scope, and 

thus the computation complexity is amended and the 
computation efficiency is improved; 

• The solution precision of the real-coded GA is much 
higher than that of the binary-coded GA; 

• As the design variables are coded by floating 
numbers in classical optimization algorithms, the 
real-coded GA is more convenient for combination 
with classical optimization algorithms. 
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The priority decoding expression uses the following 
expression:  

 

1
1, ... ,

2
mjj

j

geneLLP
PRIORITY j n

LCP

+ 
= × = 

 
 (2) 

 
where,  
 

[1] LLPj  is the longest length path from the beginning 
of the activity j to the end of the project;  

[2] LCP is the length along the critical path of the 
project [15]; 

[3] mj is the gene of the selected mode for activity j. 
 
The gene jm+1 is used to determine the delay time when 

scheduling the activities. The delay time used by each activity 
is given by the following expression: 

 

1 1.5jmDelay time gene MaxDur+= × ×  (3) 

 
where MaxDur is the maximum duration of all activities. 

The factor 1.5 is obtained after some experimental tuning. 
A maximum delay time equal to zero is equivalent to 

restricting the solution space to non-delay schedules and a 
maximum delay time equal to infinity is equivalent to 
allowing active schedules. To reduce the solution space is 
used the value given by formula (3), see Gonçalves et al. [13]. 

 
3.3 Construction of a Schedule 

Schedule generation schemes (SGS) are the core of most 
heuristic solution procedures for project scheduling. SGS start 
from scratch and build a feasible schedule by stepwise 
extension of a partial schedule.  

There are two different classics methods SGS available. 
They can be distinguished into activity and time 
incrementation. The so called serial SGS performs activity-
incrementation and the so called parallel SGS performs time-
incrementation. 
 

 

Fig. 3. Types of schedules (adapted from Mendes [18]). 

A third method for schedule generating can be applied: the 

parameterized active schedules. This type of schedule consists 
of schedules in which no resource is kept idle for more than a 
predefined period if it could start processing some activity. If 
the predefined period is set to zero, then we obtain a non-delay 
schedule. This type of SGS is used on this work. 

Fig. 3 presents the relationship diagram of various 
schedules with regard to optimal schedules. 

 
3.4 Local Search 

Local search algorithms move from solution to solution in the 
space of candidate solutions (the search space) until a solution 
optimal or a stopping criterion is found. In this paper it is 
applied backward and forward improvement based on Klein 
[27]. 

Initially it is constructed a schedule by planning in a 
forward direction starting from the project’s beginning. After 
it is applied backward and forward improvement trying to get 
a better solution. The backward planning consists in reversing 
the project network and applying the scheduling generator 
scheme. A detailed example is described by Mendes [15].  
 

3.5Evolutionary Strategy 

There are many variations of genetic algorithms obtained by 
altering the reproduction, crossover, and mutation operators. 
Reproduction is a process in which individual (chromosome) 
is copied according to their fitness values (makespan). 
Reproduction is accomplished by first copying some of the 
best individuals from one generation to the next, in what is 
called an elitist strategy. 

 In this paper the fitness proportionate selection, also known 
as roulette-wheel selection, is the genetic operator for 
selecting potentially useful solutions for reproduction. The 
characteristic of the roulette wheel selection is stochastic 
sampling. 

The fitness value is used to associate a probability of 
selection with each individual chromosome. If fi is the fitness 
of individual i in the population, its probability of being 
selected is,       

 

1

, 1, ... ,i
i N

i

i

f
p i n

f
=

= =

∑

 (4) 

 
A roulette wheel model is established to represent the 

survival probabilities for all the individuals in the population. 
Then the roulette wheel is rotated for several times [7]. 

After selecting, crossover may proceed in two steps. First, 
members of the newly selected (reproduced) chromosomes in 
the mating pool are mated at random. Second, each pair of 
chromosomes undergoes crossover as follows: an integer 
position k along the chromosome is selected uniformly at 
random between 1 and the chromosome length l. Two new 
chromosomes are created swapping all the genes between k+1 
and l, see Mendes [16]. 

The mutation operator preserves diversification in the 
search.  This operator is applied to each offspring in the 
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population with a predetermined probability. We assume that 
the probability of the mutation in this paper is 5%.  

 
3.6 GA Configuration 

Though there is no straightforward way to configure the 
parameters of a genetic algorithm, we obtained good results 
with values: population size of 5 × number of activities in the 
problem; mutation probability of 0.05; top (best) 1% from the 
previous population chromosomes are copied to the next 
generation; stopping criterion of 30 generations. 

 

4 Case Study 
In order to compare the proposed RKV-TCQ (Random Key 
Variant for Time-Cost-Quality) approach, a case study of 
seven activities proposed originally by Feng al. [6] was used. 

The same example was later investigated by Zheng et al. 
[9], Afshar et al. [45], Lakshminaryana et al. [46] and 
Narayanan and Suribabu [38] using different optimization 
approaches. The data presented in Table 1 is obtained from 
Afshar et al. [46]. For comparison, the indirect cost is assumed 
to be zero. 

 
 
 

Table 1 Detailed data of the example. 

Activity description Activity 

number 

Precedent 

activity 

Option/ 

Mode 

Duration 

(days) 

Direct 

cost ($) 

Weight 

(%) 

Quality 

(%) 

Site preparation 1 - 1 14 23,000 8 98 

   2 20 18,000 89 

   3 24 12,000 84 

Forms and rebar 2 1 1 15 3,000 6 99 

   2 18 2,400 95 

   3 20 1,800 85 

   4 23 1,500 70 

   5 25 1,000 59 

Excavation 3 1 1 15 4,500 14 98 

   2 22 4,000 81 

   3 33 3,200 63 

Precast concrete girder 4 1 1 12 45,000 19 94 

   2 16 35,000 76 

   3 20 30,000 64 

Pour foundation and piers 5 2, 3 1 22 20,000 17 99 

   2 24 17,500 89 

   3 28 15,000 72 

   4 30 10,000 61 

Deliver PC girders 6 4 1 14 40,000 19 100 

   2 18 32,000 79 

   3 24 18,000 68 

Erect girders 7 5, 6 1 9 30,000 17 93 

   2 15 24,000 71 

   3 18 22,000 67 

 
 

The robustness of the new proposed model RKV-TCQ in 
the deterministic situation was compared with three other 
previous models:  

1) Afshar et al. [45]; 
2) Lakshminaryana et al. [46]; 
3) Narayanan and Suribabu [38]. 

 
The Table 2 shows the results of the present approach and 

other methods. Direct comparison shows that RKV-TCQ 
provided the best time, cost and quality when compared with 

the best approaches.  
Additionally we can also state that the RKV-TCQ approach 

produces high-quality solutions quickly once needed only 1 
second to complete 30 generations.  

The Table 3 shows the results of the present approach and 
other methods for an optimization problem with time and cost. 
Direct comparison shows that RKV-TCQ provided the best 
time and cost when compared with the best approach. 
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Approaches 

Lakshminaryana et 

al. [46] 

Afshar et al. [45] 

Narayanan and 

Suribabu [38] 

APPROACH 

(Method 1)

Narayanan and 

Suribabu [38] 

APPROACH 

(Method 2)

This paper 

RKV
*50, 30 – the first number is th

 

Table 3 Comparison of 

Approaches

Lakshminaryana et al. [46]

Afshar et al. [45]

Narayanan and Suribabu 

[38] 

Narayanan and Suribabu 

[38] 

This paper 
*50, 30 – the first number is the number of iterati

 
 
 
 
 

Additionally we can also state that the RKV
produces high-quality solutions quickly once needed only 
seconds to complete 30 generations.  

Figs. 4 and 5 show the average value of objective time
cost for RKV-TCQ. 

This computational experience has been performed on a 
computer with an Intel Core 2 Duo CPU T7250 @2.
and 1,95 GB of RAM. The algorithm proposed in this work 
has been coded in VBA under Microsoft Windows NT.
 
 

 

 

Table 2 Comparison of approaches. 

Models Time (days) Cost ($) Quality (%) 

MOOM 60 165500 97 

*50, 30 - 

MOACO 

60 155500 92 

*30, 30  

DE 

APPROACH 

(Method 1) 

60 165500 97 

*30, 30  

DE 

APPROACH 

(Method 2) 

60 165500 97 

*30, 35  

RKV-TCQ 

60 165500 97 

the first number is the number of iterations and the second is the population size. 

Comparison of approaches for the results obtained to the time-cost optimization 

Approaches Models Time 

(days) 

Cost ($)

Lakshminaryana et al. [46] MOOM 60 165500

[45] *30, 30 - MOACO 60 155500

Narayanan and Suribabu *30, 30  

DE APPROACH (Method 1) 

68 118500

Narayanan and Suribabu *30, 30  

DE APPROACH (Method 2) 

60 143500

RKV-TCQ 60 143500
the first number is the number of iterations and the second is the population size.

Additionally we can also state that the RKV-TCQ approach 
quality solutions quickly once needed only 2 

Figs. 4 and 5 show the average value of objective time and 

This computational experience has been performed on a 
computer with an Intel Core 2 Duo CPU T7250 @2.33 GHz 

. The algorithm proposed in this work 
under Microsoft Windows NT. 

Fig. 4. Average 

 
 
 

Resource 

Option 

1/1/1/1/1/1/1 

1/1/1/2/1/1/1 

1/1/1/1/1/1/1 

1/1/1/1/1/1/1 

1/1/1/1/1/1/1 

optimization problem. 

Cost ($) 

165500 

155500 

118500 

143500 

143500 
is the population size. 

 

 objective time value. 
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Fig. 5. Average objective cost value. 

 

5 Conclusions and further research
A GA based-approach to solving the 
optimization problem has been proposed. The project 
activities have various construction modes, which
different ways of performing the activity, each mode having a 
different impact on the duration and cost of the project. 
chromosome representation of the problem is based on 
random keys. The schedules are constructed using a priority 
rule in which the priorities are defined by the genetic 
algorithm. The present approach provides an
alternative for the solution of construction multiobjective 
optimization problems. 

Future studies are to assume more sophisticated relationship 
among the cost, time and quality of different project resources 
and test more projects. 
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