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Abstract: In this paper, a novel classifier with linear and nonlinear versions for data classification and automati-
cal feature selection simultaneously is proposed and named as 1-norm regularized twin support vector machine
(1-NRTSVM). By means of the alternating direction method of multipliers (ADMM), two implementation al-
gorithms for 1-NRTSVM are presented. A major feature of the proposed method is directly solving primal
problems not dual problems. Experiment results show that the proposed 1-NRTSVM is an effective and com-
petitive classifier for data classification and automatical feature selection.
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1 Introduction
Support vector machines (SVMs) [1-2], as pow-

erful tools for pattern classification and regression,
have already been successfully applied in a wide va-
riety of fields. For a traditional SVM, the classifica-
tion hyperplane can be obtained by maximizing the
margin between two parallel boundary hyperplanes,
which involves the minimization of a quadratic pro-
gramming problem (QPP). Many classification and
feature selection methods based on SVM were pro-
posed in recent years, such as 1-norm SVM [3],
doubly regularized SVM (DRSVM) [4] and so on.
In 2011, Ye et al. [5] proposed a feature selection
method based on ADMM to solve DRSVM.

Different from SVM, twin SVM (TSVM) pro-
posed by Jayadeva et al. [6] seeks two nonparallel
hyperplanes such that each hyperplane is closer to
one of two classes and is at least one distance from
the other. It is implemented by solving two small-
er quadratic programming problems (QPPs) rather
than a single large QPP in SVM, which makes the
learning speed of TSVM is more faster than that
of SVM. Some extensions for TSVM include least
squares TSVM (LSTSVM) [7], parametric-margin
TSVM [8], twin bounded SVM [9] and so on, for
details see [6-14]. In addition , there also exist some

feature selection method based on TSVM, such as
1-norm least squares TSVM [15], in which all the 2-
norm terms in LSTSVM are replaced by the 1-norm
terms for the purpose of suppressing input features.

Motivated by works above, in this paper, we
propose a 1-norm regularized TSVM (1-NRTSVM)
with linear and nonlinear versions for data classifi-
cation and automatic feature selection simultaneous-
ly, and present two implementation algorithms for
the proposed method by means of the alternating di-
rection method of multipliers (ADMM). It is known
that the validation of the quality of a new method
seriously depends on a large number of data exper-
iments. So, in this paper, we not only put forward
a new classification method but also more focus on
calculation.

The rest of the paper is organized as follows. In
Section 2, some notations and related works are in-
troduced. In Section 3, 1-NRTSVM with linear and
nonlinear versions is proposed and two solving al-
gorithms are provided by means of ADMM. Exper-
iments and results analysis are performed in Section
4 and some conclusions are given in Section 5.
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2 Notations and related works

In this section, we briefly recall some basic con-
cepts and results used in the sequel. Let T =
{(xi, yi)}li=1 be a set of vector data, where xi ∈ Rn
and yi ∈ {±1} are the input sample and class la-
bel of the ith data, respectively. Let l1 and l2 be
the numbers of positive and negative samples, re-
spectively, and l = l1 + l2. We denote by A =
[x+

1 , · · · , x
+
l1
] ∈ Rn×l1 and B = [x−1 , · · · , x

−
l2
] ∈

Rn×l2 the matrices of samples belonging to the pos-
itive and negative classes, respectively. 1-norm and
2-norm of a vector is denoted by ‖ · ‖1 and ‖ · ‖2,
respectively.

2.1 Linear TSVM
Linear TSVM seeks a pair of nonparallel hy-

perplanes < w+, x > +b+ = 0 and < w−, x >
+b− = 0, where w+, w− ∈ Rn are normal vec-
tors and b+, b− ∈ R are thresholds, by considering
the following two quadratic programming problems
(QPPs):

min
w+,b+,ξ2

c3
2
‖w+‖22 +

1

2

∥∥ATw+ + e1b+
∥∥2
2
+ c1e

T
2 ξ2

s.t. − (BTw+ + e2b+) ≥ e2 − ξ2, ξ2 ≥ 0, (1)

min
w−,b−,ξ1

c4
2
‖w2‖22 +

1

2

∥∥BTw− + e2b−
∥∥2
2
+ c2e

T
1 ξ1

s.t. (ATw− + e1b−) ≥ e1 − ξ1, ξ1 ≥ 0, (2)

where c1, c2 > 0 are trade-off parameters, ξ1 ∈
Rl1 , ξ2 ∈ Rl2 are slack variables vectors and e1 ∈
Rl1 , e2 ∈ Rl2 are vectors of ones. By solving re-
spectively the Wolfe dual forms of the problems (1)
and (2), (w+, b+) and (w−, b−) can be obtained and
then a new input x̃ ∈ Rn can be assigned the class k
depending on which of the two hyperplanes is closer
to, that is, k = argmin

+,−
|<wk,x̃>+bk|
‖wk‖ .

2.2 ADMM
ADMM developed in the 1970s [16] has recent-

ly become a method of choice for solving many
large-scale problems [17-18], which is implement-
ed by solving the following optimization problem:

min
y,z

f(y) + g(z)

s.t. Fy +Dz = c, (3)

where c ∈ Rp is a constant vector, F ∈ Rp×n, D ∈
Rp×m are coefficient matrices and f : Rn → R, g :
Rm → R are functions. ADMM solves vectors
(y, z, α) by using the following iterative procedure:
starting from some initial values (yk, zk, αk) with

k = 0, then they can be updated iteratively by
yk+1 = argmin

y
L̃(y, zk, αk),

zk+1 = argmin
z
L̃(yk+1, z, αk),

αk+1 = αk + µ(Fyk+1 +Dzk+1 − c),

where

L̃(y, z, α) = f(y) + g(z) + αT (Fy +Dz − c)
+µ

2 ‖ Fy +Dz − c ‖22

is the argumented Lagrangian function of the prob-
lem (3), α ∈ Rp is a lagrange multipliers vector and
µ > 0 is an adjustable parameter.

3 1-NRTSVM

In this section, linear 1-NRTSVM will be firstly
introduced for automatical feature selection and data
classification simultaneously and an efficient imple-
mentation algorithm will be proposed based on AD-
MM. Then by means of the kernel skills, the nonlin-
ear case of 1-NRTSVM will be researched. Differ-
ent from TSVM, 1-NRTSVM can be implemented
by solving directly the primal problems. Here, 1 and
2 denote the positive and negative classes, respec-
tively. All notations used in the section are same as
in Section 2 unless specially statements.

3.1 Linear 1-NRTSVM
In order to obtain the primal modelings of linear

1-NRTSVM, by means of the vector plus function
(·)+ and the idea in [3], we modify the problems (1)
and (2) into the following forms:

min
w1,b1

c3‖v1‖1 +
1

2

∥∥ATw1 + e1b1
∥∥2
2
+ c1e

T
2 (u1)+

s.t. u1 = e2 + (BTw1 + e2b1), v1 = w1, (4)

min
w2,b2

c4‖v2‖1 +
1

2

∥∥BTw2 + e2b2
∥∥2
2
+ c2e

T
1 (u2)+

s.t. u2 = e1 − (ATw2 + e1b2), v2 = w2, (5)

where u1 ∈ Rl2 , u2 ∈ Rl1 , v1, v2 ∈ Rn are aux-
iliary variables vectors. Next, we mainly solve the
problem (4) by means of ADMM. With the similar
way, the problem (5) can be also solved. In order
to solve effectively the problem (4), we can decom-
pose it into three optimization problems with respect
to (w1, b1), u1 and v1, respectively, and then obtain
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the following iterative procedure by using ADMM:

(wk+1
1 , bk+1

1 ) = arg min
w1,b1

L̃(w1, b1, u
k
1 , v

k
1 , α

k
1 , β

k
1 ),

uk+1
1 = argmin

u1

L̃(wk+1
1 , bk+1

1 , u1, v
k
1 , α

k
1 , β

k
1 ),

vk+1
1 = argmin

v1
L̃(wk+1

1 , bk+1
1 , uk+1

1 , v1, α
k
1 , β

k
1 ),

αk+1
1 = αk1 + µ1(u

k+1
1 − (e2 +BTwk+1

1 + e2b
k+1
1 )),

βk+1
1 = βk1 + µ2(v

k+1
1 − wk+1

1 ),

(6)

where L̃(w1, b1, u1, v1, α1, β1) is the augmented
Lagrangian function of the problem (4), α1 ∈
Rl1 , β1 ∈ Rn are multiplier vectors and µ1, µ2 > 0
are parameters. The first problem in (6) can be

solved by letting ∂L̃(w1,b1)
∂w1

= 0 and ∂L̃(w1,b1)
∂b1

= 0.
For solving the second problem in (6), we need the
following result introduced in [19].

Proposition 1. Let Sλ(ω) = argmin
x∈R

λx+ +

1
2(x− ω)

2. Then

Sλ(ω) =

 ω − λ, ω > λ,
0, 0 ≤ ω ≤ λ,
ω, ω < 0.

It is easily proven that the second problem is equiv-
alent to the following optimization problem:

u1 = argmin
u1

c1e
T
2 (u1)+

µ1

2
‖ u1 − (e2

−α
k
1

µ1
+ (BTwk+1

1 + e2b
k+1
1 ) ‖22,

and then by Proposition 1, we can get the iterative
formula:

uk+1
1 = S c1

µ1

(e2 −
αk1
µ1

+ (BTwk+1
1 + e2b

k+1
1 ), (7)

where Sλ(ω) = (Sλ(ω1), Sλ(ω2), · · · , Sλ(ωl1))T
and ω = (ω1, · · · , ωl1)T ∈ Rl1 . Similar to the sec-
ond problem. the third problem is equivalent to the
optimization problem:

v1 = argmin
v1

c3 ‖ v1 ‖1 +
µ2

2
‖ v1 − (wk+1

1 − βk1
µ2

) ‖22,

and then by means of the result presented in [5], it
can be solved by the iterative formula:

vk+1
1 = τ c3

µ2

(wk+1
1 − βk1

µ2
), (8)

where τλ(ω) = (tλ(ω1), tλ(ω2), · · · , tλ(ωn))T for
all ω ∈ Rn and tλ(ωi) = sign(ωi)max(0, |ωi|−λ).

After solving the problem (5) by using the sim-
ilar way, we can get the following implementation
algorithm for linear 1-NRTSVM.

3.2 Nonlinear 1-NRTSVM
In this subsection, we consider the nonlinear

version of 1-NRTSVM by means of kernel skills.
Let k : Rn × Rn → R be a Mercer kernel func-
tion and C = [x1, · · · , xl]. Put

K(A,C) = [k(x1
i , xj)], i = 1, · · · , l1, j = 1, · · · , l,

K(B,C) = [k(x2
i , xj)], i = 1, · · · , l2, j = 1, · · · , l,

K(x,C) = [k(x, x1), · · · , k(x, xl)].

The aim of nonlinear 1-NRTSVM is to seek a
pair of nonparallel hyperplanes K(x,C)v1 + b1 = 0
and K(x,C)v2 + b2 = 0 for automatical feature
selection and data classification simultaneously by
considering the problems (4) and (5), in which AT
and BT are replaced by K(A,C) and K(B,C), re-
spectively. With the similar way in Subsection 3.1,
we can obtain the following solving algorithm for
nonlinear 1-NRTSVM.

4 Experiments

In this section, in order to demonstrate the ef-
fectiveness of the proposed 1-NRTSVM with linear
and nonlinear versions, a series of comparative ex-
periments with TSVM, LSTSVM and NELSTSVM
are performed on the classification accuracy, feature
selection and computing time of classifiers and on 9
datasets taken from UCI database [20] and 4 dataset-
s taken from synthetic NDCC database [21]. All
the experiments are implemented by using 10-fold
cross-validation method and in MATLAB (2013a)
[22] running on a PC with system configuration In-
tel Core2 Celeron (2.6 GHz) with 2 GB of RAM.

It is known that the performance of classifiers
seriously depends on the choice of parameters. In
order to facilitate the comparison, take c1 = c3 =
1, c2 = c4 = 0.1, µ1 = µ3 and µ2 = µ4 in all ex-
periments and select µ1, µ2 from 2−8 to 28 by grid
search. The selected results of µ1, µ2 for linear clas-
sifiers are listed in Tables 1-2 and are µ1 = 1, µ2 =
2−8 for nonlinear classifiers. In addition, for non-
linear classifiers, Gaussian RBF kernel is used with
the kernel parameter σ = 28. Experiment results are
listed in Tables 1-3, in which Num, Dim, CA, NSF
and CT denote the numbers of training examples, the
dimension of training examples, classification accu-
racy (%), the number of selected features and com-
puting time (second), respectively. More intuitive
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Algorithm 1 Linear 1-NRTSVM
Input: Given a set of data T and a tolerance ε > 0. Put k = 0 and take arbitrarily wki , b

k
i , u

k
i , v

k
i , α

k
i , β

k
i for

i = 1, 2;
1: repeat
2: Update (w1, b1) by solving the linear system of equations ∂L̃(w1,b1)

∂w1
= 0, ∂L̃(w1,b1)

∂b1
= 0;

3: Update u1 by (7);
4: Update v1 by (8);
5: Update α1 by αk+1

1 = αk1 + µ1(u
k+1
1 − (e2 + (BTwk+1

1 + e2b
k+1
1 ));

6: Update β1 by βk+1
1 = βk1 + µ2(v

k+1
1 − wk+1

1 );
7: until The stopping criteria is satisfied or the maximum number of iteration is achieved;
8: Put w∗1 ← wk+1

1 , b∗1 ← bk+1
1 , v∗1 ← vk+1

1 ;
9: Update (w2, b2, u2, v2, α2, β2) by the similar procedure;

10: Construct decision functions f1(x) =
<v1∗,x>+b∗1
‖v∗1‖2

and f2(x) =
<v2∗,x>+b∗2|
‖v∗2‖2

;
11: For a new pattern x̃ ∈ Rn, its label can be predicted by label(x̃) = arg min

k=1,2
|fk(x̃)|.

Algorithm 2 Nonlinear 1-NRTSVM
Input: Given a set of data T and a tolerance ε > 0. Put k = 0 and take arbitrarily wki , b

k
i , u

k
i , v

k
i , α

k
i , β

k
i for

i = 1, 2;
1: repeat (in the following, AT and BT are replaced by K(A,C) and K(B,C), respectively)
2: Update (w1, b1) by solving the linear system of equations ∂L̄(w1,b1)

∂w1
= 0 and ∂L̄(w1,b1)

∂b1
= 0;

3: Update u1 by (7);
4: Update v1 by (8);
5: Update α1 by αk+1

1 = αk1 + µ1(u
k+1
1 − (e2 + (K(B,C)wk+1

1 + e2b
k+1
1 ));

6: Update β1 by βk+1
1 = βk1 + µ2(v

k+1
1 − wk+1

1 );
7: until The stopping criteria is satisfied or the maximum number of iteration is achieved;
8: Put w∗1 ← wk+1

1 , b∗1 ← bk+1
1 and v∗1 ← vk+1

1 ;
9: Update (w2, b2, u2, v2, α2, β2) by the similar procedure;

10: Construct decision functions f1(x) =
|K(x,C)v∗1+b∗1|√
v∗1

TK(C,C)v∗1
and f2(x) =

|K(x,C)v∗2+b∗2|√
v∗2

TK(C,C)v∗2
;

11: For a new pattern x̃ ∈ Rn, its label can be predicted by label(x̃) = arg min
k=1,2

|fk(x̃)|.
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Figure 1: Classification accuracy of linear classifiers
on 6 UCI datasets.

Figure 2: Number of selected features of linear clas-
sifiers on 6 UCI datasets.

comparison results can be found in Figure 1-Figure
7. In Figure 5, we changed the computation time
to logarithmic computation time to show the figure
more clearly.

We can see from the Table 1 that (1) the num-
bers of selected features of NELSTSVM and 1-
NRTSVM are significantly less than that of TSVM
and LSTSVM; (2) the classification accuracies of
NELSTSVM and 1-NRTSVM are higher than that
of TSVM and LSTSVM except spect dataset; (3)
for housing, ionosphere and pima three datasets,
1-NRTSVM achieves higher classification accura-
cy than NELSTSVM; (4) for haberman, housing
and pima three datasets, 1-NRTSVM selects less

Figure 3: Classification accuracy of linear classifiers
on 4 NDCC datasets.

Figure 4: Number of selected features of linear clas-
sifiers on 4 NDCC datasets.

Figure 5: Computing time of linear classifiers on 4
NDCC datasets.

Figure 6: Classification accuracy of nonlinear clas-
sifiers on 4 UCI datasets.

Figure 7: Number of selected features of nonlinear
classifiers on 4 UCI datasets.
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Table 1: CA and NSF for linear classifiers on 6 UCI datasets

Datasets(Num× Dim)
TSVM LSTSVM NELSTSVM 1-NRTSVM

CA (%) CA (%) CA (%) CA (%) µ1

NSF NSF NSF NSF µ2

glass (214×10) 88.81±5.91 70.87±12.93 96.26±1.49 91.08±7.47 2
20 20 7.50±2.60 15.80±1.32 0.25

haberman (306×3) 73.53±0.99 60.11±5.62 74.22±9.80 73.53±0.72 2
6 6 4.70±0.87 4.30±0.48 0.125

housing (506×13) 93.09±0.96 84.96±4.12 85.57±4.14 93.09±0.98 2
26 26 22.40±0.93 8.70±1.25 0.5

ionosphere (351×34) 68.38±5.27 70.17±5.86 84.17±8.88 85.48±4.90 2
68 68 49.20±1.12 65.20±1.55 2

pima (768×8) 65.11±0.36 72.89±5.24 76.16±2.75 77.73±3.21 0.5
16 16 15.20±4.33 13.50±0.53 2

spect (80×22) 81.25±12.15 66.25±20.45 80.19±6.56 71.25±11.86 1
44 44 18.60±3.22 40.80±1.40 1

Table 2: CA, NSF and CT for linear classifiers on 4 NDCC datasets

Datasets

TSVM LSTSVM NELSTSVM 1-NRTSVM

CA (%) CA (%) CA (%) CA (%) µ1

NSF NSF NSF NSF µ2

CT (s) CT (s) CT (s) CT (s)

NDCC1k 89.82±3.74 87.80±3.65 89.20±1.77 89.90±2.55 0.5
14 14 6.80±1.20 12.00±0.00 4
1.7252 0.0209 0.0295 0.0854

NDCC3k 90.43±1.78 88.20±1.15 90.30±1.05 90.53±2.03 0.5
14 14 6.40±0.89 12.00±0.00 4
29.4924 0.2302 0.1156 0.2562

NDCC5k 89.98±1.29 88.66±0.87 90.30±1.14 90.52±0.91 0.5
14 14 5.50±1.55 12.40±0.52 4
140.749 0.8427 0.2365 0.4001

NDCC10k * 88.15±0.93 90.33±0.45 90.34±0.92 0.5
* 14 5.90±1.58 11.90±0.32 2
* 5.2188 0.4653 0.7862

* We stopped experiments as computing time was very high.

Table 3: CA and NSF for nonlinear classifiers on 4 UCI datasets

Datasets(Num× Dim)
TSVM LSTSVM NELSTSVM 1-NRTSVM

CA (%) CA (%) CA (%) CA (%)
NSF NSF NSF NSF

wpbc (194×32) 76.29±2.10 76.29±2.10 75.71±4.37 76.29±2.10
349.2 349.2 155.0±5.73 330.7±1.06

ionosphere (351×34) 88.34±6.77 73.79±6.84 74.22±9.80 85.43±3.78
631.8 631.8 470.0±0.87 628.7±2.79

heart-statlog (270×14 ) 62.99±6.04 59.61±5.37 64.44±12.44 65.17±9.25
486 486 263.0±1.24 482.3±1.64

hepatitis (112×18) 82.18±7.14 80.34±3.58 78.21±8.62 78.53±6.32
201.6 201.6 75.00±3.94 188.9±1.97
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input features than NELSTSVM, for example, 1-
NRTSVM selects 8.7 features for housing dataset
whereas NELSTSVM, TSVM and LSTSVM select
22.4, 26 and 26 features, respectively.

From the Table 2, we can see that (1) the clas-
sification accuracy of 1-NRTSVM are slightly high-
er than that of TSVM, LSTSVM and NELSTSVM;
(2) the number of selected features of 1-NRTSVM
is less than that of TSVM and LSTSVM and more
than that of NELSTSVM; (3) the computing time of
1-NRTSVM is significantly less than that of TSVM
and LSTSVM and more than that of NELSTSVM,
this is because that the number of selected features
of 1-NRTSVM is nearly two times that of NEL-
STSVM.

We can find from the Table 3 that the numbers
of selected features are significantly more than that
in Tables 1-2. It is because that for nonlinear classi-
fiers, selection of input features are performed in the
high-dimensional reproduction kernel Hilbert space
(RKHS) of the underlying Gaussian RBF kernel. In
addition, we can see from the Table 3 that (1) the
number of selected features by 1-NRTSVM is less
than that by TSVM and LSTSVM and more than
that by NELSTSVM; (2) the classification accuracy
of 1-NRTSVM is higher than that of LSTSVM and
NELSTSVM in general and is higher than that of
TSVM on heart-statlog dataset and less than that on
ionosphere and hepatitis two datasets.

According to the above analysis, we can con-
clude that the proposed 1-NRTSVM with linear and
nonlinear versions is an effective and competitive
classifier for data classification and automatical fea-
ture selection.

5 Conclusions

The proposed 1-NRTSVM with linear and non-
linear versions in this paper has two advantages.
One is that classification and automatical feature s-
election of data can be carried out simultaneously.
Another is that 1-NRTSVM needs only consider-
ing the primal modelings not dual modelings. Two
effective algorithms for solving 1-NRTSVM are p-
resented by means of ADMM. Experiment results
show that the proposed 1-NRTSVM is an effective
and competitive classifier. Along this research direc-
tion, there are still a lot of work to do, such as gener-
alization of modelings, improvement of algorithms
and selection of kernel functions and kernel param-
eters. In addition, an extension of 1-NRTSVM for

multi-class classification problems can also be con-
sidered.
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