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Abstract: Laser ultrasonic defect detection and classification has been widely used in engineering and material 

defect detection, so detecting and classifying the defect targets accurately is significant. In order to obtain the 

higher classification accuracy, an improved support vector machine (SVM) based on particle swarm optimization 

algorithm is used as classifier in this paper. To search the optimal parameters of SVM, a new Tangent Decreasing 

Inertia Weight strategy particle swarm optimization (TPSO) algorithm is proposed to determine the optimal 

parameters for SVM. In addition, to further improve the classification accuracy, sparse representation is used to 

extract the target features from the real target echo waveform in experiment. Experimental results show that the 

proposed TPSO-SVM can achieve higher classification accuracy compared to the commonly PSO-SVM, classical 

SVM and BP neural network (BPNN) in the laser ultrasonic defect signals classification.  

 

 

Key-words: Laser ultrasonic defect detection; Classification method; Support vector machine; Particle swarm 

optimization; Sparse representation.

 

 

1 Introduction 
Nowadays, with the development of modern science 

and technology, ultrasonic nondestructive testing 

technology has become a multi subject cross 

engineering technology. So far, there have been some 

researches on the defect detection and defect 

classification based on machine learning [1-6]. 

Canonical support vector machine (SVM) and particle 

swarm optimization optimized support vector machine 

(PSO-SVM) are applied as classifiers in those studies. 

Support vector machine proposed by Vapnik in 

1995 [7], is a statistical classification method, which 

based on the structural risk minimization approach. It 

solves the classification problem by maximizing the 

margin of the separation beside the optimal hyper 

plane. The kernel function plays a very important role 

in the performance of SVM. The input data is mapped 

to a higher dimensional feature space by the kernel 

function, so that the classification problem can be 

linearly separable. There are many kinds of kernel 

functions, such as linear kernel, polynomial kernel, 

Gaussian kernel, and so on. The Gaussian kernel is 

frequently used in SVM, due to its excellent nonlinear 

classification ability. Support vector machines show 

many unique advantages in solving small samples, 

nonlinear and high dimensional pattern recognition, 

and to a certain extent, it overcomes the "dimension 

disaster" and "over learning" and other traditional 

difficulties. In addition, today, support vector machines 

have been widely concerned, and have made great 

progress, due to its solid theoretical foundation and a 

simple and clear mathematical model. At present, it has 

been successfully applied to solving pattern 

recognition, classification, approximation of functions, 

and time series prediction problems, such as speech 

recognition [8], text recognition [9], target detection 

and recognition [10, 11], fault diagnosis [12], financial 

time series forecast [13], and so on. However, in those 

applications, the performance of SVM depends upon 

the selection of SVM parameters. In other words, the 

parameters selection has great influence on the 

learning and generalization ability of SVM. Therefore, 

the selection of the optimal parameters is important to 

obtain an excellent performance of SVM. The 

parameters optimization of SVM has gained great 

attentions in the past several years. Such as, Shi and 

Zhou use grid search method and genetic algorithm to 

optimize SVM parameters, and then study the 

reliability of blasting vibration prediction of open pit 

mining using the optimized SVM model, and achieved 

good results [14]; Li, Xia, et al, with the combination 

of clustering method, ant colony algorithm and support 

vector machine (SVM) to construct an efficient and 

reliable classifier, and then use it to judge whether the 

network access is normal or not [15]; E. Avci  choose 

the best subset of features in digital modulation 

classification with the support vector machine 

optimized by genetic algorithm [16]. But, grid 

algorithm method has disadvantages such as 
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computationally intensive, time consuming and low 

learning accuracy; Ant colony algorithm method is 

initial pheromone scarcity, long-time searching and 

local best solution; Genetic algorithm is operation 

complex and different issues need to design different 

crossover or mutation. So we need to find a simpler 

and more efficient optimization algorithm to optimize 

the model parameters. Particle swarm optimization 

(PSO) is an intuitive and easy to implement algorithm 

from the swarm intelligence community, and it has 

been applied to select the proper parameters of SVM 

[17-19], but the method is easy to trap into local 

optimum and has a low convergence rate. 

Focusing on these shortages, the current focus of 

improvement is mainly focused on: the update formula 

of velocity and particle position, parameter 

improvement, hybrid algorithm and so on. Different 

inertia weight strategies imply different incremental 

changes in velocity per time step which means 

exploration of new search areas in pursuit of a better 

solution. In this paper, an improved inertia weight is 

proposed. We propose a Tangent Decreasing Inertia 

Weight PSO (TDIW-PSO) algorithm to get the optimal 

parameters of SVM. 

On the other hand, feature extraction is a crucial 

step in laser ultrasonic defect classification. In this 

work, we use sparse representation (SR) theory to 

analyzing the components of received target echo 

signals [20-22], and describe the characteristics of the 

target with the sparse coefficients obtained. In this 

paper, the goal is to develop a method of TPSO-SVM 

combined with sparse representation-based feature 

extraction to effective detection of different defect 

categories, in which TPSO is used to optimize the 

parameters of the support vector machine.  

The structure of the paper is organized as follows: 

Section 2 introduces the basic idea of SVM. In Section 

3 the basic PSO algorithm and the improved TPSO 

algorithm based on a tangent decreasing inertia weight 

strategy are introduced. The optimization procedure to 

the SVM is presented in Section 4. The classification 

model for laser ultrasonic defect is presented and the 

experimental results are reported in Section 5. Finally, 

the conclusion is presented in Section 6. 

 

 

2 The classification theory of SVM 
The support vector machine (SVM) is a machine 

learning method based on statistical learning theory. 

This novel learning technique originated as the 

principle of structure risk minimization, which 

performs better than empirical risk minimization 

utilized by traditional neural networks. SVM has been 

application as a new technique for solving 

classification, approximation of functions, and time 

series prediction problems. The aim of SVM is to 

obtain an optimal hyper plane that can separate the two 

class samples as well as maximize the margin of the 

separation beside the optimal hyper plane. In order to 

describe the principle of SVM, we given a training set

 1 2, , nX x x x ,  1 2, , nY y y y , where
ix is the 

input of SVM,
iy is the output of  SVM ,then we 

denote the class A with
ix A , 1iy  and class B with

ix B
1,
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Where  is the weight vector andb is the constant, the 

distance between two class is
2


, so maximize

2


is 

equivalent to minimize Euclidean norm of the weight 

vector , i.e.to minimize
21 1

2 2

T   . In addition 

the decision function can be defines as  

( ) sgn( )T

if x w x b  ,                        (1) 

This decision function is used to solve the linear 

classification problem. For the nonlinear classification 

problem, we can find a map that makes the samples ix

from low dimensional space R into a high dimensional 

feature space F , by nonlinear mapping ( )i ix x , the 

nonlinear classification problem in the low 

dimensional space can be solved as a linear 

classification problem in the high dimensional feature 

space. In this method, the decision function can be 

defines as 

( ) sgn( ( ) )T

if x x b   ,                     (2) 

Based on the principle of structural risk minimization, 

the learning process of SVM can be transformed into a 

convex optimization problem. 

2
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And this constrained optimization problem can be 

transformed into a dual problem of as follows 
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,  (4) 

Where i is slack variables, C is a Penalty parameter 

and usually it is positive parameter, and i is the 
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Lagrange multiplier.  

Here, the decision function can be defines as: 

1

( ) sgn( ( ) ( ) )
n

T

i i i i

i

f x y x x b  


  ,             (5) 

By defining a n n kernel matrix K such that: 

( , ) ( ) ( ) ( ) ( )T

i j i j i jK x x x x x x      ,           (6)                                 

Transform into the following form: 

1 1 1

1
max ( ) ( , )

2

n n n

i i j i j i j

i i j

Q y y K x x  
  

   ,    (7) 

The decision function can be expressed as: 

1

( ) sgn( ( , ) b)
n

i i i j

i

f x y K x x


  .               (8) 

And the inner product can be computed by a kernel 

function in the low dimensional space without 

knowing the nonlinear mapping explicitly. Any 

function that meets Mercer’s condition (Vapnik 1995) 

can be used as the kernel function. There are several 

common types of kernel function: 

Linear kernel: ( , ) T

i j i jK x x x x ; 

Polynomial kernel: ( , ) ( 1)T d

i j i jK x x x x  , where d is a 

positive integer; 

Gaussian kernel:
2

2( , ) exp( 2 )i j i jK x x x x   

where 22 is the width of the Gaussian kernel. 

Research indicates that the Gaussian kernel function 

shows good performance in nonlinear classification 

problems. Therefore, we selected it as the kernel 

function for SVM in this study. In addition, the 

parameters selection has great influence on the 

learning and generalization ability of SVM. For SVM 

with Gaussian kernel function, the parameters include 

kernel function parameter and Penalty parameter C . 

The value of is relevant to the range and width of the 

input data space, C is the compromise between the 

structure risk and the samples, and its value is closely 

related to the tolerated error. As PSO algorithm not 

only has strong global search ability and but also helps 

to search for the optimum parameters quickly. 

Therefore, we use the proposed TDIW-PSO algorithm 

to optimize parameter and C  in this study, which we 

call TPSO -SVM. 

 

 

3 Particle swarm optimization algorithm 
3.1 Canonical particle swarm optimization 

algorithm 
Particle swarm optimization (PSO) developed by 

Kennedy and Eberhart in 1995 [23], is an evolutionary 

computation algorithm. In PSO algorithm, each 

potential solution to the optimization problem is 

treated as a bird, which is also called a particle. The set 

of particles, also known as a swarm, are flown through 

the D-dimensional search space of the optimization 

problem. Each particle alters its own velocity and 

position based on the experiences of the particle itself 

and those of other particles in the swarm. In the 

searching process, every particle is connected to and 

able to share information with every other particle in 

the swarm and the swarm communication topology is 

known as a global neighborhood described in [24]. 

This sharing information mechanism keeps the overall 

consistency to get the global solution for the overall 

swarm.  

   The swarm consists of n particles; each particle has 

a velocity vector
1 2( , , , )i i i iDv v v v and a position 

vector
1 2( , , , )i i i iDx x x x , where 1,2, ,i n ;each 

particle is represented as a potential solution to a 

problem in a D-dimensional search space, respectively 

dl and
du are the lower and upper bounds of the thd

dimension of the search space, [ , ]id d dx l u , 

1,2, ,d D . During each generation，the particles are 

accelerated toward the particles previous best position 

and the global best position. Where, the personal best 

position of the thi particle denotes as

1 2( , , , )i i i iDp p p p , the global best position of the 

swarm denotes as 1 2( , , , )g g g gDp p p p . The new 

velocity value is used to calculate the next position of 

the particle in the search space. This process will keep 

the iteration until setting the maximum number of 

iteration or an optimal fitness degree is obtained. The 

updating of velocity and particle position can be 

obtained by using the following formula: 
1

1 2( ) ( )t t t t t t

id id id id gd idv v c p x c p x        ,       (9) 
1 1t t t

id id idx x v   .                           (10) 

where 1c and
2c are Learning Factor (also named as the 

Acceleration Coefficient) and they’re positive 

constants, and are random numbers ranging from 0 

to 1, t is the iteration counter,  is the inertia weight 

on the interval keeping the memory of the old velocity 

vector of the same particle. When is a constant [23], 

it can lead to a static PSO, and when is varying 

iteratively, it leads to a dynamic PSO. 

 

 

3.2 Proposed inertia weight variant  
As we know, in the operation of the intelligent 

optimization method, the exploration ability and the 

exploitation ability of the balanced is very important. 

In PSO algorithm, the balance of these two kinds of 

ability is realized by the inertia weight. The larger 

inertia weight is that the particle has a greater speed in 

their original direction which can further in the original
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direction ， therefore larger inertia weight is 

advantageous to find the global best solution as soon as 

possible in the early iterative steps, but may lead to 

miss the global best solution easily in later iterative 

steps. In contrast, the smaller the inertia weight makes 

the particles inherit a few of the original direction, so 

as to fly closer, with better exploitation capabilities, so 

smaller inertia weight means longer time to provide 

slower updating for fine tuning a local exploration. 

Appropriate inertia weight is helpful to find the best 

solution with the least number of iterative steps. 

Therefore, how to adjust the inertia weight in order to 

balance the global exploration and local exploitation 

better has become a problem. To solve this problem, 

we usually use the following approach: in the early 

iterative steps, larger inertia weight is needed for 

coarse global exploration, but in later iterations inertia 

weight should decrease for fine tuning the local 

exploration.  

A larger inertia weight facilitates global 

exploration and a smaller inertia weight tends to 

facilitates local exploration to fine tune the current 

search area. In order to balance the global exploration 

and local exploration, we present a new Tangent 

Decreasing Inertia Weight strategy, hereinafter referred 

to as TDIW strategy. In this strategy, the inertia weight 

is with the increase of iterative step t  according to 

tangent decreasing. The proposed inertia weight is 

determined based on the following equation: 

( ) ( )* tan *
4

start start end

t
t

T


   

 
    

 
.       (11) 

 

 

4 Optimize the parameters of SVM by 

PSO  

In this paper, the Gaussian kernel function is used to 

construct SVM classification model, then the width

of the Gaussian kernel and penalization parameter C

need to be determined. The proposed TDIW-PSO 

algorithm is applied to determine the parameters of 

SVM. The position vector x of each particle is needed 

to be optimized, which represents the width of the 

Gaussian kernel and penalization parameter C .The k

-fold cross validation (where 5k  ) method is used to 

evaluate fitness in this study, and average classification 

accuracy (CV) is adopted as the fitness function. The 

fitness function is denoted by formula: 

1

1
(j)

k

j

CV acc
k 

  ,                          (12) 

( ) ( 1,2, , )
jt

j

n
acc j j k

n
  .                  (13) 

In k -fold cross validation, the training set is roughly 

divided into k groups, (1)train , (2)train , ( )train k ,

( )acc j is the accuracy when ( )train j as testing set and 

other groups as training set. jn is the sample number 

of ( )train j , jtn is the correct classification number of 

( )train j . 

The iteration process of the improved TPSO-SVM 

learning algorithm can be described clearly as follows. 

Step1:Read sample data, and we use sparse 

representation theory (SR) for feature extraction, then 

the feature data is divided into two subsets: one subset 

is training set; the other subset is testing set. 

Step2: Initialize PSO: Initialize the relative parameters, 

including the size of swarm, the boundary of velocity

max min,v v  and position
max min,x x , the acceleration 

factors
1c and

2c , and max number of iterative
maxT . 

1r

and
2r are the two random numbers with the range from 

0 to 1. Initialize 1t  ; for each particle, select two D

-dimensional vectors randomly to initialize the velocity 

and position of this particle. 

Step3: Calculate the fitness value of each particle 

according to formula (12)(13).Set the current position 

of each particle as the personal best fitness
ip . Then 

find the maximum fitness value as the global best 

fitness gp of the whole swarm. 

Step4: Update the inertia weight  according to 

formula (11). Modify the particle velocity
iv and 

position
ix according to formula (9) (10). 

Step5: Recalculate the fitness values of each particle 

and modify
ip and gp .For each particle, if the current 

fitness value is better than the previous local best, then 

set the current fitness value to be the local best; or keep 

the previous local best. For the global swarm, if the 

best value of all current local best is better than the 

previous global best, then update the value of global 

best; or keep the previous global best.  

Step6: Check stop condition. If maxt T , then stop the 

iteration and gp is the optimal solution which 

represents the best parameters for SVM, and go to. 

Step7; Otherwise, let 1t t  go to Step4. 

Step8: Use the optimal SVM to perform classification 

problem. 

   Apply the above1- 7 steps until the obtained 

optimal solution, get the optimized parameters, and 

then perform classification problem. The flow char is 

as in Figure 1. 
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Fig.1. Classification model based on PSO-SVM 

5 Example of application 
5.1 Laser ultrasonic surface acoustic wave 

defect detection experiment 
Laser ultrasonic defect detection technology is based 

on the theory of sound and light effect. Laser 

irradiation on the surface of the sample, the ultrasonic 

signal containing the measured surface information is 

generated by the thermal elastic effect, and then the 

defect information is extracted and detected by 

detecting the ultrasonic signal modulated by the defect.  

200mm

80mm

50mm

10mm

Laser 

point

probe

8mm

10mm

      
(a)Schematic diagram of reflected wave measurement 

  
2 0 0 m m

8 0 m m

5 0 m m

1 0 m m

L a s e r  

p o i n t
P r o b e

8 m m

 
(b) Schematic diagram of transmission wave measurement 

Fig.2. Experimental schematic diagram 

In the experiment, as shown in Figure 2, test sample is 

200*50*8mm aluminum plate, we use 2M ultrasonic 

probe in the detection distance of laser point 10mm get 

reflection wave, detection distance of laser point 20mm 

get transmitted wave, sampling frequency is 200MHz, 

sampling points is 10000. Five groups of experiments 

were carried out, each of which was repeated five 

times. The defect sizes were 0.1*0.3mm, 0.1*0.5mm, 

0.1*0.7mm, 0.1*0.9mm and nondestructive. This 

experiment was done two times, and two groups of 

transmission wave (tdata1 and data2) and two groups 

of reflected waves (fdata1 and fdata2) were obtained. 

The obtained waveforms were as shown in Figure3. 

 

 

5.2 Feature extraction  

In the part of the feature extraction, we use the method 

of sparse representation to extract features which the 

defect signals obtained from the above experiments. 

The defect signal waveform after sparse representation 

was as shown in Figure 4.  

 
(a)Waveform of transmission wave 
(b) Waveform of reflection wave 

Fig.3. The defect signal waveform 

 

  
(a)Waveform of transmission wave 
(b) Waveform of reflection wave 
Fig.4. The defect signal waveform after sparse 

representation 

 

 

5.3 Performance analysis for the proposed 

model 
In this section, we evaluate the performance of the 

previously proposed method for laser ultrasonic 

surface acoustic wave defect signal classification. The 

features of the received signals are extracted based on 

sparse representation. Then, the sparse representation 

based features are used as the input of the classifiers. 

Finally, the proposed TPSO-SVM classifier is used to 

classify and forecast the target types. We obtained five 

kinds of defect signals by experiment, with 5 in each 

group. Therefore, a dataset including 25 samples for all 

defect types is established. All samples in the dataset 

are divided into two sets, in which the testing sets 

including 5 samples (Randomly select 1 sample for 

each defect types) are used to test the accuracy of the 

classification for each model, and the train sets 

including 20 samples are used to train the classification 

model. To maintain a more realistic investigation of 

this classification technique, the training and testing 

sets do not include any overlap in data.  

In the context of optimization of the parameters of 

SVM, in this experiment, we first provide the 

performance comparison between the TPSO and the 

classical PSO as well as other improvements PSO 

(LPSO, NPSO, and EPSO are in the literature [25-27]). 

The population size N for all is 20, and the maximum 
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evolution generation is set to 200. Figure 5 shows the 

average fitness curve of TPSO and other PSO for 

finding the optimal parameters of SVM. From the 

fitness performances that are shown in Figure 5, it is 

clearly seen that The average fitness curve of TPSO is 

better than that of other PSO， It indicates that TPSO 

is superior to other PSO in SVM parameters 

optimization. 

In the optimized SVM, penalty parameter C and the 

width of RBF kernel function are optimized by the 

proposed TPSO and classical PSO and other 

improvements PSO, the adjusted parameters with 

maximal classification accuracy rate are selected as the 

most appropriate parameters. Then, the optimal 

parameters are utilized to train SVM model. In the 

canonical SVM model, the parameter C and   are 

randomly selected to construct the classification model.  

Then, all the samples gained from experimental 

measurements are adopted to verify the superior 

classification performance of the proposed method 

compared with that of PSO-optimized support vector 

machine model (PSO-SVM), canonical SVM model, 

the back propagation neural networks (BPNN) model. 

Each experiment is carried out 1000 times. The 

experimental results are showed in Tables 1 and 2

 
(a) tdata1                  (b) tdata2                   (c) fdata1                     (d) fdata2 

Fig.5. Fitness performance for the proposed TPSO and others PSO 

  
Table1: Classification results comparison of four sets data 
data Average classification accuracy rate (%) 

TPSO-SVM PSO-SVM LPSO-SVM NPSO-SVM EPSO-SVM SVM BPNN 

tdata1 99.06 98.84 98.90 99.04 99.14 75.3 76.7 

tdata2 100 100 99.98 99.96 99.98 73.56 82.40 

fdata1 100 100 100 99.98 100 61.86 28.98 

fdata2 94.54 94.58 94.86 94.72 94.44 79.76 69.84 

 

Table2: Classification average computing time comparison of four sets data 
data Average computing time(s)     

TPSO-SVM PSO-SVM LPSO-SVM NPSO-SVM EPSO-SVM SVM BPNN 

tdata1 3.0966 2.9791 3.1337 3.1075 3.1220 0.0028 0.1941 

tdata2 3.0081 3.0028 3.1380 3.1274 3.1398 0.0023 0.1926 

fdata1 3.0142 3.0207 3.1410 3.1228 3.1361 0.0023 0.1905 

fdata2 2.9204 3.0375 3.0276 3.0375 3.0066 0.0027 0.1931 

 

From Tables 1 and 2, we can see that, the 

PSO-optimized support vector machine model has 

higher average classification accuracy rate than 

canonical SVM and BPNN classification algorithmic 

to laser ultrasonic surface acoustic wave defect signal 

classification. The average classification accuracy rate 

of the improvement SVM by PSO is more than 98.9%. 

Among the several PSO-SVM models mentioned in 

this paper, we proposed that TPSO-SVM model not 

only has higher classification accuracy, but also the 

computational complexity is not increased .Therefore, 

the proposed method has more excellent classification 

performance than these traditional classification 

algorithmic to laser ultrasonic surface acoustic wave 

defect signal classification. 

 

  

6 Conclusion 
In this paper, an improved support vector machine 

(SVM) based on particle swarm optimization algorithm 

is used as classifier for laser ultrasonic surface acoustic 

wave defect signal classification. And the classification 

performance of this model is demonstrated on four 

group defect signals. 

In the presented method, a new Tangent Decreasing 

Inertia Weight strategy particle swarm optimization 

(TPSO) algorithm is proposed to determine the optimal 

parameters of SVM, and sparse representation is used 

to extract the target features from the real target echo 

waveform in experiment. The experimental data sets 

are used to evaluate its feasibility and performance in 

the classification of defect. Experimental results show 

that the proposed TPSO-SVM has more excellent 

classification compared to the commonly PSO-SVM, 
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classical SVM and BP neural network (BPNN) in the 

laser ultrasonic defect signals classification. In future 

research, the proposed method will be made toward a 

higher efficient model beyond current level, and more 

attention should paid to investigate the classification 

performance of models on large size of training sets 

once enough samples are obtained.  
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