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Abstract: Visual cryptography schemes (VCSs) are techniques that divide a secret image into n shares. Stacking
exactly n shares reveals the secret image. One VCS technique is the deterministic VCS (D-VCS), which suffers
from the pixel expansion issue. This problem has been solved by probabilistic size invariant VCS (P-SIVCS);
however, the visual quality of the revealed secret image produced by P-SIVCS is low. In D-VCS, a thin line is
converted to a thick line and pixel expansion problem while it may not be visible in the revealed secret image
created by P-SIVCS. In this paper, two new constructions are introduced for resolving the thin line problem with
well visible quality and non expansion pixel by using image manipulation, D-VCS, a mixture of D-VCS and P-
SIVCS.
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1 Introduction
Ensuring the security of information has become

a necessity, because trade, as well as other fields, rely
on the transmission of information across networks.
Thus, data encryption has become a major research
issue.

Encryption is a secure means of protecting valu-
able information. All the encryption types, except for
visual cryptography, require computation and/or hard-
ware for the decryption operation.

In visual cryptography, the secret image (SI) is
split into n shares and no information can be gained
from any one share or a stack of k shares, when k < n.
However, stacking exactly n shares reveals the SI.

Decryption in a visual cryptography scheme
(VCS) relies only on a human visual system. Naor
and Shamir [1] developed a deterministic VCS tech-
nique, D-VCS, that satisfies two conditions, security
and contrast. The security condition guarantees that a
cryptanalyst cannot acquire information from a num-
ber of shares k that is smaller than the number of re-
quired shares n, k < n. The contrast condition guar-
antees the visibility of the SI. The major issue in D-
VCS is the pixel expansion problem: the size of the
revealed secret image (RSI) and the shares is at least
double that of the SI; however, the visual quality of
the RSI is good. In contrast, Yang [2] adopted a prob-
abilistic size invariant VCS (P-SIVCS), a non expan-
sion technique that produces RSIs having a poor vi-
sual quality.

Subsequently, Hou and Tu [4] showed that not
only the contrast affects the visual quality of the RSI

but also the variance. Therefore, Hou and Tu [4] in-
troduced multi pixel size invariant VCS (ME-SIVCS),
which takes both the contrast and variance into ac-
count, and thus, the visual image quality achieved us-
ing ME-SIVCS is better than that using P-SIVCS.

An SI may include fine details, such as a map and
shapes represented by a thin line. If P-SIVCS is em-
ployed for such an SI, the RSI is unclear, and it is hard
to realize a thin line when the visual quality is poor.
This problem was first called the thin line problem
(TLP-1) in [5] [6]. ME-SIVCS generated another two
issues: TLP-2, where some vertical lines are missing
in the RSI, and TLP-3, where thin vertical lines be-
come thick in the RSI. More details are given in sec-
tion 3.

Feng et al. [5] adopted two new constructions,
Construction 3, which suffers from TLP-3, and Con-
struction 1 [5], which does not suffer from any of the
three problems, TLP-1, TLP-2, and TLP-3. However,
Construction 1 satisfies only a weak version of the tra-
ditional security condition. A second issue, is that, be-
cause of the nature of Construction 1, the visibility of
parts of its resulting images is poor as compared with
those of D-VCS, i.e., it suffers partially from TLP-1.

In this paper, two new constructions are intro-
duced. Construction 1 avoids the three problems,
TLP-1, TLP-2, and TLP-3, but suffers partially from
TLP-4 if SI has a thickness of horizontal lines equals 1
pixel. Construction 2 avoids the three problems, TLP-
1, TLP-2, and TLP-3. Construction 2 suffers only par-
tially from TLP-1.

The rest of this paper is organized as follows. In
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the following section, the traditional definitions of D-
VCS, P-SIVCS, ME-SIVCS are given, and the back-
ground for the TLP. The proposed two new construc-
tions are introduced in section 3. In section 4 the ex-
perimental results for the two constructions are also
examined. In section 5, some concluding remarks are
presented.

2 Background and Definitions
2.1 Notations

Let Ct be a collection of Sti , where Sti represents
n×m Boolean matrices, t ∈ {0, 1}, and 1 ≤ i ≤ gt,
where gt = |Ct| is the cardinality of Ct. Consider
sti,k is any k × m submatrix of a matrix Sti ∈ Ct,
where 2 ≤ k ≤ n. V t

i,k defines the OR vector for
sti,k and H(V t

i,k) is the Hamming weight for the vec-
tor V t

i,k. Let x ∈ λtk, λ
t
k = {H(V t

i,k) : 1 ≤ i ≤
gt, for any k out of n}. Denote x0, x1

x0 = max
x∈λ0

x, x1 = min
x∈λ1

x, .

The average and variance of the darkness level are
denoted by µt and σt, respectively:

µt =

∑
x∈λtk

x

|λtk|
, σt =

∑
x∈λtk

(x− µt)2

|λtk|
. (1)

2.2 D-SEVCS (k, n) (Ateniese et al. [7])
Two collections of C0 and C1 constitute

the Deterministic Scale Expansion Visual
Cryptography Scheme (D-SEVCS) if they sat-
isfy the contrast and security conditions:

Contrast : x0 < x1 ≤ m.
Security : For any j1 < j2 < ... < jd in

{1, 2, ..., n}, d < k the two collections Bt of subma-
trices sti,d obtained by restricting each sti,k ∈ Ct to
rows j1, j2, ..., jd are indistinguishable in the sense
that they contain the same matrices with the same
frequencies.

The steps of the encryption of an SI are as fol-
lows.
◦ Convert the SI to a binary image, say, SIB.

◦ Select a pixel from SIB. If the pixel is black (white),
randomly select a matrix S1

i (S0
i ) ∈ C1(C0), and

subsequently, distribute n rows for n shares, where
every row has m elements representing the size of
the pixel expansion.

Stacking a sufficient number of shares k ≤ n yields
the RSI, which is the simplest decryption method
among all the types of cryptography. The size of

the shares and the RSI is m times the size of the SI.
This is called the pixel expansion problem. Good vi-
sual quality of D-SEVCS was at expense of pixel ex-
pansion. In this paper we are not highlight methods
such as random gird [8, 9], turning and flipping [10],
and visual cryptograms [9,11] because these methods
have poor visual quality approximately as Probability
Size Invariant VCS (P-SIVCS). Yang [2] adopted P-
SIVCS to resolve the issues of pixel expansion at ex-
pense of poor visual quality. Also Yang [12] and
Yan [3] discussed the relation between P-SIVCS and
random gird.

2.3 P-SIVCS(k, n)
Without loss of generality, let n = k = 2. Two

collections, C0 and C1, of the matrices 2× 1,

C0 =
{[ 0

0

]
,

[
1
1

]}
, C1 =

{[ 1
0

]
,

[
0
1

]}
form P-SIVCS if they satisfy the contrast and security
conditions:
Contrast : Denote P ti,k as the probability that V t

i,k is 1
for any i, then P 0

i,k < P 1
i,k.

Security : For any j1 < j2 < ... < jd in {1, 2, ..., n},
d < k, the two probabilities P 0

i,d and P 1
i,d for the two

collections Ct, t = 0, 1, are equal.
The P-SIVCS algorithm designed by Yang results

in an RSI having an unclear visual quality (see Figure
2(a)). Therefore, Hou and Tu [4, 13] introduced the
following construction, the image visibility of which
is good.

Definition 1. (ME-SIVCS-1) (k, n,m). Let m be a
block size of pixels and b the number of black pixels
in m. N(b) represents the number of blocks that have
been encrypted, and every block has b black pixels. To
encrypt a block L having m pixels
◦ (A) N(b) = 0, b = 1, 2...,m.

◦ (B) If N(b) mod m < b, then select randomly a
matrix S1

i , distribute n rows of S1
i on n shares.

◦ (C) Else, encrypt the block L by a matrix S0
i is se-

lected randomly, distribute n rows of S0
i on n shares.

◦ (D) N(b) = N(b) + 1.

◦ (E) Encrypt a new block.

Example 1. To simplify the above definition, con-
sider m = 2; then, the block may have b = 0, 1, or 2.
When both pixels are black, i.e., b = 2, then the
inequality in step B is satisfied ((N(b) mod 2) =
(0 or 1) < 2), which guarantees that the block of
two black pixels is encrypted by a matrix from C1.
When b = 0, this means that two pixels are white
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and the inequality in step B will never be satisfied
(N(b)mod 2 ≮ 0), which guarantees that the block of
two white pixels is encrypted from C0. Finally, when
b = 1, i.e., one pixel is white and the other is black,
the inequality in step B becomes ((N(b) mod 2) =
(0 or 1)) < 1, which means that the first block having
b = 1 is encrypted using a matrix from C1, and then,
the second block having b = 1 is encrypted via a ma-
trix from C0. If the total number of blocks that have
b = 1 is nb, then nb

2 is encrypted by a matrix from C1

and nb
2 is encrypted by a matrix from C0.

In ME-SIVCS-1 some vertical thin lines were re-
moved see Figure3(b) and Figure 5(c). To recover this
problem Feng et al. [5] introduced the following con-
struction ME-SIVCS-2.

Definition 2. (k, n,m) ME-SIVCS-2. Divide the SI
into q blocks, and define D(M [b]) as a function gen-
erating a random number between 0 and M [b] − 1,
where b is the number of black pixels in the block that
have already been encrypted. To encrypt a block from
q blocks, the following steps are followed.
◦ (A) N [b] = b, b = 1, 2...,m.

◦ (B) M [b]) = m, b = 1, 2, ...,m.

◦ (C) If D(M [b]) < N [b], then
select randomly a matrix S1

i , and subsequently, dis-
tribute n rows of S1

i on n shares.

◦ (D) D[M ] = D[M ]− 1

◦ (E) N [b] = N [b]− 1

◦ (F) Else, encrypt the block by select randomly a
matrix S0

i , distribute n rows of S0
i on n shares.

◦ (G) D[M ] = D[M ]− 1.

◦ (H) If D[b] = 0 then N [b] = b, D[b] = m

◦ (I) Encrypt a new block.

Feng et al. introduced Construction 4 in [5],
which satisfies a weak version of the conventional se-
curity condition. In this study, we restricted ourselves
to only the conventional security condition.

2.4 Measurements of the RSI quality
Average contrast ᾱ was introduced in [2, 4, 14,

15] as an appropriate measure of quality for the RSI in
P-SIVCS, instead of the traditional definition of con-
trast α in D-SEVCS:

α =
x1 − x0

m
, ᾱ = µ1 − µ0,

ᾱp(for P-SIVCS) = P 1
1,k − P 0

1,k.

In fact, the average contrast in P-SIVCS, ME-SIVCS-
1, and ME-SIVCS-2 is equal to the corresponding
contrast in D-SEVCS. However, the visual quality of
the RSI, as shown in Figure 3(a-c), is not the same.
Hou and Tu [4] and Feng [5] showed that the variance
should be used together with the average contrast to
evaluate the visual quality.
Variance . The general definition of variance was
given in equation (1). The variance for P-SIVCS
is σp = bx1(m−x1)+(m−b)(m−x0)x0

m2 , and that for
both ME-SIVCS-1 and ME-SIVCS-2 is σME =
b(m−b)
m2 (x1 − x0)2 (see [5]). Simply, without loss of

generality, for m = 2, b = 0, 1, 2, σME ≤ σp .
Therefore, the visual quality produced by both ME-
SIVCS-1 and ME-SIVCS-2 is better than that pro-
duced by P-SIVCS.

2.5 Review of the current thin line methods
Fine images have valuable information, such as

edges and corner points, that can be utilized to detect
and identify essential features. Both edges and corner
points are formed from lines, and therefore, lines are
frequently essential in image processing, image analy-
sis, feature detection and identification, and many ap-
plications. Thus, lines constitute valuable information
in a map or architectural plan. VCS can be an excel-
lent approach for transforming vital information such
as lines. However, the visual quality of the RSI of P-
SIVCS is poor in the case of a fine image, and it is
hard to see a thin line. This problem was called TLP-
1 in [5] (see Figure3(a)). ME-SIVCS-1 can resolve
TLP-1 (see Figure3(b)). In Figure3(b) and Figure5(c),
some vertical lines have been removed, which repre-
sents the problem called TLP-2 in [5].

TLP-2 problem as the result of step ”B” in Defini-
tion 1 and step ”C” in Definition 2, two pixels, one of
which is black and the other white, are encrypted only
from C1 or C0, respectively. If the thin line (only one
pixel in thickness) is white and the second neighbor
pixel is black, they may both be encrypted as black,
and thus, the white pixel that represents the thin line
is removed.

Another problem in ME-SIVCS-1, vertical lines
have become thicker, a problem that Feng et al. [5]
called TLP-3. Subsequently, Feng et al. [5] adopted
ME-SIVCS-2. ME-SIVCS-2 suffers from TLP-3 and
partially from TLP-2 (see Figure3(c) and Figure5(d)).

3 The Proposed Constructions
In this section, the proposed constructions are in-

troduced. In the first construction, the unsharp mask
will be utilized. Therefore, analysis of the unsharp
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mask has adopted (in the next section) to study the
impact of the unsharp mask on SI.

3.1 Unsharp mask
Contrast play an important role in improving the

quality of RSI. For this reason, we apply the unsharp
mask for SI in the two new constructions to improve
the contrast in SI, accordingly the contrast in RSI will
be enhanced. Unsharp mask increases the edge con-
trast and local contrast in SI. The kernel of unsharp
mask equals a Dirac delta function minus Gaussian
blur kernel we refer the reader to [16].

The question can raise: Is the unsharp mask can
change the details of SI? The answer can be in three
points, visually (see Figure1 and Figure2), explana-
tion of how the unsharp mask works and the ratio of
white pixels turned to black or vice versa (see table 1).

The unsharp mask is high pass filter, that sharper
the fine details in image (edges, corner points and thin
line). Simply, the white edges in lena’s hair Figure
1(b) sharper than in Figure 1(a) and the written word
on plane’s tail (”F16”) became clearer in Figure 1(h)
than Figure 1 (g).
In the table 1 Let w2b (b2w) be the number of pix-
els that are converted from white (black) in SI (see
left column in Figure 1) to black (white) in SI af-
ter applying the unsharp mask (see right column in
Figure 1), b2w. The size of images in Figure1 is
512 × 512 = 262144, Rw2b =w2b/262144 and
Rb2w =b2w/262144. In table 1, the total ratio of
change in an image Figure 1 between 0.04 − 0.16
which is tiny change that improves the fine details at
the same time does not change the contents of the SI.

Another example, in Figure 2 shows the impact
of unsharp mask to improve the visual quality of RSI.
Figure2(a-b) represents P-SIVCS, ME-SIVCS-1 and
ME-SIVCS-2 respectively, without applying the un-
sharp mask for SI. In the Figure 2 (d-f) the unsharp
mask was applied to SI, and then, the methods P-
SIVCS, ME-SIVCS-1 and ME-SIVCS-2 were applied
on SI respectively.

Construction 1. This construction can be classified
as D-SEVCS; it is summarized in the following steps.

1. SI of size x×y to be reduced to size x× y
2 (Figure

3(d) and (e)).

2. Use a cubic interpolation to smooth the SI after
reduction.

3. Use the unsharp mask, to sharpen the line that
may have become thicker in the interpolation
step.

4. Apply the conventional D-SEVCS of Naor and
Shamir [1] that require pixel expansion m = 1×
2, then the size of two shares and RSI is x×(y2 ×
2) = x× y.

Steps 1-3 were applied before using of D-SEVCS.
Therefore no require to prove that construction 1 sat-
isfy security condition.

Figure 1: The impact of the unsharp mask. The left
column represents the SI, and in the right column, the
unsharp mask was applied to the SI in the first column.
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Table 1: The impact of the unsharp mask.
Figure w2b Rw2b b2w Rb2w Total

Figure 1(a) 17299 0.06 26762 0.1 0.16
Figure 1(c) 16773 0.06 14850 0.05 0.11
Figure 1(g) 21593 0.08 16769 0.06 0.14
Figure 1(e) 6166 0.02 5771 0.02 0.04

Figure 2: Comparison between applying the unsharp
mask for SI (the second row) before using methods P-
SVICS, ME-SIVCS-1, ME-SIVCS-2 and using meth-
ods without applying the unsharp mask (the first row):
(a) P-SVICS , (b) ME-SIVCS-1, (c) ME-SIVCS-2,
(d)-(f) are P-SVICS , ME-SIVCS-1, and ME-SIVCS-
2, respectively, after the unsharp mask was applied on
SI.

The visual quality in Figure 3(f) is better than that
in both Figure 3(b-c), which shows the result of ME-
SIVCS-1, and Figure 3(c), which shows the result of
ME-SIVCS-2, the variance of Construction 1 is ≤ the
variance for ME-SIVCS-1 or ME-SIVCS-2 see table
2. In addition, TLP-1, TLP-2, and TLP-3 are avoided
in Construction 1 and the vertical lines are straight and
not partially removed, as in ME-SIVCS-2 in Figure
3(c). However, the horizontal lines in Construction 1

Figure 3: Comparison of all previous techniques and
our first construction technique: (a) P-SVICS, (b)
ME-SIVCS-1, (c) ME-SIVCS-2, (d) the secret image
(SI) with size 209 × 208, (e) the resized image with
size 209× 104, (f) our Construction 1.

became thicker, which means that if the thickness of
the horizontal line is one pixel in the SI, it is converted
to two pixels in the RSI. In this paper, we call this type
of thin line problem the fourth type thin line problem
(TLP-4).
TLP-4 can exist in Construction 1 only when a hori-
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zontal line having a thickness of 1 pixel exists. How-
ever, if the thickness of a horizontal line is 2 pixels in
the SI, it is converted to 1 pixel in the reduction step
of the SI, i.e., the line has a thickness of 1 pixel in the
reduced image. Thereafter, in the encryption step, the
line returns to a thickness of 2 pixels. Thus, TLP-4
occurs when the thickness of a line in the SI is only 1
pixel. In Figure 4, the line having a thickness of 8 pix-
els in Figure 4(a) becomes one having a thickness of
only 4 pixels in Figure4(b), and then, after using Con-
struction 1, the line returns to a thickness of 8 pixels
in Figure4(c). Similarly, the line having a thickness
of 4 pixels becomes a line consisting of 2 pixels Fig-
ure4(b), and then one consisting of only 4 pixels in
Figure4(c). The thin line having a thickness of 1 pixel
became thicker (2 pixels). Apparently, Construction 1
does not increase the thickness of a line, if its thick-
ness > 1, and some lines may become thinner.

Figure 4: Effect of Construction 1 on the line thick-
ness. (a) The secret image (SI) of size 415× 190: the
top line has a thickness of 8 pixels, the second line
a thickness of 4 pixels, the third line a thickness of
2 pixels, and the last line a thickness of 1 pixel, (b)
Reduced image of size 415× 95, (c) Construction 1.

Another example illustrates that construction 1
has not issues TLP-1 to TLP-4 in case, thickness of
the horizontal lines >1 pixel. In the Figure 5(a), the
thickness of horizontal lines is 2 pixels. In this case,
construction 1 not suffers from TLP-4, the thickness
of horizontal lines in RSI is 2 pixels, see Figure5(f).

The Construction 1 has only one problem occurs
while horizontal lines of thickness one pixel. There is
no need to prove security condition for Construction
1. Because the steps 1-3 are pre-processing operations
on SI, then the conventional D-SEVCS (that satisfied
security condition) of Naor and Shamir [1] is applied.

Construction 2. There are several algorithms mixed
between D-SEVCS and P-SIVCS (see [5] and [17],
pp. 138) that suffer from TLP-1 or/and TLP-3. Feng
[5] introduced three methods (pp.334-335), however,
Feng mentioned that three algorithms are not suitable
for the thin problem, and then Feng [5] introduced
ME-SIVCS-1 and ME-SIVCS-2 (both were explained

above).

Figure 5: Comparison of all techniques, whereas the
horizontal lines of thickness 2 pixels: (a) the secret
image (SI) with size 256 × 202, (b) the resized im-
age with size 256 × 102, (c) ME-SIVCS-1, (d) ME-
SIVCS-2, (e) P-SVICS, (f) our Construction 1.

The second construction (has not been introduced
in any published paper so far) encrypts a vertical
block of three pixels ( ). b = 0, 1, 2, 3 represents the
number of black pixels in this block. The construc-
tion is a mixture of D-SEVCS and P-SIVCS. The
construction can be divided into two steps.

Step− I: Every block of 3 pixels in SI is
converted to a block of 3 pixels in the converted
secret image (CSI). Three techniques are used.

Construction 2(a). A block has one black (white)
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pixel. This black (white) pixel may be the upper pixel
( ), middle pixel ( ), or lower pixel ( ). Convert these
three cases to a block that has only one black (white)
pixel in the lower position. In other words, for b = 1
the situations for the block of 3 pixels are ( , , and
). Convert these three situations to the block ( ) in

the CSI. For b = 2, convert ( , , and ) to ( ).
Construction 2(b). This technique (construction

2(b)) is similar to construction 2(a), but the black
(white) pixel is in the upper position of the new block
in CSI. In other words, convert ( , , and ) to ( ),
and ( , , and ) to ( ).

Construction 2(c). In this technique, the black
(white) pixel is the middle pixel of the block in the
CSI. In other words, convert ( , , and ) to ( ), and
( , , and ) to ( ).
In the above construction 2(a-c), the block, b = 0, 3
( and ) remains unchanged. The construction 2(a-c)
is summarized in Figure6.

Figure 6: Construction 2(a-c): The top row represents
the blocks in the secret image (SI) that are converted
into blocks in the converted secret image (CSI) (sec-
ond row from top). Construction 2(C) (a-c).

Step− II: For simplicity, in this step, only Con-
struction 2(a) will be introduced; the other techniques
are similar. CSI for Construction 2(a) has the upper
pixel and middle pixel are both white or both pixels
are black, third pixel is white or black. To encrypt
the block of three pixels, if the upper and middle are
white (black) randomly permute the columns of the
matrix S0 =

[
1 0
1 0

]
(S1 =

[
1 0
0 1

]
), and distribute two

subpixels to each share. The third pixel (lower pixel)
will be encrypted according to P-SIVCS. Then the
share matrices collections W,Wb, Bw, and B are as
follows.

W =

{[
1 0 1
1 0 1

]
,

[
0 1 1
0 1 1

]
,

[
1 0 0
1 0 0

]
,

[
0 1 0
0 1 0

]}
Wb =

{[
1 0 1
1 0 0

]
,

[
0 1 1
0 1 0

]
,

[
1 0 0
1 0 1

]
,

[
0 1 0
0 1 1

]}
Bw =

{[
1 0 1
0 1 1

]
,

[
0 1 1
1 0 1

]
,

[
1 0 0
0 1 0

]
,

[
0 1 0
1 0 0

]}
B =

{[
1 0 1
0 1 0

]
,

[
0 1 1
1 0 0

]
,

[
1 0 0
0 1 1

]
,

[
0 1 0
1 0 1

]}
To encrypt a block in the CSI, for b = 0, 1, 2, and

3, select a matrix randomly from W,Wb, Bw, and B,
respectively. Distribute a first row for a share and a
second row for the other share.

Construction 2(a-c) are shown in the images of
Figures 7-9(d-f) respectively.

Theorem 3. Construction 2(a-c) satisfy the security
condition.

Proof. The proof is for Construction 2(a); Construc-
tion 2(b-c) can be proved similarly.

Let λw be the set of all submatrices in W . Ac-
cording for the definition of security condition in sec-
tion 2.2, it is enough to prove λw = λwb = λBw =
λB .
λw = {[1 0 1], [1 0 1], [0 1 1], [0 1 1], [1 0 0], [1 0 0],
[0 1 0], [0 1 0]} = λwb = λBw = λB . All the sets
are equal, and then, Construction 2(a) satisfies the se-
curity condition.

4 Experimental results and Discus-
sion

Figures 7-9 (b), (c), (d), (e), and (f) represent
ME-SIVCS-2, Construction 1, Construction 2(a-c),
respectively, and Figures 7-8 (g) and (h) are P-SIVCS
and VCRG respectively. The best visual quality is
seen in Figure 7(c), which shows our Construction
1, and the second best visual quality is seen in Fig-
ure 7(d), which shows more details than Figure 7(b).
The visual quality of Figure 7(d)-(e) is better than
that of Figure 7(f), in spite of their variance being
equal (see Table 2). The reason for this is spatial vari-
ance. In Construction 2(a-b) , two attached pixels are
encrypted together and one pixel is encrypted alone.
Conversely, in construction 2(c), two pixels that are
not attached, the upper and the lower pixel, are en-
crypted together while the middle pixel that separates
them is encrypted alone. Therefore, the visual quality
can be effected by spatial variance, where in Construc-
tion 2(a-b) the spatial variance is less than in Con-
struction 2(c).

Let s1, s2, and s3 (w1, w2, and w3) be the num-
ber of blocks that have only one black (white) pixel in
the upper, middle, and lower position in the block, re-
spectively (see table 3). In construction 2(a), if b = 1
in a block, the black pixel is moved to the lower po-
sition in the block. In contrast, in Construction 2(b)
the black pixel is moved to the upper position in the
block.

A question can raise: Can step I in construction
2 change details in SI dramatically? The answer ap-
proximately no, The change is slight. Numerically,
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Figure 7: Comparison of all methods: (a) SI, (b)
ME-SIVCS-2, (c)our Construction 1, (d)-(f) repre-
sent Construction 2(a-c), respectively,(g) P-SIVCS,
(h) VCRG.

if the Construction 2(a), Construction 2(c), and Con-
struction 2(b) will be employed for Figures7, 8, and9,
then 0.06%, 0.009% and 0.01% of pixels in SI will be
move one pixel or two pixels respectively. The distor-
tion 0.009-0.06% may be preferable compared with
the disadvantages of other methods. Visually, in Fig.

Figure 8: Comparison of all methods: (a) SI, (b)
ME-SIVCS-2 ,(c) our Construction 1, (d)-(f) repre-
sent Construction 2(a-c), respectively, (g) P-SIVCS,
(h) VCRG.

7-8(d-f) nearly no effect of step I on SI and Figure9(e-
f) show a slight change in the circle in the half black
background.

The results shown in Figures (7-9)(d) are slightly
better than those in Figures (7-9)(e). Since s1 < s3,
the distortion that is generated when moving a black
pixel in Construction 2(a) is less than that produced
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by Construction 2(b).

Figure 9: Comparison of all methods: (a) P-SIVCS,,
(b) ME-SIVCS-2 (c) our Construction 1, (d)-(f) rep-
resent Construction 2(a-c), respectively.

An analysis of the SI properties can help deter-
mine the best method of encryption. Apparently, if
the SI is simple (see Figure 8), then the best method is
one of the sub-construction 2(a-c) that does not suffer
from TLP-1 to TLP-4. For a SI such as that in
Figure 7, the best construction for encryption is Con-
struction 1 and the second best is Construction 2(a).
However, an SI that has several horizontal, vertical,
shapes, numbers and characters, and lines of varying
thinness, such as that in Figure 9, is critical. In this
case, we have to scarify by accepting TLP-4 in qual-
ity or accepting one of the problems partially. If the
thinness of a horizontal line is not essential or hori-
zontal lines have thickness > 1, then the best method
is Construction 1. If the partially poor visual quality

Table 2: Comparison of our constructions and other
constructions based on variance and thin line prob-
lems

Method Block Size Variance=σm,b Thin Line Problems.

P-SIVCS 2 σ2,0 = 0.5, σ2,1 = 0.25, TLP-1
σ2,2 = 0

ME-SIVCS-2 2 σ2,0 = 0, σ2,1 = 0.25, TLP-3 &
σ2,2 = 0 partially TLP-2

Construction 1 2 σ2,0 = 0, σ2,1 = 0, partially TLP-4
σ2,2 = 0

Construction 2(a) 3 σ3,0 = 0.25, σ3,1 = 0, partially TLP-1
σ3,2 = 0.25, σ3,3 = 0

Construction 2(b) 3 σ3,0 = 0.25, σ3,1 = 0, partially TLP-1
σ3,2 = 0.25, σ3,3 = 0

Construction 2(c) 3 σ3,0 = 0.25, σ3,1 = 0, partially TLP-1
σ3,2 = 0.25, σ3,3 = 0

Table 3: Analysis of s1, s2, s3 and w1, w2, w3.
Figure s1 s2 s3 w1 w2 w3 Comparison

Figure 7 4639 5051 4662 3895 4240 3806 s1 < s3, w1 > w3

Figure 8 120 106 217 108 103 114 s1 < s3, w1 < w3

Figure 9 194 96 235 203 101 132 s1 < s3, w1 > w3

in the white background area is not important, then P-
SIVCS or Construction 2(a-b) depend on s1 < s3 or
s1 > s3, respectively.

5 Conclusion
The thin line problem is critical in the encryp-

tion of an SI that has a map, characters, or shapes.
In this paper, two constructions were adopted. In the
first construction (Construction 1), TLP-1 to TLP-3
were avoided, and the construction suffers partially
from TLP-4 only when the SI has a horizontal line of
the thickness of 1 pixel. However, when all the hor-
izontal lines have a thickness of more than 1 pixel,
the construction does not suffer from TLP-4. The
second construction includes three sub-constructions,
a-c. Construction 2(a) and Construction 2(b) suffer
partially from TLP-1. Researchers mentioned there
might be no perfect solution for the thin line problem
in secret image [5]. Finally, in the thin line problem,
the analysis of the SI properties is essential for finding
the best construction for encryption. Future work will
extend the above two constructions in color and gray
images. Also, utilize the meaningful images in Thin
line Problem.
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