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Abstract:- The development of Information Communication Technologies (ICT) has increased the popularity of 
web based learning and E-assessment. The success of any online assessment is largely dependent on the quality 
of the question bank from which the questions are drawn. Various techniques are available for dynamically 
generating questions during E-assessment with different difficulty levels. Calibrating the question bank to know 
the measurement characteristics of the questions is a necessary part of large E-assessment. Classification of a 
question involves assigning a difficulty level to each question. An adaptive E-assessment strategy has been 
formulated to test the proficiency in ‘Programming using C’ language. This paper deals with the application of 
Markov chain to assess the reliability of question classification and to classify the performance of the students 
based on the attainment of handling difficulty levels over a period of time. 
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1 Introduction 
   Student assessment is a vital part in the learning 
process to categorize them based on the knowledge 
gained by the students. The advancement of ICT in 
last few decades has increased use of computers in 
assessment through online examinations enabling 
quick and uniform assessment of a very large 
number of learners. Adaptive assessment is a 
popular form of computer based assessment. When 
it comes to assessing the depth of knowledge gained 
by individual learners, adaptiveness is the key 
functionality. Adaptive testing has great potential to 
make learning environment more personalized to the 
learners. Multiple-choice questions (MCQ) are a 
widely used method for an adaptive test. Different 
sets of questions have to be generated for different 
students, keeping their enthusiasm to face the test 
steadily [18]. This requires a large set of MCQ 
stored in a question bank to cater to individual 
student needs. The bank should be as large as 
possible and the difficulty level of the questions 
should be wide enough to cover the entire range of 
test takers’ ability. A good question bank should 
have sufficient questions to attain high measurement 
accuracy throughout the measurement range. 
Classification of questions is primarily concerned 
with assigning a difficulty level to each question in 
the bank. Thus, a high-quality question bank will 
contain sufficient numbers of useful questions that  

permit efficient, informative testing. This criterion 
primarily demands that at all difficulty levels there 
should be sufficient number of calibrated 
questions. Hence there is a need to calibrate the 
questions in the question bank with different 
difficulty levels. A number of adaptive assessment 
tools have been extensively used by academic 
institutions, and well known organizations for 
specific examinations [9], [15], [21].      
   An adaptive testing strategy has been formulated 
to test the proficiency of students in programming 
using ‘C’ language in an engineering college. This 
test has been designed to classify the students 
according to their ability and Intelligence Quotient 
(IQ). A large number of multiple questions were 
collected from several course experts and the 
questions have been classified with different 
difficulty levels. The purpose of classification is to 
ensure that students are evaluated consistently. 
This increases the reliability of the assessment. In 
most of the literature, classification has been done 
using Item Response Theory (IRT) models [8], 
[18]. 
   A Markov chain is a mathematical system that 
permits transitions from one state to another in 
a state space. It is a random process usually 
characterized as memoryless; the next state 
depends only on the current state and not on the 
sequence of events that preceded it. This specific 
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kind of "memorylessness" is called the Markov 
property. Markov chains have many applications 
as statistical models of real-world processes. Many 
examples on Markov chain have been discussed in 
[20]. Markov Chain   has been used for predicting 
the behaviour of customers in terms of their brand 
loyalty and switching from one telecom service 
provider to another [4]. An E- Assessment strategy 
and its implementation have been discussed in 
[13]. In [14], an overview of Bayesian Network 
and its application to handle uncertainty in 
adaptive E-assessment has been studied. 
 

   Markov Chain model has been used in different 
fields including education. Markov chains are 
especially useful to build prediction models [10], 
[23], allowing for the establishment of future user 
behaviour while users are interacting with the web 
sites. This is done with the analysis of previous 
users’ behaviour with similar interests. In [3], 
relational Markov model has been applied to model 
the behaviour of website users to help in 
personalizing websites. Markov chains have been 
applied to model the web usage of students in 
university’s website. The results indicate that web 
usage can be accurately modelled by Markov 
chain[17].  Student navigation patterns in a web 
based E-learning system of an educational 
institution to discover the critical periods of site 
navigation has been modelled using Markov chain. 
These usage profiles were used by administrators to 
personalize the contents of the website and improve 
the services to satisfy users’ expectation[19]. 
Markov chains are especially useful for predicting 
models based on continuous sequences of events. 
Markov analysis has been used to investigate the 
flow process of students in an university. They have 
concluded that the probability of dropping out is 
higher for Science students than for Arts students 
[2]. The student flow in a higher academic 
institution has been investigated using Markov 
analysis.  It has been found that the probability of 
progression to a higher level increases as students 
move on to a higher level in the system [1]. Hidden 
Markov models have been used to model the actions 
of school students for an intelligent tutoring system 
[7]. Similar work has been carried out to examine 
the effect of student learning in a computer based 
learning environment using Hidden Markov 
models[16]. Markov chain has been applied to study 
the progress of secondary school students based on 
their gender [22]. Homogenous Markov chains were 
used to determine the effect of teaching and 
learning process in educational institutions [11].  

   Guessing the answer is one of the important 
factors associated with adaptive assessment. In an 
assessment with MCQ, there is a possibility of 
students making guesses to provide the answer for 
the questions. Guessing could cover a wider range, 
from random guessing in which all options are 
chosen with equal probability to partial uncertainty 
where the student’s probability of choosing some 
options might be higher or lower than that of 
choosing other options [5].  If test scores are based 
simply on the number of questions answered 
correctly at each DT level, then a random guess 
increases the chance of a higher score. The system 
cannot distinguish between the choice of answers 
based on knowledge and a lucky guess. Hence, 
students with different levels of knowledge could 
end up with the same score. Therefore classifying 
the performance of students based on the DT levels 
attained over a period of time will be a better 
measure compared to that of a normal evaluation. 
The paper focuses on ensuring a reliable 
classification of questions in the question bank and 
classifying the students based on their proficiency 
using Markov chains. 
   The reminder of the paper is organized as follows: 
section 2 discusses about Markov model, section 3 
explains the adaptive E-assessment procedure, 
section 4 describes the Markov model for adaptive 
E-assessment, and section 5 concludes the paper. 
 
 
2 Markov Model 
   A Markov chain is a sequence of random 
variables, which describe the states of a system S 
denoted by S = {s1, s2,...,sn}. The process starts in 
one of these states and moves successively to other 
states. If the system is currently in state si, and 
moves to state sj at the next step with a probability 
denoted by pij, this probability does not depend upon 
which state the system was before si. The next state 
depends only on the current state and not on the 
sequence of events that preceded as represented in 
equation (1).  
 
            P(sn|s1,s2…sn-1) = P(sn|sn-1)                    (1)                     
 
   This conditional independence property is known 
as the Markov property.  
  The changes of states of the system are called 
transitions. The probabilities associated with various 
state changes, called transition probabilities, are 
denoted by Pij. The whole process is characterized 
by a state space, a transition matrix describing the 
probabilities of all possible transitions, and an initial 
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state across the state space. The process can also 
continue to remain in the same state during a 
specified transition instant and this occurs with 
probability Pii. An initial probability distribution, 
defined on S, specifies the starting state. The 
transition probabilities are represented by a matrix P 
of nonnegative numbers Pij, where i and j range over 
all states in S, which satisfy the conditions denoted 
in equations (2) and (3). 
 

     
njniPssssP ijinjn ,...1,,....1,)|( 1 =====+               (2) 

 
where sn is the current state and and sn+1 is the  state 
after next transition. 
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   A Markov chain can be constructed with the 
transition matrix, by using the entries as transition 
probabilities. The transition matrix shown in 
equation (4) gives the 1-step probability. 
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   In many applications it is necessary to predict the 
future states, given the current state [24]. This 
requires knowledge of the conditional Probability 
Mass Function (PMF) which is contained in n-step 
probabilities as given in equation (5). 
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where sn is the current state and sn+1 is the future 
state. 
   The n-step transition probability of a Markov 
chain is the probability that a process in state i will 
be in state j after ‘n’ additional transitions. The n-
step probabilities are calculated using the Chapman-
Kolmogorov equation (6).    
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   This denotes the probability that ‘n’ time units 
later, the chain will be in state j given it is now (at 
time m) in state i. Since the transition probabilities 
do not depend on the time m ≥ 0, at which the initial 
condition is chosen, without loss of generality it can 
be chosen that m=0 and written as in equation (7).  
Also P(1) = P. 
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   This is denoted in terms of transition matrices as 
given in equation (8) and in particular as given in 
equation (9). 
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where P(n) is given in equation (10). 

nn PP =)(    for n ≥ 1                                         (10) 
The associated transition matrix is depicted in 
equation (11). 
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   Now P(i to j in ‘n’ steps)  = sum of probability of 
all paths i to j in ‘n’ steps. 
   At an intuitive level, being irreducible means that 
every point will be visited by our Markov process. 
Ergodicity is the study of the long term average 
behavior of systems evolving over time. The ergodic 
property states that as the number of steps are 
increased, there exists a positive probability 
measure at step ‘n’ that is independent of probability 
distribution at initial step zero [12]. It ensures that 
all measurable test functions are starting to approach 
their expectations to average over time. A Markov 
chain is called an ergodic Markov chain if it is 
possible to eventually get to every state from every 
other state with probability greater than zero.  If Pn 
has all positive entries and probability of going from 
state i to state j in n steps is positive, then a regular 
chain is ergodic. 
 
 
3 Adaptive E-Assessment  
   This section describes the adaptive E-assessment 
strategy formulated to test the proficiency of 
students’ in ‘Programming using C’ language. The 
application was developed using PHP and MySQL.  
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3.1 Knowledge Base Creation 
   A question bank consisting of multiple choice 
questions (MCQ) were collected from course 
experts. A conventional test was conducted for a 
group of students to initially calibrate the questions. 
Classification was done with the proportion of the 
examinees who answered each question correctly to 
the total population. The questions were initially 
classified into five difficulty levels ranging from 
DT1 to DT5 and are shown in equation (13). 
 

 
 
               (13) 
 
    
 
 
 

The initial classification of questions based on 
percentage of students who answered them correctly 
is shown in Table 1. Each question in the question 
bank is tagged with a DT. The DT of a question has 
to be updated periodically, after a broad spectrum of 
students undergo the tests and the question has been 
asked sufficiently large number of times. A difficult 
question is assigned a higher weightage than a less  
difficult question while assessing the capability of 
the examinees. 

 
Table 1 - Initial classification of questions 

 

DT % Answered 
Correctly 

No. of 
Questions 

5 0 – 10 26 
4 11 – 29 80 
3 30 – 49 97 
2 50 – 69 79 
1 70 – 100 78 

 
3.2 Procedure  
 
   The algorithm for conducting the online test using 
adaptive strategy is shown in Fig.1. The interesting 
aspect of this model is that it allows the student to 
initially opt for the DT of the questions soon after he 
logs into the system of examination. If he opts for 
the kth DT (k=1, 2, 3, 4, 5) the system will start 
displaying the questions randomly from the kth DT 
for which the candidate answers. 
 
  

Procedure QuestionGenerate (Max_mark, 
Coursecode, DT, Time) 
//Coursecode - Course of exam (input given) 
// maxMark - Max marks of the exam (preset value) 
// DT - Degree of Toughness (initially specified by 
//the student) 
// time - Duration of the exam (preset value) 
{for i=1 to 5 
  {qCountDT[i] =0;  // qCountDT[i] stores #Que-   
                                 // generated in  ith DT 
   ansCountDT[i]=0;}//ansCountDT[i] stores #Que-   
                                  //correctly answered in ith DT 
   totalScore=0;      // Marks scored by the student 
Do 
    {count = 0;      // keeps track of #Que. answered  
                            //correctly with the given DT 
       for i=1 to 3   
            Call qGen( ); 
       If ((count = 3) AND (DT< >5)) 
 increment DT; 
          else if ((count=0) AND (DT<>1))          
             decrement DT; 
          else{ Call qGen( ); 
                   Call qGen( ) ; 
                      If ((count<3) AND (DT< >1))                     
                        decrement DT; 
                    else if ((count>=3) AND (DT< >5))    
                        increment DT; } 
        }while((maxMark>0) AND (timeavailable( ))); 
} 
Procedure qGen( ) 
 {Do  
    {x = RAND(getmaxQ_No(DT)) 
         //getmaxQ_No(DT)returns max.#Que avai-          
         //lable in the db corresponding to the given DT  
         //RAND( ) will generate a random Q.No. for- 
         // the given DT     
     } while(x is already generated for the given DT); 
Display the question and Add ‘x’ to the list; 
maxMark = maxMark - mark(DT); 
increment qCountDT[DT]; 
If (answer(x)) 
            {totalScore=totalScore+mark[DT]; 
              increment count; 
              increment ansCountDT[DT]; }  

 
 
 

Fig.1. Algorithm for conducting online test 
 
Case 1: If the candidate answers the first three 
questions of the kth DT correctly, the system will 
automatically shift to (k+1)th DT, provided k ≠ 5. 
When k = 5, the system continues to ask questions 
from the same level as long as  the expiry of the time 
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frame or the examinee has attempted questions for 
the prescribed maximum marks whichever occurs 
first 
Case 2: In case the candidate answers all the three 
questions of the kth DT incorrectly, the system will 
automatically shift to (k-1)th DT, provided k ≠ 1. It 
follows from the earlier logic the system continues 
to display from the 1st DT irrespective of the number 
of wrong answers provided.  
Case 3: This case relates the situation where the 
examinee answers either one or two questions 
correctly out of the first three questions from the kth 
DT. The system exhibits one more question from the 
same DT. Thus the examinee encounters a total of 
four questions. A total of three correct answers 
shifts to (k+1)th DT, provided k ≠ 5;  
Case 4: In case the candidate answers two questions 
correctly out of the first four questions from the kth 
DT, one more question from the same DT is given. A 
total of three correct answers out of five given 
questions, shifts to (k+1)th DT; otherwise to (k-1)th 

DT. However shifting to a higher or lower DT does 
not take place when k=5 or k=1 respectively. 
   The score and the number of DT – wise questions 
asked and answered will get displayed at the end of 
the test. 
Deciding the next question’s degree of toughness is 
based on various factors as shown in equation (14) 
below: 
       ),,,(1 nDTresultDTQfDT iii =+

       (14) 
 where,   
Qi is the current question with degree of toughness i,    
DTi is the current degree of toughness,    
result is the outcome of the student’s answer for the 
current question,  
nDT is the number of questions answered in current 
session with degree of toughness i. 
   The system continues with the procedure until the 
time duration of the assessment elapses or the 
questions for the prescribed marks have been 
attempted, whichever occurs first.  
 
3.3 Evaluation Procedure 
   The marks for a question in each DT are given in 
Table 2. It is to be noted from the table that marks 
increase steadily with DT.  

 
Table 2 Marks associated with each context 

dimension (DT) 
      

 

 The maximum marks and the duration of the 
assessment can be set according to the needs of the 
Course. The test will get terminated either on the 
expiry of the time frame or the examinee has 
attempted questions for the prescribed maximum 
marks whichever occurs first. The score and the 
number of DT – wise questions asked and answered 
get displayed at the end of the test. 
 
The overall process flow is depicted in Fig.2. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2 Process Model for Adaptive E-assessment 

 
 

4 Markov Model for Adaptive E-
Assessment 
 
   The adaptive E-assessment was conducted for 
about 200 students of an engineering college and 
results were collected. The sample data set showing 
the transition between various difficulty levels are 
shown in the Table 3. 

DT level 1 2 3 4 5 

Mark 0.2 0.4 0.6 0.8 1.0 

MCQ Collection from 
Course Experts 

Conduct Conventional Tests  

Classification of Questions 

Knowledge Base 

Select MCQ by Adaptive E-assessment Strategy 
until Stopping Criteria is met 

Result Analysis 

Ranking 

Analysis & Adaptive Grading Strategy 

Display Results with Grades 
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   We employ mathematical modelling to classify 
the students with appropriate IQ in various DT 
levels. . In this study, we have classified the students 
into five groups  based on the DT level attained after 
a period of time  as shown in Table 4, with DT5 
being the desired level of academic difficulty (the 
best performers). 

 
 

Table 3. Transition samples (S-id:Student id, 
S1:Start State, Sn:Final State) 

 

 
 

Table 4 DT Level Classification 
 

DT level Student Group 

DT5 Very Bright 

DT4 Bright 

DT3 Mediocre 

DT2 Just below Average 

DT1 Far below Average 

 
 
4.1 Transition Probability Matrix of Adaptive E-
Assessment 
In adaptive E-assessment, a candidate can move 

across DT levels in a stepwise manner. This can be 
denoted as a sequence of random variables for each 
student describing the state of the system DT1, 
DT2,….DT5. A candidate starting at level ‘i’ (i = 1, 
2, 3, 4, 5) will either move to level i+1 or come 
down to level i –1. It is not possible to move to 
other higher/lower levels. However shifting to a 
higher or lower DT does not take place when i=5 or 
i=1 respectively. Hence the probabilities Pii=0 for 
2≤i≤4.  

The conditional probability of making a random 
walk from level i to level i+1 is denoted by Pi,i+1 and 
that of moving from level i to level i-1 by Pi,i-1. The  
transition probability matrix of the finite state 
Markov chain is given in equation (15). 
This follows the discrete Markov model because 
each state depends only on the previous state. i.e. if 
a candidate is at DTi, he can either move to DTi-1 or  
DTi+1. The transition between the states is viewed as 
a Markov chain. 

 
                       54321 DTDTDTDTDT  

 𝑃𝑃 =         

5

4

3

2

1

DT

DT

DT

DT

DT

   























5554

4543

3432

2321

1211

000
000

000
000
000

PP
PP

PP
PP

PP

(15) 
 
     A Markov chain is often represented as a graph 
on S (possibly with self-loops) with an edge going 
from i to j whenever transition from i to j is 
possible, i.e., Pij > 0, and labelled by Pij. The 
probability of moving from DTi to DTj is denoted by 
Pij. For instance, the probability of moving from 
DT1 to DT2 is denoted by P12, probability of moving 
from DT2 to DT1 is denoted by P21 and so on. When 
the state of the system is either DT1 or DT5, the 
system can remain in the same state and the 
probabilities are denoted by P11 and P55 respectively. 
Markov chain for adaptive E-assessment is shown in 
Fig.3. 
The initial state transition probability matrix is 
given in equation (16). The probability Pi,i+1 is 
calculated as the proportion of the number of 
students moved from level i to level i+1 to the total 
number of students who started at level i. The 
probability Pi,i-1 is calculated as the proportion of the 
number of students moved from level i to level i-1 
to the total number of students who started at level i. 
                 
                            54321 DTDTDTDTDT       
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125.0875.0000

44.0056.000

05.005.00

00632.00368.0

000994.0006.0

(16) 
   
 
 

S-id S1 DT Transitions Sn 
1 1 1-1-1-1 1 
2 1 1-2-1-2-1-2-1-2-1-2-1 1 
3 1 1-2-1-2-1-2-3-2-1-2 2 
4 1 1-2-3-4-3-4-5 5 
5 2 2-1-2-1-2-3-2-1 1 
6 2 2-3-2-3-2-3-4 4 
7 3 3-2-1-2-1-2-1-2 2 
8 3 3-4-3-2-3-2-1 1 
9 4 4-3-2-3-4-3 3 
10 4 4-5-4-5-4-5 5 
11 5 5-4-3-2-1-2-1 1 
12 5 5-4-3-4-3-4-3 3 
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For levels DT1 and DT5 Pi,i is the probability that a 
student continues to remain in the same level. In a 
batch of 231 students, 181 started at DT1, out of 
which 180 moved to DT2 during the first transition 
and 1 remained at the same level and hence the 
probabilities are 0.994 and 0.006 respectively. The 
other probabilities are calculated in a similar 
manner.  
  To predict the future states based on the current 
state, the n-step probabilities are calculated. High 
power matrices arrived to observe the candidates 
DT level after 10 transitions are shown in annexure 
1. The conditional probability of the candidates 
starting at DTi, to reach the other DT levels is 
indicated in the n-step probability transitions. 
  It can be seen that within 5 transitions, the 
probabilities of all DT levels are greater than zero, 
which clearly shows that all states are reachable 
from every other state over a period of time. This is 
an indication that the Markov chain is ergodic and 
the questions have been classified correctly.  
In the assessment conducted, the number of students 
who started at each DT level is shown in Table 5. 
 
Table 5. Percentage of students at DT levels initially 
 

DT1 78.35% 
DT2 8.23% 
DT3 6.06% 
DT4 3.9% 
DT5 3.46% 

 
    After 10 transitions, it can be seen that , out of the 
students who have started in DT1, 15% could stay in 
DT1, 51% could move to level DT3, 20% could 
move to DT5. Of the students started in DT3, 48% 
stay in DT3 and 14%, 6%, 11%, 21% of the students  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
move to DT1, DT2, DT4 and DT5 respectively. It is 
observed that most of the students are mediocre.  
The comparison between the percentage of students 
who initially started at each DT level and the 
percentage of students after 10 transitions at each 
DT level using Markov chain is shown in Fig. 4. 
   This classification was arrived by designing 
questions which provide percentage of students in 
each category.   
  

 
 
    Fig. 4  Percentage of students at each DT level 
 
4.2 Steady state Probabilities 
   If the state space is finite and the Markov chain is 
irreducible, then in the long run, regardless of the 
initial condition, the Markov chain must settle into a 
steady state. Let ‘P’ be the transition matrix. Then 
there exists a vector π = [π1 π2… π5] such that for 
any initial state i as shown in equation (17). 
 

              
0)(lim >=

∞→ jijn
nP π                       (17) 

where M is the number of states and , 
          πj uniquely satisfy the following steady state 

equations (18) and (19).  
 
           𝜋𝜋𝑗𝑗  =  ∑ 𝜋𝜋𝑗𝑗  𝑃𝑃𝑖𝑖𝑗𝑗 ,

𝑀𝑀
𝑖𝑖=0    for  j = 0,1,2,…M    (18) 

                    ∑ 𝜋𝜋𝑗𝑗  = 1𝑀𝑀
𝑗𝑗=0                 (19)  
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Fig.3 Adaptive E-assessment Markov chain 
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The vector π = [π1 π2 π3 π4 π5] is called the steady-
state probabilities of the Markov chain. They are 
independent of the initial probability distribution 
defined over the states.  
The probability of starting at state i, ( i = 1,2,3,4,5)  
in the long run  will settle at values that are 
solutions of equation πP = π and represented in 
matrix notation as given in equation (20). 
 

[π1 π2.. π5 



























125.0875.0000

44.0056.000

05.005.00

00632.00368.0

000994.0006.0

 =[π1 π2..π5]    (20) 

 
By expanding the above matrix, we have the linear 
set of equations(21) to (26). 
  
               0.006π1 +0.368π2 = π1                                         (21) 
                0.994π1 +0.5π3 = π2                                  (22) 
                0.632π2 +0.5π4 = π3                                               (23) 
                0.5π3 + 0.875π5 = π4                                             (24) 
                0.44 π4 +0.125π5 = π5                                           (25) 

 
                    ∑ πi  =   15

𝐼𝐼=1                                 (26) 
  

By solving the above equations, we obtain 
π1=0.087, π2=0.234, π3=0.296, π4=0.234 and 
π5=0.148. The probability of students remaining in 
DT1 is 0.087, DT2 is 0.234, DT3 is 0.296, DT4 is 
0.234 and DT5 is 0.148 and this is graphically 
represented in Fig.5. Steady state probabilities 
indicate that a large section of students reach DT3 
followed by DT2 and DT4. 
 

 
 

Fig.5. Steady state probabilities for Batch 1 
 
When steady state probabilities were calculated for 
second batch of students, we obtain π1=0.057, 

π2=0.188, π3=0.352, π4=0.274 and π5=0.128 which is 
graphically depicted in Fig.6.  It can be seen that 
among the five levels, majority of students reach 
DT3 which is then followed by DT4 and DT2. Thus 
the figures show the relative performances of the 2 
batches of students. In both the batches, a large 
section of students stay at DT3. 
 

 
 

Fig.6. Steady state probability for Batch 2 
 
 
5 Conclusions  
   There is a hue and cry about the present evaluation 
system. At the time when there is a question about 
the current evaluation system, how to classify the 
students is a big question. This test procedure has 
been specially designed to evaluate the students in 
real terms and to classify them according to their 
level of attainment. This approach classifies the 
students based on the DT level attained rather than 
the score obtained. The probability of students 
reaching each DT level was also calculated using 
Markov chains and a comparison was made between 
two batches of students who took the same 
assessment. It was found that in both the batches, 
more number of students could easily reach DT3 
which is a mediocre level (29.6%, 35.2% for 
batches 1 and 2 respectively). However in batch 2 
the number of students in DT4 is higher when 
compared to that of batch 1. The correctness of the 
classification of questions has also been proved 
using Markov chains. This classification is a better 
approach because it uses the transition of DT levels 
for classification rather than using the score. In this 
approach the influence of guessing the answers will 
not have a greater impact on the DT levels attained.  
   As a part of future work, the questions in the bank 
can be grouped concept wise and data mining 
techniques can be used to analyse the students’ 
performance in various concepts. Also a comparison 
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between Markov model and data mining methods 
can be made. 
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                    Table A1. 1st Level Transition 
 

                    54321 DTDTDTDTDT  

 
DT1 0.006 0.994 0.000 0.000 0.000 

 
DT2 0.368 0.000 0.632 0.000 0.000 

P1 DT3 0.000 0.500 0.000 0.500 0.000 

 
DT4 0.000 0.000 0.560 0.000 0.440 

 
DT5 0.000 0.000 0.000 0.875 0.125 

  

 
Table A2. 2nd Level Transition 

 

 
DT1 0.366 0.006 0.628 0.000 0.000 

 
DT2 0.002 0.682 0.000 0.316 0.000 

P2 DT3 0.184 0.000 0.596 0.000 0.220 

 
DT4 0.000 0.280 0.000 0.665 0.055 

 
DT5 0.000 0.000 0.490 0.109 0.401 

  

 
Table A3. 3rd Level Transition 

 

 
DT1 0.013 0.661 0.019 0.306 0.000 

 
DT2 0.250 0.002 0.608 0.000 0.140 

P3 DT3 0.001 0.510 0.000 0.466 0.024 

 
DT4 0.092 0.000 0.543 0.055 0.310 

 
DT5 0.000 0.112 0.294 0.332 0.262 

  

 
Table A4. 4th Level Transition 

 

 
DT1 0.243 0.023 0.590 0.009 0.136 

 
DT2 0.006 0.565 0.007 0.408 0.015 

P4 DT3 0.182 0.001 0.580 0.023 0.213 

 
DT4 0.001 0.311 0.147 0.399 0.143 

 
DT5 0.037 0.067 0.394 0.221 0.282 

  

 
Table A5. 5th Level Transition 

 

 
DT1 0.013 0.548 0.025 0.395 0.019 

 
DT2 0.204 0.009 0.583 0.018 0.185 

P5 DT3 0.004 0.456 0.067 0.404 0.070 

 
DT4 0.110 0.034 0.487 0.122 0.247 

 
DT5 0.022 0.165 0.295 0.292 0.226 

 
 
 

 
 
 
 

                 Table A6. 6th Level Transition 
 
 

                 54321 DTDTDTDTDT  

 
DT1 0.198 0.026 0.566 0.030 0.180 

 
DT2 0.007 0.489 0.052 0.401 0.051 

P6 DT3 0.164 0.020 0.542 0.063 0.212 

 
DT4 0.013 0.310 0.181 0.348 0.148 

 
DT5 0.057 0.112 0.372 0.224 0.235 

  

 
Table A7. 7th Level Transition 

 

 
DT1 0.013 0.475 0.068 0.389 0.055 

 
DT2 0.176 0.022 0.551 0.051 0.200 

P7 DT3 0.010 0.413 0.107 0.378 0.093 

 
DT4 0.110 0.066 0.457 0.143 0.223 

 
DT5 0.040 0.192 0.295 0.274 0.200 

  

 
Table A8. 8th Level Transition 

 

 
DT1 0.171 0.036 0.536 0.061 0.196 

 
DT2 0.011 0.435 0.093 0.382 0.079 

P8 DT3 0.148 0.041 0.511 0.091 0.210 

 
DT4 0.025 0.302 0.201 0.326 0.146 

 
DT5 0.068 0.141 0.360 0.222 0.209 

  

 
Table A9. 9th Level Transition 

 

 
DT1 0.016 0.423 0.107 0.372 0.083 

 
DT2 0.157 0.039 0.520 0.080 0.205 

P9 DT3 0.017 0.378 0.139 0.358 0.108 

 
DT4 0.108 0.091 0.435 0.156 0.210 

 
DT5 0.051 0.206 0.297 0.263 0.184 

  

 
Table A10. 10th Level Transition 

 

 
DT1 0.152 0.051 0.507 0.089 0.201 

 
DT2 0.016 0.394 0.127 0.363 0.099 

P10 DT3 0.136 0.061 0.484 0.113 0.207 

 
DT4 0.034 0.292 0.218 0.311 0.146 

 
DT5 0.074 0.160 0.352 0.220 0.194 

 

Annexure 1 
Transition Matrices 
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