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Abstract: NoSQL databases store a huge amount of data generated by modern web applications. To improve scal-
ability, a database is partitioned and distributed among the different nodes called as a scale out. However, this
scale out feature of the NoSQL database is oblivious to the data access pattern of the web applications, which
results in poorly distributed data across all the nodes. Therefore, the cost required for the execution of the query
is increased. This paper describes the partition placement strategy, which will place data partitions to the available
domains in the Amazon SimpleDB according to the data access pattern of web applications, which leads to an in-
crease in throughput by some percentage. We present the workload-aware elasticity algorithm, which will not only
add and remove the domain as per the load, but also places the partitions as per the data access pattern. We have
validated the workload-aware elasticity and load distribution algorithm through experimentation over a cloud data
store such as Amazon SimpleDB running in the Amazon Cloud. The throughput of the load distribution algorithm
is predicted using the regression and the multiple perceptron model.

Key–Words: partition placement, workload-aware elasticity, data partitioning, database scalability, placement strat-
egy .

1 Introduction

Cloud Computing is an emerging trend in providing
Infrastructure as a service, Platform as a service,
Software as a service, and Database as a service.
These services are offered on pay-per usage basis and
provide on demand access to the resources. NoSQL
databases have become popular because they are
scalable in nature. Cloud computing includes the
characteristics such as scalability and elasticity, which
enables applications to effectively use resources in
an on demand fashion. Scalability is achieved using
horizontal data partitioning. With this property,
NoSQL applications are tuning their performance
that is throughput, and response time etc. as per the
resources assigned. This is very well suited with the
elastic property of a cloud. Elasticity is defined as
allocating and deallocating resources as per the needs
of the user. Allocation and deallocation of resources
as per demand enhances system resources utilization,
and also encourages the pay-per-usage model. When
the number of clients increase or load increases, web
servers and application servers called as stateless
systems can be scaled out and scaled in easily as per
the demand. On the other hand, the database man-
agement systems also called as stateful systems are
difficult to scale in and out because of the consistency

problem. Therefore, a lot of work is carried out by
the researchers to solve this problem and the solution
for this is to start with a scalable database system for
achieving elasticity. Swati Ahirrao et. al[4] presented
the idea of data access pattern and workload-aware
partitioning technique. This work is an extension
of the idea presented in dynamic workload-aware
partitioning[4]. Scaling out and distributing data
across a number of partitions does not necessarily
effect in a linear increase in the system throughput,
because the load distribution is not based on the data
access pattern of the web applications. Therefore,
distributed transactions occur. In an e-commerce
application, when the order is placed by the customer,
that order is fulfilled from a warehouses on one parti-
tion. But when the warehouse on one partition is out
of stock then the order is fulfilled by the warehouse
on another partition. In such a way, there is a always
a pattern, which warehouse is supplying orders to
a particular warehouse. We refer to this pattern as
the data access pattern. We have implemented and
evaluated this elastic scale-out and scale-in approach
in the Amazon SimpleDB, by including the efficient
partition redistribution mechanism.
The contributions in this paper are summarized as
follows.
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• We present the workload-aware placement strat-
egy, which will place the fragments to domains
according to the data access pattern.

• We present the workload-aware elasticity algo-
rithm, which will add and remove the domain
according to the load. We show the extensive ex-
periments that show the effectiveness of our elas-
ticity algorithm.

• We describe the practical implementation us-
ing Amazon SimpleDB running in the Amazon
Cloud. We validate the design by evaluating
the performance of the system using the TPC-C
benchmark.

• We present the detailed analysis of our workload-
aware elasticity algorithm using regression and
the multiple perceptron model.

The remaining paper is organized as follows. Sec-
tion 2, presents overview of the related work. Section
3, shows the design of the load distribution scheme.
Section 4, discusses about the load distribution al-
gorithm. Section 5, presents the partition place-
ment strategy. Section 6, describes an overview of
the workload-aware elasticity framework. Section 7,
gives the performance analysis of the algorithm. Sec-
tion 8, shows an experimental evaluation. Section 9,
presents the statistical model and data analysis using
regression and the multiple perceptron model. Finally,
section 10 concludes the paper.

2 Related Work

Researchers have carried out a survey of partition
placement where data is distributed between a fixed
number of nodes. We have surveyed the existing work
for improving database scalability and realized that,
the existing techniques are either based on partition-
ing or replication. In this work, our focus is on using
partitioning for developing an elastically scalable sys-
tem. Curino et. al presented the Relational Cloud[7]
for fostering scalability. It uses the workload-aware
partitioning technique. However, their focus is on
improving scalability using partitioning but not on a
workload-aware elastic scale out. Sudipto Das et. al
proposed ElasTras[12], which uses schema level par-
titioning for increasing scalability. In schema level
partitioning all the related tuples are collocated on
single partition. Francisco Cruz et. al presented
MET[9] workload-aware elasticity for NoSQL, which
will place the partitions to a node as per the YCSB
workload access patterns. i.e all the reads, and writes

etc. will be placed on different nodes. Marco Ser-
afini et. al implemented Accordion[21], for achiev-
ing elastic scalability. It adds and removes servers as
per the demands of the users, but does not redistribute
the partitions based on data access pattern of web ap-
plications. Dimitrios Tsoumakos et. al developed a
framework, TIRAMOLA[22], which takes the help of
the Markov Decision Process model for decision mak-
ing. The decision making process includes whether
to add a node or remove a node from a cluster. The
decision is made by taking into account the param-
eters such as throughput, response time and the cost
of a virtual machine. In TIRAMOLA, the emphasis
is on using the Markov Decision Process (MDP) for
automatic resizing of the cluster. Evie Kassela et. al
present an extended TIRAMOLA[15], which also fo-
cuses on automatic resizing of a cluster. But the main
emphasis is on the workload-aware approach. It iden-
tifies the different workload types and also considers
this workload-aware approach for decision making.
Athanasios Naskos et. al presented the cloud elasticity
using the probabilistic model checking[18], approach
for resizing a cluster of virtual machines. In this paper,
probabilistic models are used in the decision making
process. Previous research does not address the prob-
lem of elastic scale out based on the data access pat-
tern of the web application. Our aim in this work, is
to place the partitions based on data access pattern by
considering the minimum number of domains, so that
the resources as well as cost is minimized.

3 Design of Load Distribution
Scheme

The database is fragmented using a partitioning key
with wid and all the related rows with the same wid
are collocated at the same domain. As per the TPC-C
benchmark[24], 10% of the transactions are executed
in distributed mode. That means in 10% of the cases
warehouses do not have stock to fulfil the orders of the
customer. In such cases TPC-C randomly selects the
supplier warehouse. But in reality it is not random,
and the supplier warehouse is a warehouse, which is
closer to the warehouse, which is processing that or-
der. In this way, we are analysing the probability of
warehouses supplying the orders to the warehouses
processing that order. Our goal is to identify the pat-
tern and monitor this behaviour by analyzing the logs
of the transactions. Then, these warehouses are redis-
tributed and the warehouses with more coherency are
collocated at one domain or partition. Therefore, the
partitions are not fixed and are formed dynamically.
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4 Load Distribution Algorithm

This workload-aware load distribution algorithm ac-
cepts a set of warehouses and a number of domains as
input and generates combinations with the optimized
load and association. The load distribution is calcu-
lated by taking a standard deviation of the workload
on the domain from the average load on the domain.
Then, these combinations are ranked in ascending or-
der. Then calculate the association for a combina-
tion by analyzing the execution of the total number
of transactions on that domain, and also by finding
the distributed transactions for the same combination.
These combinations are ranked based on association.
Then, these combinations are ranked in descending or-
der. Both the ranks are calculated and arranged in as-
cending order. After running this algorithm, we will
get combinations in domains with the optimized load
and association. We can use these combinations for
populating data in workload-aware partitioning.

5 Partition Placement Strategy

The following points are considered while designing
this placement strategy.

• Data, which is required for the execution of a
transaction should be collocated on a single do-
main.

• The placement of data to all the domains should
be uniform so that the throughput is increased.

To design this partition placement strategy, we
have carried out a survey to find the optimized com-
binations of warehouses. We have calculated the load
and association for all possible pairs of combinations
of warehouses. We choose the combinations with op-
timized load and association. These combinations are
kept on the domain of Amazon SimpleDB. To find
these optimized combinations, we have used the mu-
tation technique in the genetic algorithm. Mutation is
a technique used in the genetic algorithm to introduce
diversity.

Table 1: Notations used for algorithm

Symbol Description
r Total number of records.
T Total number of transactions.
p Total number of partitions.
w Total number of warehouses.

6 Overview of Workload-Aware
Elasticity Framework

Figure 1: Workload-Aware Elasticity Framework

Figure 1 illustrates the design of the Workload-
Aware Elasticity Framework. There are three different
modules, analyzer, decision maker, and Implementer.

Analyzer : - It analyzes the load on the Amazon
SimpleDB domains running in the Amazon Cloud.
It actually collects the number of requests on each
domain and calculates the average load on each
domain.

Decision Maker :- Based on the average number
of requests on a domain, the decision maker decides
whether the load on each domain is acceptable or not.
If the average load on each of the domains is greater
or lesser than the threshold value, the domain is
added or removed respectively. The load distribution
algorithm is run. Again, the load of each domain is
checked so that it falls in the expected range(MinLoad
to MaxLoad). Again, if the load on any domain is
greater than MaxLoad, the domain is increased and
if it is lesser than MinLoad the domain count is
decreased. These steps from three to five are repeated
until we get a configuration where MinLoad < load
on any domain < MaxLoad . The same configuration
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is returned as the final configuration with a minimum
number of the domain.

Implementer :- Implementer which accepts the
final configuration from decision maker and imple-
ments it.

Algorithm 1: Workload-aware elasticity algorithm

Workload-Aware Elasticity Algorithm

Input: 1. Number of Domains.
2. Set of Warehouse

Output: domains with the optimized load
balancing and optimized association .

begin
Averageload = TotalLoad/Numberofdomains;
if Average load > Max load then

Numberofdomains = Numberofdomains
+ 1;
else

if Average load < Min load then
Numberofdomains =
Numberofdomains - 1;

end
end

end
repeat

Call loaddistribution();
if loadonanydomain > Max load then

Numberofdomains =
Numberofdomains + 1;
else

if loadonanydomain < Min load
then

Numberofdomains =
Numberofdomains - 1;

end
end

end
until Minload < domainload < Maxload;

end

7 Performance Analysis of Algo-
rithm

Performance of the workload-distribution algorithm
depends majorly on ’r’ and ’T’. Thus, the total time

complexity can be stated as below.

T = O(w.p) +O(r.T ) +O(plogp) (1)

since w, p < r, T

T = O(r.T ) (2)

Let D be the number of domains. Performance of
the workload-aware elasticity algorithm depends only
on d. So, the complexity of the above stated algorithm
is

T = O(d) (3)

8 Performance Evaluation

We demonstrate the elasticity and scalability of this
system by showing the performance evaluation of pro-
totype implementation on Amazon SimpleDB. We ex-
perimentally evaluates the performance of our algo-
rithm, on a machine running in the Amazon Web
Services Elastic Compute Cloud (EC2) infrastructure.
We evaluate the performance using the TPC-C bench-
mark.

8.1 Experimental setup

We perform evaluations on a scalable database layer,
with the Amazon SimpleDB running in the Amazon
Cloud. Table 2 shows experimental setting. Ama-
zon EC2 offers different types of virtual machine in-
stances. We perform experimental evaluation with
one medium instance (with 30GB memory, 26(8 core
* 3.25 unit) as compute units, 160GB (2*80GB SSD),
64 bit platform, M3 General Purpose Double Extra
Large. M3 General Purpose Double Extra Large costs
$ 1.064 per hour at the time of our experiments. We
use multithreaded requests for simulating the transac-
tional load and number of users.

8.2 TPC-C benchmark

It is an update intensive workload. There are a total
of nine tables and five different types of transactions.
Figure 2 shows TPC-C schema. These nine tables in
the TPC-C schema are mapped to a domain in sim-
pleDB. TPC-C database was populated with 15 ware-
houses. These nine tables are horizontally partitioned
using the load distribution algorithm. In our experi-
mental setting we have 3 warehouses per domain. We
have a total number of 5 domains.
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Table 2: Experimental Setting

Number
of Machines

Environ
ment

Description

1 (Master)

CPU

Memory
Hard Disk

M3 General
Purpose

Double Extra Large
26(8 core * 3.25unit)

30GB DDR2
160GB(2*80)

All

OS
.NET
Framework
NO SQL
Database

Windows 8
4.0

Amazon
SimpleDB

Figure 2: TPC-C Schema

8.3 Mapping of TPC-C to Cloud

TPC-C was designed for web applications with a re-
lational database as a backend. Therefore, to achieve
performance in NoSQL data stores, we need to map
these relational databases to the data model of Ama-
zon SimpleDB. We have outlined the data model of
Amazon SimpleDB from TPC-C. The TPC-C normal-
ized scheme contains nine tables (warehouse, district,
item, stock, customer, orderline, and order). To map
the normalized data model to Amazon SimpleDB, we
combine the nine tables into one domain of Ama-
zon SimpleDB. Figure 3 shows mapping of TPC-C
schema to Amazon SimpleDB.

Figure 3: Mapping of TPC-C Schema to Cloud (Ama-
zon SimpleDB Domain)

8.4 Elasticity Evaluation

In this section, we are varying the concurrent users
on medium instance running in the Amazon Cloud.
The Amazon SimpleDB database is populated with
15 warehouses. We are varying the users from 50
to 450 in steps of 50. The aim of carrying out this
experiment is to validate the scalability and elastic-
ity with a varying number of concurrent users. Our
workload-aware elasticity algorithm uses three dif-
ferent types of load distribution algorithm. We have
identified metrics as throughput for performance eval-
uation. We define throughput as number of transac-
tions processed per second. On the x-axis we have
taken concurrent number of users and on the y-axis
we have taken throughput. After carrying out the ex-
periments, we have analyzed the results and observed
that our workload-aware load distribution algorithm
and the elasticity algorithm gives a higher throughput
with a minimum number of resources. We are com-
paring our load distribution algorithm with two dif-
ferent types of partitioning techniques i) schema level
ii) graph partitioning. Figure 4 shows the throughput
for schema level, graph, and workload-aware parti-

WSEAS TRANSACTIONS on COMPUTERS Swati Ahirrao, Rajesh Ingle

E-ISSN: 2224-2872 162 Volume 15, 2016



tioning. Blue line shows the throughput of graph par-
titioning. Red line shows the throughput of schema
level partitiong and black line shows the throughput
for workload-aware approach. From figure 4, we
can observe, workload-aware partitioning gives higher
throughput as compared to schema level and graph
partitioning. In schema level partitioning, partitions
are formed statically. Once the partition is formed, it
is constant. Therefore distributed transactions occurs.
Distributed transactions hampers scalability. Graph
partitioning uses workload-aware approach. But here
workload is already identified in advance, and parti-
tions are formed statically. Once the partitions are
formed, they do not change. Therefore distributed
transactions occur, which hampers the scalability. In
our workload-aware partitioning approach, partitions
are formed after analyzing the transaction logs. So the
partitions are changing dynamically. Therefore less
number of distributed transactions occurs in compari-
son with schema level and graph partitioning which in
turn increases throughput. Figure 5 shows response
time for schema level, graph, and workload-aware
partitioning. From figure 5, we can observe the re-
sponse time for workload-aware partitioning is lesser
than schema level and graph partitioning.

Figure 4: System throughput for varying number of
concurrent clients for workload-aware, schema level,
and graph partitioning.

Figure 5: Response Time for varying number of con-
current clients for workload-aware, schema level, and
graph partitioning.

9 Statistical Model and Data Analy-
sis

9.1 Regression

In this section, we present the exhaustive analysis
of our elasticity algorithm which uses our workload-
aware load distribution algorithm. The aim of using
regression is to predict the output of the response vari-
able. Our response variable is throughput. We have
identified a dependent variable as throughput and an
independent variable as the number of users. With
regression we are modelling the relationship between
the number of users and throughput. Dependent and
independent variables were entered and the coeffi-
cient of determination (R2) was found through F test.
The coefficient of determination R2 obtained is 0.79
and adjusted R2 is 0.76. Table 3 shows the value of
R2. The coefficients of predictors gives the following
equation of the form for throughput. Table 4 shows
the equation for throughput.

Throughput = 2.885 ∗ x+ 7639 (4)

9.2 Multiple Perceptron Model

The experimental models and correlations developed
by classical methods are complex, less accurate, and
difficult to predict the nonlinear relationship between
the dependent and independent variables. The artifi-
cial neural network is used to carry out nonlinear sta-
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Table 3: Analysis of workload-aware elasticity using
regression.

Model R R Square
Adjusted R
Square

1 .889a .790 .760

Table 4: Throughput of workload-aware elasticity us-
ing regression.

Model
Unstandardized
Coefficients

Standardized
Coefficients

t Sig.

Constant
Users

B Std. Error Beta

7639.639
2.885

158.222
.562

.889
48.284
5.130

.000

.001

tistical modeling. It includes many advantages such as
ability to implicitly detect nonlinear relationships be-
tween the dependent and independent variables, accu-
racy, and efficiency rather than the conventional statis-
tical technique. The input data is partitioned into 70%
of data set as a training data set and 30% of testing
data set. We have chosen the number of hidden lay-
ers of 1 neuron. The supervised learning paradigm,
in, which a network is trained for a particular set of
inputs to produce the desired outputs.

Table 5: Analysis of workload-aware elasticity using
multiple perceptron model.

Training

Sum of Squares Error 1.698
Relative Error 0.485
Training Time 0:00:00.00

Stopping Rule Used
1 consecutive step(s)
with no decrease in error

Testing
Relative Error .b

Sum of Squares Error 0.020

As seen from the model summary of the multi-
layer perceptron model, the value of sum of squares
error is 0.020 and the mean square error is 0.00285.
The value of R2 is 98 percent and adjusted R2 is 97
percent. After analyzing these statistics from multiple
linear regression and the artificial neural network, we
observed that the artificial neural network gives less
error and more accuracy.

10 Conclusion and Further Work

We have presented the load distribution strategy,
which will distribute the combinations to the domains.
We also presented the workload-aware elasticity algo-

rithm, which will add and remove domains as per the
requirements of the user so that resources are utilized.
We provide the implementation of load distribution
and the elasticity algorithm on Amazon SimpleDB
running in the Amazon Cloud. These two algorithms
are evaluated using TPC-C benchmarks. We have also
portrayed the detailed analysis of our algorithm us-
ing different statistical methods such as regression and
neural networks. We have analyzed the results and ob-
served that that these two algorithms give us a higher
throughput with a minimum number of resources. The
advantage of our load distribution and the workload-
aware elasticity algorithm over the existing strategies
is that the load is distributed as per the data access
pattern of web applications so that the numbers of dis-
tributed transactions are minimized with the minimum
number of resources. But on the other hand, the disad-
vantage of using these techniques are that the combi-
nations are formed dynamically based on analysis so
the migration of data is an overhead. We are planning
further to work on incorporating the Markov Decision
Process for decision making.
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