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Abstract: Human mobility models are widely required in many academic and industrial fields. Due to the spread
of portable devices with positioning functionality, such as smartphones, ordinary people can obtain their current
position or record mobility history. Thus, mobility history can be processed in order to identify human mobility
patterns. The human mobility pattern can be analysed in two ways: space and time. Space analysis focuses on
a users location, and time analysis emphasises a users mobility on a daily basis. From the raw positioning data
of various sets of user mobility, we analysed a personal human mobility model. Each users positioning data set
is pre-processed and clustered by space and time. For spatial clustering, we developed a mechanism of clustering
with expectation maximisation methodology. For temporal clustering, stay or transition probabilities over a 24
hour period were analysed. We represented the result of the personal human mobility model using the continuous-
time Markov chain (CTMC) with spatial transition probabilities over time. We developed a process to construct
a personal human mobility model from a persons positioning data set. This personal mobility model can act as a
basis for many other academic or industrial applications.

Key–Words: Human Mobility Model, Space-Time Analysis, Location Clustering, Continuous Time Markov Chain,
Individual Personal Mobility

1 Introduction
Establishing models of human mobility offer solutions
for many open problems in academia and in industry.
Precise human mobility patterns can encourage devel-
opments in other academic fields, be utilised accord-
ing to industrial needs and be applied to public affairs.
For example, spread patterns of a disease epidemic
are affected by human mobility patterns; therefore,
location-based services require a precise human mo-
bility model. Additionally, practical mobility models
for mobile communication simulation affect the pre-
cision of simulation results or the robustness of per-
formance evaluation. In the field of consumer mar-
keting, a detailed human mobility model will gener-
ate an improved result. From these human mobility
model requirements, we explore the topic of the per-
sonal mobility model in this paper. Modern mobile
devices are usually equipped with positioning func-
tionalities using GPS [1], GLONASS [2], Galileo [3],
etc. Positioning techniques using cellular base sta-
tions or crowd source WIFI positioning can be used in
combination with other positioning systems; this com-
bination is called a hybrid positioning system. With a
set of positioning data collected for each person, hu-
man mobility models are derived and represented.

In this paper, we collected three sets of hu-
man mobility data. The data sets are named KHU,
SHY and LSJ. Positioning data sets in the form of
<latitude, longitude, time> were collected; the sets
comprise human mobility data. Each data set was
analysed and the resulting three human mobility mod-
els will be presented in this paper. The procedure to
determine human mobility models will be discussed
in detail. Section 2 shows related researchers and Sec-
tion 3 discusses major considerations for human mo-
bility modelling. One of the core methods for human
mobility modelling will be discussed in Section 4, and
the results will be presented in Section 5. In Section
6, we will conclude this paper with considerations for
future research.

2 Related Work
Human mobility has various patterns. A rough cate-
gorisation can divide human mobility into micro mo-
bility, macro mobility, individual mobility, group mo-
bility, etc. From these various mobility patterns, many
academic areas have tried to derive a human mobil-
ity model. Psychology, cognitive science, physics and
computer science are areas that are eager to study hu-
man mobility models, and they require concrete hu-

WSEAS TRANSACTIONS on COMPUTERS Ha Yoon Song

E-ISSN: 2224-2872 222 Volume 15, 2016



man mobility models.
Psychologists study the psychological factors of

human mobility, i.e. the reason for human mobility
and selection of transportation methods as they relate
to a persons psychology. The latter is considered mi-
croscopic and the former is considered macroscopic.

Complex system physics and statistical physics
study a governing principle of human mobility and re-
gard human mobility as a real world phenomenon.

Computer scientists require human mobility mod-
els for wireless mobile networks, artificial intelli-
gence, robots, unmanned vehicles, etc. Usually, artifi-
cial synthetic human mobility models are used in the
area of computer science; however, synthetic models
have been criticised due to their lack of realism. Com-
puter scientists require realistic and practical human
mobility models.

In detail, from the aspect of psychology, the hu-
man perception of specific space has been researched,
as have the results of perception on human mobil-
ity. In other words, knowledge of human mobility is
needed to find the destination and route. For example,
the actual curve of road and the perceived curve of
the road are different, and this difference is a research
topic in psychology [4]. Another research topic has
been the route of human mobility based on a map. In
this research, a straight route is preferred by a human
to a curved route [5].

Another topic is transportation methods, such as a
car or regional transportation. Factors and frequency
between specific regions are another topic. In research
before 1973, biographical factors were regarded as
important. These factors included place, government,
existence of family and members of family, the num-
ber of university students in a family and academic ca-
reers in the family. However, later research includes
additional psychological factors, such as sensation-
seeking, which is one factor of the five personality
factors in the theories of Hans Jurgen Eysenck. The
sensation-seeking scale is designed to measure indi-
vidual differences in thrill- and risk-taking habits or
uninhibited behavioral attitudes towards a novel and
unfamiliar situation [6]. Another study examined the
effects of human habits on information collected for
travel modes, and it found a correlation between the
major travel mode selected, the distance to the desti-
nation and individual habits [7].

Related research is also found in physics. Ran-
dom walking is one of the major topics in physics.
A random walk is a stochastic process and represents
a mobile route of a particle or a wave. In particu-
lar, a random walk is used to model mobile fluid par-

ticles in statistical physics for the diffusion of heat,
sound and light. Levy flight is a specific class of ran-
dom walk, which represents the moving distance in
heavy-tailed law. The heavy-tailed law implies more
frequency over short distances and is used for human
mobility modelling and earthquake research. Human
mobility research in physics states that human mobil-
ity takes various forms according to spatio-temporal
space. Some related work includes the research of
dissemination in human disease epidemics. For ex-
ample, some contagious diseases such as flu or colds
can be blocked once the mobility pattern of humans
is identified. For this purpose, dynamic and statistical
properties of human mobility must be identified.

Other study on mobility patterns used specially
marked bank notes to determine a mobility pattern [8].
A juvenile mobility pattern using the GPS faculty of
mobile phones is another example of space-time mo-
bility pattern research, which determines the location
of a juvenile person at a specific time [9]. Another
research showed that human mobility distribution fol-
lows power law from a distance from a central loca-
tion using the mobility pattern of cellular phones. In
this way, human mobility can be predicted up to 93%
[10]. A virus on mobile phones can be used for the
identification of human communication patterns by
tracking the dissemination of the virus [11].

Computer science is a field of prolific research on
human mobility models. In order to figure out hu-
man mobility patterns, research is done for disease
epidemics and virus dissemination over a computer
network [12][13][14].

In the Mobile Ad Hoc Network (MANET), hu-
man mobility is an important issue, as the perfor-
mance of MANET is affected by precise human mo-
bility. Statistical characteristics of human mobility
patterns greatly affect MANET protocol. In particu-
lar, contact time (CT), inter-contact time (ICT), link
duration, and lifetime of routing path are dependent
on human mobility models [15][16]. For the perfor-
mance improvement of mobile wireless sensor net-
work protocols, mobility and velocity of mobile nodes
are precisely determined by using an enhanced Monte
Carlo localisation method [17].

A heterogeneous model, which combines dis-
tance metrics and frequent visiting locations, is pre-
sented [18]. The distance from the central loca-
tion follows power law, i.e. higher probabilities in
short distance than farther distance geometrically and
a fractal pattern for frequented places is generated.
These two characteristics are mutually related in hu-
man mobility patterns.
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In the group mobility model, the intended mobil-
ity pattern of a node clearly follows the group leader.
In addition, there is an attraction force between nodes
within a group and a repulsion force between nodes
in different groups. The interaction between the two
forces determines the group mobility pattern [19].
Groups can be divided into tight groups and loose
groups. Loose groups have a relatively high repul-
sion force in member nodes, while both groups have
the same intention of mobility.

The wireless ad-hoc network presents its own
group mobility model. Each group has its reference
centre and group velocity, and parameters for partition
prediction are assumed [20].

For the mobility models of wireless mobile, an
ad hoc, random walk is the simplest model. The ran-
dom waypoint model, which is a bit more advanced, is
used for simulation [21]. However, the random way-
point model is unrealistic since it cannot depict abrupt
changes of speed and direction. Another model to
compensate for the random waypoint model includes
past direction, past speed and past waypoint, and it
utilises past values in order to present a more realistic
human mobility model [22].

An obstacle-based model, which assumes obsta-
cles in node routes and node detour obstacles, is also
presented [23].

Social network theory has been applied to a more
realistic human mobility model. In this model, each
node can move within a community with a prede-
fined probability and can move within another com-
munity with another probability. The probabilities in
this model are determined by the social relationship of
the node [24]. Sociological orbit presents another hu-
man mobility model, which reflects current time and
the situation of a node in order to present a human mo-
bility model. The name sociological orbit comes from
physics; it is a term used to describe planet mobility
or electron mobility around the atom [25]. A human
mobility analysis using massive GPS data by progres-
sive clustering is also presented; the purpose of the re-
search is the visualisation of mobility trajectory [26].
A related study, which also utilises trajectory data and
data mining, shows the most crowded highway over
time and the most frequent mobility of humans over
time [27]. Similar research was done in weather fore-
casting, which utilises spatio-temporal analysis and
visualisation [28]. Urban engineering shows a defi-
nite interest in human mobility models.

One study presents human mobility using a util-
ity function of multiple factors, such as transporta-
tion infrastructure and schedules [29]. Another study

utilises covariance structure modelling to show the re-
lationship between human activity and transportation
methods and transportation patterns. It showed that
the main reason for this relationship comes from per-
sonality and family characteristics [30].

3 Considerations
We must consider several characteristics of human
mobility before developing a human mobility model
construction process. The first characteristic is the
space-time nature of human mobility. A human stays
in a specific location (space) and transits between lo-
cations sometimes (time). The second characteristic
is the analysis of mobility data. The core part of po-
sitioning data set must be pre-processed. The third
characteristic is the consideration of probability-based
clustering for human mobility analysis. Finally, we
must consider the probabilistic nature of human mo-
bility, which requires a specific probability distribu-
tion.

3.1 Space-time nature of human mobility
The first stage of human mobility pattern analysis is
doing a spatial analysis to identify human interest lo-
cations based on a positioning data set. Spatial pat-
tern analysis by positioning a data set analyses distri-
butions of a spatial pattern and deduces location in-
formation. By investigating the distribution or density
of positioning data, locations with high density can
be identified as frequent places or a residential area.
Such locations are expected to have a higher density
of positioning data than any other locations. Figur-
ing out a location of the high positioning data den-
sity requires a clustering method. However, the result
was meaningless with density-only analysis. Spatial
pattern analysis must consider the movement of a hu-
man, i.e. the velocity of positioning data. Velocity
includes a concept of time. Thus, a temporal anal-
ysis or a combination of spatial-temporal analysis is
introduced. From location and time information of
consecutive positioning data, a speed value at a given
time can be calculated [31].

With the speed value, positioning data in mobile
state and positioning data in stay state can be classi-
fied. Different weights can be assigned to positioning
data set by its state, then spatial pattern analysis can
be re-applied.

With the concept of clustering, several parame-
ters, such as size of clusters and stay time in clusters,
can be calculated, and these parameters can affect the
weight of the positioning data. For example, position-
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ing points with less than 10 km/hour speed are clas-
sified as stable state points, while positioning points
with more than 10 km/hour speed are classified as mo-
bile states. However, the time duration is another cri-
terion of state classification. Even in the mobile state,
humans can be forced to stop for a while (in case of a
stop signal or red light, for example), then continue to
move again.

For such situations, once a resumption of move-
ment is detected within a small timeframe, e.g. 10
min, positioning data with a temporary stay are re-
garded as in a subset of the mobile state.

Therefore, we need space-temporal analysis for
human mobility modelling with a bridge of speed val-
ues. In order to apply clustering techniques to pattern
analysis, an adequate clustering mechanism must be
identified in advance. Among the various clustering
techniques, probability-based clustering in the form
of expectation maximisation clustering has been se-
lected. Therefore, an adequate probability model for
creating a human mobility model needs to be investi-
gated.

3.2 Characteristics of data
Several volunteers have collected their positioning
data independently. Each positioning data set has
its own characteristics, such as duration of collec-
tion, positioning device used, patterns of collection,
etc. Among the several positioning data sets, we will
use three sets that have been identified as meaningful.
Two of the data sets were collected consistently over
several months. One of the data sets was collected
intermittently over more than one year.

The individuals had their own positioning devices
and some changed their devices during the collection
period. The devices are: dedicated positioning data
collection app on iPhone 3GS, dedicated positioning
data collection app on iPhone 4S, Garmin GPSMAP
62s [32], Garmin EDGE 800 [33], Garmin EDGE
810 [34] and commercial positioning data collection
apps such as sportstracker [35] on iPhone or Android
Phones.

Garmin and Android phones only use a GPS-
based positioning system, while iPhones have a hy-
brid positioning system [36] with a combination of
three different positioning systems. The iPhone 4S
introduced GLONASS. In addition, the interval of po-
sitioning data recording irregularly varies from 1 sec
to 1 min. GPS only devices cannot obtain positioning
data inside a building or underground area. A Garmin
device user can set a fixed interval for GPS data col-
lection from 110 sec. However, recent Garmin devices

introduced smart collection methodology.
A dedicated positioning data collection app was

developed and was used for a while on iPhones. The
interval between positioning data recording for the
app is totally different. In the stay state, the iPhone
app collects positioning data in every user defined in-
terval (e.g. 3 sec) and tries to collect positioning data
for every possible movement if it senses movement of
the device.

Every volunteer collector has his own pattern of
collecting positioning data. The KHU and LJS sets
show the continuous collection of positioning data
over several months, while the SHY set shows inter-
mittent collection patterns because it starts collecting
positioning data just before a mobile stage. It tends to
collect positioning data from unusual outdoor activity,
which has more points in mobile states. A credential
analysis of human mobility patterns must cover the
various characteristics of the positioning data set.

The human mobility model construction process
was developed to cover the various characteristics of
positioning data sets, such as number of positioning
data points, collection interval, size of clusters, time
spent in clusters, etc. from a multidimensional as-
pects.

3.3 Probability-based Clustering
In order to build a human mobility model from human
mobile trajectories, space-time clustering is required
in our research. Clusters identified using clustering
techniques represent the location which a person vis-
its frequently or stays at for a longer time. There-
fore, it is necessary to select an appropriate cluster-
ing method [37]. Clustering algorithms can be di-
vided into four categories: connectivity-based cluster-
ing, centroid-based clustering, density-based cluster-
ing and distribution-based clustering. Connectivity-
based clustering clusters objects with distance con-
nectivity. Centroid-based clustering identifies the cen-
troid of clusters and clusters based on distance to cen-
troids. Among these, k-means clustering is the most
well known. Density based clustering identifies data
sets based on density of data. DBSCAN is an ex-
ample. Distribution-based clustering uses probability
distribution to find clusters; this requires a distribu-
tion model. Among the distribution-based clustering
algorithms, expectation maximisation clustering algo-
rithms are used in our research.

Another classification includes partitioning and
hierarchical algorithms. Hierarchical methods are di-
vided into bottom-up and top-down methods. The
latter refines large clusters and the former aggregates
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small clusters hierarchically.
For our space-temporal clustering, it was appro-

priate to use the partitioning method, since human lo-
cations are spread over partitions of global areas. Two
of the nominative partitioning methods are k-means
algorithms in centroid-based and Expectation Maxi-
mization (EM) clustering in distribution-based clus-
tering. K-means requires centroid and distance to cen-
troid, usually Euclidean distance, and it is easy to
use, although it ignores many properties of clusters
other than distance. EM clustering algorithms require
a certain probability distribution and parameters for
the distribution. It predicts the probability of data be-
longing to a certain cluster. Based on the prediction, it
recalculates parameters. This maximises the expecta-
tion of the whole model towards optimal parameters.
A probability for data to be included in a cluster is
calculated, and, clusters are established according to
these probabilities. Usually EM clustering utilises a
normal distribution for its probability distribution.

It is determined that EM clustering is a good fit
for our purpose because EM algorithms can accom-
modate various distributions in a users purpose; thus,
the space-time nature of the human mobility model
can be represented probabilistically.

3.4 Probability density function
For the EM clustering algorithm, a proper probability
distribution is required. The usual candidate is normal
distribution, i.e. Gaussian distribution, but the result
of clustering with normal distribution is abnormal due
to the nature of human mobility.

A proper probability distribution for human mo-
bility must reflect power law, since human mobility
has a high probability observed within a 12 km dis-
tance from the centre of an individuals location, and
the mobility over longer distances has the probability
distribution of power law [10].

Additionally, our observation is based on the fact
that human mobility patterns are usually concentrated
in the region of 12 km (residence area) for certain
time periods (residence period of human mobility).
The transition between resident areas shows power
law distribution (transition period of human mobility).
Thus, we will introduce power-law distribution, which
is similar to exponential distribution. We call the dis-
tribution a transformed exponential distribution with
a parameter which shows distance of human mobility
from the centre point of residence areas, as

f(x) = e−λx (1)

where λ is a controllable parameter denoting the
maximum distance of the cluster, which is usually
fixed in a constant value, and x is the distance between
the current position of human and the centre of a clus-
ter.

In our approach, we set λ as an inversion of the
sum of the maximum distance of the cluster position
data of the stay state from cluster centroid and the av-
erage distance of positioning data in a cluster from the
cluster centroid. In other words, λ can be calculated
as follows: For each cluster Ci, positioning data Pi,
can be determined as members of Ci by EM iteration
as well as centroid of Ci, Centi, can be calculated.
Among Pi, there exist non-mobile positioning data
Pi,stay, which are classified by speed values; there-
fore, λi can be defined as shown in equation 2 where
dist(x,y) stands for pre-defined distance between two
positions.

We considered the maximum distance of position-
ing data sets in the stay state from the cluster centroid
and the average distance of positioning data sets from
the centroid in order to reflect mobility in a specific
cluster.

With stay positions inside a cluster, a maximum
distance needed to be introduced. For all positions
inside a cluster, an average of the distance to centroid
also needed to be considered.

Once we have a stay position inside a cluster,
there is a possibility that another positioning data set
can become a member of a cluster within the average
distance from the stay position. Thus, stay positions
play a key role in determining λi.

In addition, for positioning data sets in a mobile
state, we calibrate distance from the cluster centroid
according to the probability density function and time
ratio of a specific cluster (TimeRatio). For EM clus-
tering, the probability for positioning a data set to be
a member of a cluster has its own weight. Weights for
stay positions can be calculated from the transformed
exponential distribution, while weights for mobile po-
sitions can be determined as products of TimeRatio
and raw weights from the transformed exponential
distribution. For example, a mobile position in a clus-
ter with a smaller TimeRatio will have smaller weight
than another mobile position in another cluster in the
same situation even though it has the same probability
as another mobile position in another cluster because
of the TimeRatio. This calibration mechanism leads
to more precise clustering for human mobility mod-
elling.
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λi =
1

maxPi,stay(dist(Pi,stay, Centi)) + averagePi(dist(Pi, Centi))
(2)

4 Model Construction Process
4.1 Clustering locations
In order to find locations in the form of clusters from
the positioning data, four steps are used.

4.1.1 Initialisation

The initialisation step calculates initial parameters,
such as the number of initial clusters and the initial
size of clusters. The speeds derived from positioning
data sets and density of positioning data sets are usu-
ally utilised for initialisation.

4.1.2 E-Step

From the initialised parameters of clusters, a proba-
bility for a positioning data set to be a member of a
specific cluster is calculated by using the probability
density function and calibration mechanism of Sec-
tion 3.4. The maximum and average distances from a
positioning data to the centroid of a cluster are major
parameters for probability calculation.

In detail, with the location data set

X = {x1 , x2 , · · · , xn} (3)

and the cluster set

θ = {θ1, θ2, · · · , θm} (4)

then the weight or probability for a positioning
data set to be a member of cluster h is

wh(x ) =
wh · fh(x |θh)∑

i wi · fi(x |θi)
(5)

If positioning data set x is found in a moving state,
the weight of the moving state is

wh(x ) =
wh · fh(x |θh)∑

i wi · fi(x |θi)
· TimeRatioh (6)

where TimeRatio of cluster c is

TimeRatioc =
tc∑
i ti

(7)

and tc denotes the time interval of residence in
cluster c, and where fh(·) is probability density func-
tion for cluster h.

4.1.3 M-Step
In this step, we recalculate parameters, such as expec-
tation and variance of each positioning data set to be a
member of a specific cluster for maximum likelihood,
using weights calculated in E-step.

With the cluster set

θ = {θ1, θ2, · · · , θm} (8)

and when the location data set of cluster A is

θA = {x1|A, x2|A, · · · , xn|A} (9)

then the mean of cluster A can be calculated as

µA =

∑
iwi · xi|A∑

iwi
(10)

and the variance of cluster A can be calculated as

σ2A =

∑
iwi · x2i|A∑

iwi
− µ2A (11)

4.1.4 Termination condition
E- step and M-step will be repeated until the parame-
ters of each cluster remain unchanged, i.e. the thresh-
old value is used to check if parameters became sta-
ble, and those values will converge to maximum like-
lihood.

The log likelihood is

L(θ) =
∑
i∈D

log

(
k∑
j

wj · fi
(
x|µi.

∑
h
))

(12)

With this process, clusters representing locations
of individual mobility will be calculated and each
cluster will be given its own attributes, such as cen-
troid, average radius, variance of radiance, number of
positioning data in cluster, etc. The positioning data
can be clustered into specific locations; we will call
them location clusters.

4.2 Representation of continuous-time
Markov chain

Our purpose is to represent human mobility in a for-
mal model. Among the various models, a Markov
chain is a good option, since each state of the Markov
chain can be mapped onto locations or location clus-
ters, and transition between states can be mapped onto
transitions between location clusters clearly. Sec-
tion 4.1 explains the clustering method used to find
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clusters of locations. In our approach, this is ac-
tually a method to find states of the Markov chain.
Continuous-time Markov chain (CTMC) is used, as
the staying time at a cluster is parameter for a human
mobility model.

The location clusters derived will be regarded as
the state of CTMC without any further process.

CTMC {X(t)|T > 0} is a continuous time and
a discrete value stochastic process with infinitesimal
time ∆ and satisfies the following equation:

P [X(t+ ∆) = j|X(t) = i] = qij∆ (13)

P [X(t+ ∆) = i|X(t) = i] = 1−
∑
j 6=i

qij∆ (14)

where qij is transition rate from location cluster i to
location cluster j.
When ∆ converges to 0, the current state of cluster i
will transit exponential random time with parameter

vi =
∑
j 6=i

qij (15)

where vi is departure rate of location cluster i.
The conditional probability of Dij under condition
Di that a human leaves cluster i in time interval
(t, t+ ∆] for cluster j is represented as

P [Dij |Di ] =
P [Dij ]

P [Di ]
=

qij∆

vi∆
=

qij
vi

(16)

In CTMC, a human stays at location cluster i in
exponential (vi) time and transits to another cluster.
The probability that destination location in cluster j is

Pij =
qij
vi

(17)

In order to construct CTMC, a transition rate {qij}
must be found. From the location clustering in Sec-
tion 4.1, the number of transitions between location
clusters can be found and then conditional transition
probability Pij can be calculated. For staying time at
each cluster, vi is calculated and thus {qij} is found.
In our approach, the time unit is in 1 min considering
the nature of human action.

4.3 Hourly base timed analysis of human
mobility

The location clustering shows spatial aspect of human
mobility. In order to have temporal analysis of human

mobility, a re-analysis of the clustered result in timing
base was required. Even though hourly mobility was
analysed in this research, any other time interval, e.g.
20 min, can be used as a time base.
After completing the location clustering stage, each
positioning data set can have the following extra at-
tributes.

◦ Location cluster to which the positioning data be-
long

◦ Weight for a positioning data set to be a member of
the location cluster

◦ The status of positioning data: stay or moving

For 24 hours per day, each data set in intervals
of 1 h will be analysed. The probability of stay for
positioning data set Pstay and the probability of mov-
ing for positioning data set Pmove will be represented
as follows: where Nstay is the number of positioning
data sets in a stay state, and Nmove is the number of
positioning data sets in a mobile state for a given hour.

The calculation of probability Pi,h for a position-
ing data in a set to be a member of location cluster i at
given time h is shown in equation 20.

Pstay =
Nstay

Nstay + Nmove
(18)

Pmove =
Nmove

Nstay + Nmove
(19)

Based on location clustering, each positioning
data set can be re-analysed from a temporal aspect.
Thus, the timed analysis can comprise the temporal
mobility model across the location clusters.

In Section 5, three mobility sets were analysed
and the space-temporal result of the human mobility
model will be presented.

5 Results and Discussion
For the verification of our human mobility model con-
struction process, three positioning data sets are se-
lected. Three mobility sets KHU, LSJ and SHYwere
voluntarily collected by researchers with various po-
sitioning devices. Note that the positioning data set
represents a subset of each collectors mobility rather
than total mobility. There are several reasons for
this, including battery shortage, GPS signal lost in-
side a building, intentional cut-off by user privacy,
user habits, etc. The positioning data set was collected
over a period from a few months to several years.

Pi ,h =
number of positioning data in the set for location cluster i for the given hour

number of positioning data in the set for the given hour
(20)
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Table 1: Statistical Analysis Result of KHU’s Location Clusters

Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Centre 37.550633816622, 37.530302415258, 37.612157810217, 37.562006698510, 37.507249050132, 37.542386420004, 37.499033670598,
Position 126.924416829235 126.737284754725 126.726268525124 126.984836142539 126.744428282204 126.727308422318 127.026392347701

Std. Dev. of 0.001294512255, 0.003939004009, 0.000022967529, 0.000606102734, 0.000019116018, 0.001861811056, 0.000531108111,
Position 0.001344398660 0.002612434297 0.000084171300 0.000528333500 0.000018329103 0.002804018171 0.000569534023

Max Distance 0.922 km 1.285 km 0.021 km 0.152 km 0.02 km 0.73 km 0.137 km
Mean Distance 0.119 km 0.414 km 0.007 km 0.075 km 0.002 km 0.256 km 0.057 km

Time Ratio 0.454 0.4203 0.0059 0.0046 0.003 0.0028 0.0009
# of GPS 36160 36839 496 369 246 274 268

Stay Time (h) 102.251 94.671 1.333 1.052 0.68 0.638 0.224
Location School Home Restaurant (Gimpo) Shopping area (Bucheon) friend (Gangnam)

t 

0 0.00391 0 0.00016 0 0 0.00016
0.00387 0 0.00035 0 0.00018 0.00106 0

0 0.02500 0 0 0 0 0
0.01584 0 0 0 0 0 0
0.02449 0 0 0 0 0 0

0 0.15652 0 0 0 0 0
0.07417 0 0 0 0 0 0


(21)

Figure 1: Total location clusters for KHU

Figure 2: Most frequent cluster of KHU

Figure 1 shows the result of location clustering of
the KHU set on Google Maps. Seven location clus-
ters were presented, and TimeRatio is the parameter
used to determine the cluster number. The smaller the
cluster number, the bigger the TimeRatio.

Figure 2 shows the most frequent cluster, clus-
ter #0, on Google Maps. It is the university to which

Figure 3: Another frequent clusters of KHU

KHU belongs. Figure 3 shows another frequent clus-
ters of KHU, cluster #1, and neighbouring cluster #5.
Cluster #1 is KHU’s home. Table 1 represents the sta-
tistical results of KHU’s location clusters.

Centre position, i.e. the centroid, is a weighted
average of positions in a cluster. Std. Dev of Posi-
tion stands for standard deviation of geographical
locations in each cluster and in a form of <latitude,
longitude>. Max distance is the maximum distance
of positioning data in a cluster to the centroid of the
cluster. Mean distance is average distance between
member positioning data to the cluster centroid.
TimeRatio is the ratio of staying time in a cluster.
For example 45.5% of total time has been spent at
KHUs home. Count is number of positioning data
in each cluster. Stay time (h) is staying time at a
location cluster in units of 1 h. Location is verified by
a volunteer collector. For example, KHU stayed at lo-
cation cluster #0, which is his university and the most
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Table 2: Space-Time Mobility of KHU

AM 0 - 1 AM 1 - 2 AM 2 - 3 AM 3 - 4 AM 4 - 5 AM 5 - 6 AM 6 - 7 AM 7 - 8 AM 8 - 9 AM 9 - 10 AM 10 - 11 AM 11 - 12
Stay Prob. 0.921 0.929 0.984 0.996 0.993 0.996 1 1 0.773 0.757 0.856 0.751

Moving Prob. 0.079 0.071 0.016 0.004 0.007 0.004 0 0 0.227 0.243 0.144 0.249

Cluster Prob.
#0: 0.177 #0: 0.054 #0: 0.115 #0: 0.065 #0: 0.126 #0: 0.285 #0: 0.155 #0: 0.08 #0: 0.015 #0: 0.488 #0: 0.645 #0: 0.720
#1: 0.768 #1: 0.931 #1: 0.882 #1: 0.935 #1: 0.874 #1: 0.715 #1: 0.845 #1: 0.92 #1: 0.985 #1: 0.355 #1: 0.355 #1: 0.280
#4: 0.055 #5: 0.015 #5: 0.003
PM 0 - 1 PM 1 - 2 PM 2 - 3 PM 3 - 4 PM 4 - 5 PM 5 - 6 PM 6 - 7 PM 7 - 8 PM 8 - 9 PM 9 - 10 PM 10 - 11 PM 11 - 12

Stay Prob. 0.907 0.978 0.858 0.984 0.964 0.803 0.865 0.782 0.852 0.825 0.875 0.848
Moving Prob. 0.093 0.022 0.142 0.016 0.036 0.197 0.135 0.218 0.148 0.175 0.143 0.152

Cluster Prob.

#0: 0.960 #0: 1 #0: 0.917 #0: 0.882 #0: 0.809 #0: 0.750 #0: 0.745 #0: 0.661 #0: 0.493 #0: 0.466 #0: 0.428 #0: 0.293
#1: 0.040 #3: 0.034 #1: 0.103 #1: 0.112 #1: 0.177 #1: 0.220 #1: 0.328 #1: 0.418 #1: 0.476 #1: 0.565 #1: 0.707

#6: 0.040 #6: 0.045 #3: 0.034 #3: 0.044 #3: 0.036 #5: 0.011 #2: 0.090 #2: 0.036 #5: 0.007
#6: 0.045 #5: 0.018 #5: 0.021

#6: 0.010



0 0.00764 0.00446 0.00191 0.02547 0 0.00064 0
0.01201 0 0.02510 0.00218 0.01637 0.00109 0.00109 0
0.01957 0.13701 0 0 0.10276 0.00489 0 0.00489
0.03421 0 0 0 0 0 0 0
0.32046 0.09039 0.20542 0 0 0 0 0
0.01124 0.01124 0 0 0 0 0 0
0.01710 0.01710 0 0 0 0 0 0

0 0 0 0.02740 0 0 0 0


(22)

Figure 4: CTMC representation of KHU’s personal
mobility

The interpretation of KHUs mobility is that he
generally visits his home and school, and other lo-
cation clusters are exceptional. With the criteria of
TimeRatio, the regular mobility pattern and excep-
tional mobility pattern can be classified. Equation 21
shows the transition matrix of KHUs mobility model
in CTMC, excluding staying probability.

Figure 4 shows a human mobility model for KHU
in a CTMC representation. From our approach, a
timed mobility pattern and a general mobility model

Figure 5: LSJ overall location clusters

can be derived. For example, Table 2 shows the 24-
hour mobility model of KHU. Another representation,
such as cyclic mobility pattern, seasonal mobility pat-
terns and daily mobility patterns can be found with
this approach. Table 2 contains hourly information,
such as probability of staying in a cluster, mobility,
stability, etc. It can be regarded as space-time mobil-
ity model in hourly base. For example, between mid-
night and 1:00 AM, KHU stays at a certain location
with a probability of 0.921 or in a mobile state with a
probability of 0.079. In case of his stay state, KHU is
highly probable at location cluster #1 at that time. In
other words, table 2 shows space-time mobility pat-
tern of KHU in hourly base.

Two more mobility models have been con-
structed. It can be predicted that LSJs mobility model

WSEAS TRANSACTIONS on COMPUTERS Ha Yoon Song

E-ISSN: 2224-2872 230 Volume 15, 2016



Table 3: Statistical Analysis Result of LSJ’s Location Clusters

Cluster 0 Cluster 1 Cluster 2 Cluster 3

Centre 37.386634977323, 37.550013906617, 37.475459415957, 37.361390070632,
Position 126.981109299404 126.924291615841 126.981512920091 126.966353851471

Std. Dev. of 0.005732003779, 0.001666390074, 0.000415959390, 0.007048924810,
Position 0.004366247464 0.001289444185 0.000311703189 0.004712444243

Max Distance 1.497 km 0.682 km 0.145 km 1.498 km
Mean Distance 0.543 km 0.182 km 0.038 km 0.449 km

Time Ratio 0.328 0.191 0.042 0.0367
# of GPS 15,365 5,738 1,856 1,646

Stay Time (h) 26.177 15.270 3.406 2.923
Location Home School Subway station Friend’s home

Cluster 4 Cluster 5 Cluster 6 Cluster 7

Centre 37.400867668205, 37.567741769992, 37.390674226339, 37.510988042066,
Position 126.977248950500 126.969634582129 126.951644015371 127.074913886290

Std. Dev. of 0.000296494364, 0.002888416328, 0.000362558279, 0.000082669006,
Position 0.000483393961 0.000955257796 0.000311703189 0.000215435877

Max Distance 0.098 km 0.791 km 0.191 km 0.075 km
Mean Distance 0.051 km 0.177 km 0.082 km 0.013 km

Time Ratio 0.0254 0.018 0.012 0.007
# of GPS 992 847 298 243

Stay Time (h) 2.028 1.482 0.974 0.608
Location Subway station Dating place Subway station Bus station

Table 4: Space-Time Mobility of LSJ

AM 0 - 1 AM 1 - 2 AM 2 - 3 AM 3 - 4 AM 4 - 5 AM 5 - 6 AM 6 - 7 AM 7 - 8 AM 8 - 9 AM 9 - 10 AM 10 - 11 AM 11 - 12
Stay Prob. 0.777 0.879 0.981 1 0.998 0.77 0.84 0.673 0.703 0.647 0.805 0.482

Moving Prob. 0.223 0.121 0.019 0 0.012 0.23 0.16 0.327 0.297 0.353 0.195 0.518

Cluster Prob.

#0: 0.685 #0: 0.402 #0: 0.521 #0: 1 #0: 1 #0: 0.984 #0: 0.509 #0: 0.835 #0: 0.849 #0: 0.362 #0: 0.192 #0: 0.563
#1: 0.055 #3: 0.553 #3: 0.479 #4: 0.016 #2: 0.059 #2: 0.021 #1: 0.030 #1: 0.381 #1: 0.582 #1: 0.157
#2: 0.123 #4: 0.045 #4: 0.010 #3: 0.078 #2: 0.026 #2: 0.040 #2: 0.040 #2: 0.032
#3: 0.057 #7: 0.422 #4: 0.004 #3: 0.037 #3: 0.025 #3: 0.025 #3: 0.231
#4: 0.069 #5: 0.015 #4: 0.049 #4: 0.003 #4: 0.003 #4: 0.018
#5: 0.011 #7: 0.046 #5: 0.010 #5: 0.088 #5: 0.088

#6: 0.071 #6: 0.071
PM 0 - 1 PM 1 - 2 PM 2 - 3 PM 3 - 4 PM 4 - 5 PM 5 - 6 PM 6 - 7 PM 7 - 8 PM 8 - 9 PM 9 - 10 PM 10 - 11 PM 11 - 12

Stay Prob. 0.528 0.48 0.655 0.603 0.967 0.882 0.577 0.547 0.792 0.824 0.729 0.646
Moving Prob. 0.472 0.52 0.345 0.397 0.033 0.118 0.423 0.453 0.208 0.176 0.271 0.354

Cluster Prob.

#0: 0.550 #0: 0.628 #0: 0.040 #0: 0.844 #0: 0.718 #0: 0.448 #0: 0.570 #0: 0.428 #0: 0.643 #0: 0.498 #0: 0.416 #0: 0.632
#1: 0.253 #1: 0.201 #1: 0.655 #1: 0.049 #1: 0.275 #1: 0.552 #1: 0.329 #1: 0.502 #1: 0.310 #1: 0.237 #1: 0.429 #1: 0.093
#2: 0.131 #2: 0.120 #2: 0.197 #2: 0.038 #5: 0.007 #2: 0.084 #2: 0.008 #2: 0.034 #2: 0.065 #2: 0.100 #2: 0.108
#3: 0.057 #4: 0.016 #5: 0.108 #4: 0.053 #4: 0.015 #4: 0.035 #4: 0.009 #4: 0.023 #4: 0.028 #3: 0.073
#3: 0.017 #5: 0.035 #5: 0.015 #4: 0.003 #5: 0.027 #5: 0.004 #5: 0.026 #5: 0.027 #4: 0.091
#5: 0.034 #6: 0.151 #5: 0.002

probability shows a similar mobility pattern to KHUs,
while the SHY mobility model is quite different. Fig-
ure 5 is a Google Maps representation of LSJs loca-
tion clusters. Figure 6 shows cluster #0, which has the
highest TimeRatio among LSJ’s clusters. Cluster #0 is
the home of LSJ. Figure 7 shows cluster #1 as LSJ’s
school.

A transition matrix for CTMC representation of
LSJ’s human mobility model is presented in equa-
tion 22. The transition rate is also dependent on the
TimeRatio of each location cluster. An unusual re-
sult was found between the size of the clusters and
the TimeRatio. Cluster #5 has a bigger distance than
any other cluster, while less than 2% of time is spent

in cluster #5. This is because LSJ walks in the area
of Palaces with his friend, leading to large area in
cluster #5; however, LSJ only visited the place once.
Comparing the LSJ and KHU mobility models shows
a similar mobility pattern because they are university
students. Both KHU and LSJ show a similar pattern
in that the two most frequented places are home and
school. It is assumed that most people frequent home
and place of work. Table 3 shows statistical result of
location clusters from LSH’s mobility model. Table 4
shows space-time mobility pattern of LSJ in hourly
base.

SHYs positioning data set was collected begin-
ning in November 2011. He used various position-
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Figure 6: LSJ cluster #0

Figure 7: LSJ cluster #1

ing devices, such as iPhone 3GS, iPhone 4S, Garmin
EDGE 800, Garmin EDGE 810 and Garmin GSMap
62s. SHY travels frequently, so a research mobil-
ity set inside Korea was selected. Figure 9 shows
overall location clusters from SHYs positioning data
set. SHY’s clusters can be partitioned into two cate-
gories. One is clusters set around Seoul, Korea which
is shown in figure 10. The other is cluster set inside
Jeju island, Korea which is shown in figure 11. The
zoom-ins of clusters around Seoul including clusters
#0 and #1 can be found in in figure 12. In addition,
frequent location clusters in Jeju can be zoomed-in as
shown in in figure 13.

More than 32 location clusters are found in SHYs
positioning data set. Thirty-two location clusters will
be represented since the other clusters have a very
small TimeRatio and very small stay time. These
are regarded as miscellaneous locations. These 32
clusters and transitions between clusters can be rep-
resented in CTMC as shown in in figure 14.

KHU and LSJ, as students, show regular mobil-
ity patterns, such as commuting between home and
school, and have uncommon visits to other locations.
However, SHY visits other places more frequently,
thus many clusters were identified. SHYs mobility

Figure 8: CTMC representation of LSJ’s mobility
model

Figure 9: SHY’s overall location clusters

Figure 10: SHY’s location clusters around Seoul, Ko-
rea
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Figure 11: SHY’s location clusters around Jeju, Korea

Figure 12: SHY’s location clusters including #0 and
#1

Figure 13: SHY’s frequent location clusters in Jeju,
Korea

Figure 14: CTMC representation of SHY’s human
mobility

pattern also contains travel abroad or recreational bi-
cycle riding, which is the reason for various clusters
and various location visits. However, SHY also has a
mobility pattern between home and school, which is
more frequent than other locations, and he has a regu-
lar mobility pattern for commuting. One notable phe-
nomenon is SHYs higher TimeRatio at home, which
contrasts with KHU and LSJs patterns, which have
similar TimeRatios at home and at school.

The numerical details of 32 location clusters can
be found in table 5. Transition matrix for SHY is too
big to be represented in traditional manner however
can be represented in tabular form as shown in table 6.
Final result of SHY’s mobility analysis can be repre-
sented in space-time manner as shown in in table ??.

6 Conclusions
In this research, a method was devised to construct
a personal human mobility model from sets of posi-
tioning data. With sets of positioning data collected
for specific durations, a space-time identification of
certain locations was made by a mobility model con-
struction process that included EM clustering of posi-
tioning data sets with proper probability density func-
tion and parameters for human mobility modelling. To
intuitively represent a human mobility model, CTMC
was utilised.

The locations identified by clustering algorithms
were mapped onto corresponding states of a Markov
chain. The transitions between locations were also
mapped onto corresponding transition probabilities of
the Markov chain. The timing over locations on a 24-
hour basis can be derived from the CTMC representa-
tion of a human mobility model; thus, the space-time
analysis of a certain model can be accomplished. On
this basis, three positioning data sets for three peo-
ple (SHY, KHU, LSJ) were converted into a human
mobility model in order to verify the accuracy of our
methodology.

We believe that our research provides a method
to establish a human mobility model based on peo-
ples’ positioning data set. We found a method to rep-
resent a human mobility model over the space-time
domain. Perhaps the human mobility model can be
used in the area of mobile computing, location based
services, surveillance or other related areas, as we
can now predict a persons location in spatial-temporal
manner. Considering the modern mobile computers
usually have positioning functionalities on hand, a lo-
cation aware computing ability of such computers can
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Table 5: Statistical Analysis Result of SHY’s Location Clusters

Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4

Centre 37.510542645874, 37.550493028734, 33.486097721572, 37.502453969482, 37.498082298367,
Position 126.883514793096 126.923490264870 126.488972663256 128.231263372909 127.018610627529

Std. Dev. of 0.002618603791, 0.001877523216, 0.003776040732, 0.002330771012, 0.004978967776,
Position 0.002854382858 0.002330732945 0.003583041430 0.003295885406 0.006749485328

Max Distance 1.431 km 0.878 km 1.315 km 0.894 km 1.495 km
Mean Distance 0.256 km 0.213 km 0.484 km 0.113 km 0.615 km

Time Ratio 0.451 0.172 0.024 0.022 0.019
# of GPS 292019 95838 9842 6540 40894

Stay Time (h) 246.661 94.352 13.223 12.2 10.624
Location Home School Jeju Univ. Freshman OT Restaurant

Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9

Centre 37.567945185807, 37.528954096954, 37.509896831252, 37.482666228215, 33.428264662410,
Position 126.965715605609 126.931048273789 127.056515897400 127.036576637423 126.929795725146

Std. Dev. of 0.003219198856, 0.003750247051, 0.002539633547, 0.004442491778, 0.002880605293,
Position 0.003705098465 0.004090337664 0.002215850456 0.003659221698 0.002808822194

Max Distance 1.359 km 1.368 km 1.178 km 1.482 km 0.586 km
Mean Distance 0.395 km 0.404 km 0.265 km 0.401 km 0.318 km

Time Ratio 0.018 0.015 0.010 0.009 0.008
# of GPS 23627 61488 10907 13363 8338

Stay Time (h) 9.858 8.466 5.640 5.215 4.525
Location Conference Park Conference Meeting Hotel

Cluster 10 Cluster 11 Cluster 12 Cluster 13 Cluster 14

Centre 37.450009494659, 33.477771955830, 37.540303681501 37.649658504190, 37.488851021738,
Position 126.952288799157 126.514768171930 126.944378388837 126.409883476006 127.067128533893

Std. Dev. of 0.000570231741, 0.003110346678, 0.000022446853, 0.000107570133, 0.000002399970,
Position 0.000263763432 0.003073773188 0.000034302481 0.000124256412 0.000023818912

Max Distance 0.152 km 1.039 km 0.016 km 0.031 km 0.006 km
Mean Distance 0.057 km 0.405 km 0.003 km 0.014 km 0.001 km

Time Ratio 0.004 0.004 0.003 0.002 0.002
# of GPS 634 1778 772 1597 513

Stay Time (h) 2.508 2.396 1.892 1.570 1.390
Location Seoul Nat’l Univ Restaurant Restaurant Beach Bar

Cluster 15 Cluster 16 Cluster 17 Cluster 18 Cluster 19

Centre 37.596187680590, 37.300368376232, 33.506738594910, 37.477762051930, 37.597669774757,
Position 126.796857038599 127.078067263383 126.493606689729 126.960444706845 126.828535739283

Std. Dev. of 0.004616588250, 0.000044445525, 0.000648280999, 0.000152732387, 0.001841838468,
Position 0.008025714091 0.000076084443 0.000361418041 0.000314316787 0.002308691958

Max Distance 1.044 km 0.029 km 0.142 km 0.098 km 0.478 km
Mean Distance 0.493 km 0.007 km 0.071 km 0.022 km 0.276 km

Time Ratio 0.002 0.001 0.001 0.001 0.001
# of GPS 36074 1092 172 241 1007

Stay Time (h) 1.390 1.088 1.027 0.868 0.667
Location Bike park RELATIVE’S home Jeju int’l airport Restaurant Subway station
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Table 5: Statistical Analysis Result of SHY’s Location Clusters (continued)

Cluster 20 Cluster 21 Cluster 22 Cluster 23 Cluster 24

Centre 37.559099716943, 37.409833911924, 37.297884159354, 33.372331741492, 37.564213344751,
Position 126.803342397330 127.126202625940 127.817683623099 126.855548449210 126.997696706216

Std. Dev. of 0.000166443570, 0.000275052425, 0.000020265616, 0.000098015695, 0.000009575073,
Position 0.000257817505 0.000676320386 0.000019052684 0.000336265300 0.000037966743

Max Distance 0.058 km 0.205 km 0.005 km 0.058 km 0.005 km
Mean Distance 0.026 km 0.054 km 0.002 km 0.026 km 0.003 km

Time Ratio 0.0010 0.0009 0.0008 0.0007 0.0007
# of GPS 2169 3993 294 309 837

Stay Time (h) 0.583 0.540 0.480 0.422 0.405
Location Kimpo int’l airport Restaurant Rest area Restaurant Evaluation

Cluster 25 Cluster 26 Cluster 27 Cluster 28 Cluster 29

Centre 37.437842789678, 33.460842115780, 33.247069272504, 37.527138873502, 37.578316987104,
Position 128.095720880899 126.933232707191 126.568897543964 126.896926032165 126.796312813848

Std. Dev. of 0.000054150602, 0.000239323964, 0.007849696500, 0.000036941818, 0.000041426305,
Position 0.000037417126 0.000731847115 0.027381633229 0.000005965004 0.000088696894

Max Distance 0.015 km 0.162 km 1.088 km 0.005 km 0.013 km
Mean Distance 0.006 km 0.065 km 0.792 km 0.004 km 0.008 km

Time Ratio 0.0007 0.0006 0.0006 0.0005 0.0004
# of GPS 609 277 4220 114 6

Stay Time (h) 0.402 0.361 0.336 0.314 0.26
Location Student MT Restaurant Restaurant Restaurant Subway station

Cluster 30 Cluster 31 Cluster 32

Centre 37.554347407970, 37.499282397306, 37.538477890923,
Position 126.875649321431 126.997779179803 127.095232792963

Std. Dev. of 0.000013906746, 0.000897272149, 0.000171986683,
Position 0.000035270453 0.001343433394 0.000143806248

Max Distance 0.009 km 0.268 km 0.033 km
Mean Distance 0.003 km 0.147 km 0.021 km

Time Ratio 0.0004 0.0003 0.0003
# of GPS 1124 565 75

Stay Time (h) 0.247 0.183 0.177
Location Bike park Vote office Relative’s home

Table 6: Transition Matrix for SHY’s Human Mobility Model

Clusters Transition Clusters Transition Clusters Transition Clusters Transition
Prob. Prob. Prob. Prob.

# 0→ # 1 0.00203 # 1→ # 0 0.00548 # 5→ # 1 0.01014 #10→ # 0 0.00665
# 0→ # 4 0.00027 # 1→ # 4 0.00018 # 5→ # 6 0.00169 #10→ #18 0.00665
# 0→ # 5 0.00014 # 1→ # 6 0.00071 # 5→ #24 0.00169 #11→ # 2 0.02086
# 0→ # 6 0.00223 # 1→ # 7 0.00018 # 6→ # 0 0.06103 #11→ #27 0.00695
# 0→ # 8 0.00007 # 1→ #12 0.00018 # 6→ # 1 0.00197 #12→ # 6 0.00881
# 0→ #10 0.00014 # 1→ #20 0.00018 # 6→ # 5 0.00984 #13→ #15 0.01061
# 0→ #15 0.00020 # 2→ #11 0.00504 # 6→ # 7 0.00197 #14→ # 8 0.01198
# 0→ #19 0.00014 # 2→ #17 0.00126 # 6→ #30 0.00394 #15→ # 0 0.01199
# 0→ #21 0.00014 # 3→ #22 0.00136 # 7→ # 0 0.00886 #15→ #13 0.01199
# 0→ #25 0.00007 # 4→ # 0 0.00157 # 7→ #14 0.00295 #15→ #30 0.03596
# 0→ #28 0.00007 # 4→ # 1 0.00157 # 8→ # 0 0.00639 #16→ # 0 0.01532
# 0→ #30 0.00439 # 4→ # 7 0.00157 # 8→ # 7 0.00320 #17→ # 2 0.03244
# 0→ #31 0.00014 # 4→ # 8 0.00157 # 9→ #23 0.00368 #17→ #20 0.01622
# 0→ #32 0.00007 # 4→ #18 0.00157 # 9→ #26 0.00368 #18→ # 0 0.03840
#19→ # 0 0.04992 # 4→ #29 0.00157 #24→ # 5 0.04110 #30→ # 0 0.97143
#20→ # 0 0.02854 #21→ # 0 0.06166 #25→ # 3 0.04144 #30→ # 6 0.01429
#20→ # 2 0.02854 #22→ # 0 0.03470 #26→ # 9 0.04946 #30→ #15 0.01429
#20→ #17 0.02854 #23→ #17 0.03947 #27→ # 9 0.04946 #31→ # 0 0.09077
#28→ # 0 0.05305 #29→ #20 0.06410 #32→ #16 0.09390 #31→ #16 0.09390
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Table 7: Space-Time Mobility of SHY

AM 0 - 1 AM 1 - 2 AM 2 - 3 AM 3 - 4 AM 4 - 5 AM 5 - 6 AM 6 - 7 AM 7 - 8 AM 8 - 9 AM 9 - 10
Stay Prob. 0.723 0.545 0.688 0.664 0.637 0.638 0.411 0.328 0.521 0.424

Moving Prob. 0.277 0.455 0.312 0.336 0.363 0.362 0.589 0.672 0.279 0.576

Cluster Prob.

# 0: 0.826 # 0: 0.800 # 0: 0.709 # 0: 0.756 # 0: 0.540 # 0: 0.499 # 0: 0.652 # 0: 0.338 # 0: 0.343 # 0: 0.373
# 1: 0.003 # 1: 0.035 # 1: 0.053 # 1: 0.068 # 1: 0.008 # 1: 0.001 # 1: 0.025 # 1: 0.017 # 1: 0.212 # 1: 0.075
# 2: 0.006 # 2: 0.002 # 3: 0.023 # 3: 0.027 # 3: 0.029 # 3: 0.034 # 3: 0.018 # 3: 0.014 # 3: 0.018 # 2: 0.001
# 3: 0.029 # 3: 0.016 # 6: 0.005 #15: 0.147 # 5: 0.128 # 5: 0.128 # 4: 0.028 # 4: 0.145 # 4: 0.045 # 3: 0.015
# 4: 0.105 # 4: 0.011 #15: 0.207 #30: 0.002 #15: 0.199 # 6: 0.025 # 5: 0.001 # 5: 0.081 # 5: 0.005 # 4: 0.038
# 6: 0.009 # 6: 0.064 #30: 0.001 #19: 0.007 # 7: 0.012 # 6: 0.166 # 6: 0.233 # 6: 0.194 # 5: 0.127
# 7: 0.018 #15: 0.069 #20: 0.089 # 8: 0.019 # 7: 0.005 # 7: 0.017 # 7: 0.003 # 6: 0.220
#18: 0.004 #30: 0.003 #15: 0.224 # 8: 0.010 # 8: 0.023 # 8: 0.008 # 8: 0.081

#20: 0.067 #15: 0.085 #15: 0.094 #15: 0.120 #11: 0.021
#19: 0.008 #21: 0.035 #16: 0.010 #16: 0.015
#30: 0.003 #32: 0.003 #19: 0.023 #21: 0.032

#21: 0.018 #24: 0.002
#30: 0.001 #30: 0.001

AM 10 - 11 AM 11 - 12 PM 0 - 1 PM 1 - 2 PM 2 - 3 PM 3 - 4 PM 4 - 5 PM 5 - 6 PM 6 - 7 PM 7 - 8
Stay Prob. 0.593 0.727 0.547 0.43 0.411 0.512 0.549 0.515 0.519 0.645

Moving Prob. 0.407 0.273 0.453 0.57 0.589 0.488 0.451 0.485 0.481 0.355

Cluster Prob.

# 0: 0.737 # 0: 0.499 # 0: 0.452 # 0: 0.467 # 0: 0.290 # 0: 0.404 # 0: 0.262 # 0: 0.264 # 0: 0.342 # 0: 0.470
# 1: 0.067 # 1: 0.160 # 1: 0.239 # 1: 0.228 # 1: 0.204 # 1: 0.191 # 1: 0.231 # 1: 0.335 # 1: 0.282 # 1: 0.171
# 2: 0.009 # 2: 0.058 # 2: 0.049 # 2: 0.037 # 2: 0.024 # 2: 0.033 # 2: 0.022 # 3: 0.005 # 2: 0.008 # 2: 0.017
# 3: 0.019 # 4: 0.049 # 5: 0.109 # 4: 0.006 # 4: 0.129 # 4: 0.066 # 4: 0.080 # 4: 0.122 # 3: 0.011 # 3: 0.014
# 4: 0.053 # 5: 0.078 # 6: 0.012 # 5: 0.069 # 5: 0.044 # 5: 0.042 # 5: 0.057 # 5: 0.007 # 4: 0.057 # 4: 0.097
# 5: 0.024 # 6: 0.045 # 7: 0.040 # 6: 0.035 # 6: 0.191 # 6: 0.098 # 6: 0.115 # 6: 0.089 # 5: 0.005 # 5: 0.006
# 6: 0.062 # 7: 0.027 # 8: 0.010 # 7: 0.011 # 7: 0.002 # 7: 0.020 # 7: 0.030 # 7: 0.013 # 6: 0.201 # 6: 0.069
#16: 0.010 # 9: 0.008 # 9: 0.038 # 9: 0.033 # 8: 0.003 # 8: 0.049 # 8: 0.059 # 8: 0.010 # 8: 0.046 # 7: 0.016
#24: 0.019 #10: 0.008 #10: 0.005 #11: 0.004 # 9: 0.021 # 9: 0.038 # 9: 0.010 # 9: 0.019 # 9: 0.007 # 8: 0.041

#11: 0.017 #11: 0.008 #15: 0.090 #11: 0.005 #10: 0.001 #10: 0.001 #13: 0.010 #10: 0.005 # 9: 0.023
#16: 0.009 #17: 0.003 #18: 0.002 #14: 0.005 #14: 0.005 #15: 0.052 #15: 0.046 #11: 0.001 #11: 0.003
#17: 0.002 #18: 0.002 #27: 0.012 #15: 0.072 #15: 0.035 #17: 0.002 #19: 0.001 #12: 0.002 #12: 0.011
#22: 0.011 #22: 0.003 #30: 0.002 #20: 0.007 #20: 0.001 #19: 0.007 #21: 0.003 #13: 0.017 #13: 0.013
#24: 0.020 #31: 0.001 #30: 0.003 #21: 0.025 #25: 0.002 #21: 0.016 #15: 0.036

#23: 0.003 #27: 0.050 #16: 0.004
#27: 0.039 #30: 0.001 #21: 0.004
#28: 0.002 #31: 0.012 #26: 0.005
#31: 0.001

PM 8 - 9 PM 9 - 10 PM 10 - 11 PM 11 - 12

Stay Prob. 0.645 0.638 0.747 0.718
Moving Prob. 0.355 0.362 0.253 0.282

Cluster Prob.

# 0: 0.527 # 0: 0.512 # 0: 0.716 # 0: 0.835
# 1: 0.108 # 1: 0.063 # 1: 0.074 # 1: 0.019
# 2: 0.001 # 2: 0.008 # 2: 0.003 # 2: 0.004
# 3: 0.015 # 3: 0.005 # 3: 0.022 # 3: 0.023
# 4: 0.079 # 4: 0.118 # 4: 0.100 # 4: 0.051
# 5: 0.002 # 5: 0.012 # 6: 0.009 # 6: 0.006
# 6: 0.121 # 6: 0.044 # 7: 0.063 # 7: 0.048
# 8: 0.019 # 7: 0.115 # 9: 0.003 #15: 0.012
#11: 0.004 # 8: 0.020 #18: 0.002 #30: 0.002
#12: 0.012 # 9: 0.021 #25: 0.005
#15: 0.0103 #11: 0.004 #30: 0.004
#25: 0.007 #15: 0.060
#26: 0.001 #25: 0.013

#26: 0.004
#30: 0.001
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be widely used and our model may help for location
dependent applications. For example, an unmanned
automotive equipped with personal mobility model
can help passenger’s computing life more seamlessly.

Acknowledgements: Author gives many thanks to all
assitants, especially Mr. Hyunuk Kim, for their help
to finish this work.
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