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Abstract: - Lock-free programming is a well-known technique for multithreaded programming. Lock-free 

programming is a way to share changing data among several threads without paying the cost of acquiring and 

releasing locks. On practice, parallel programming models must include scalable concurrent algorithms and 

patterns. Lock-free programming patterns play an important role in scalability. This paper is devoted to lock-

free data structures and algorithms. Our task was to choose the data structures for the concurrent garbage 

collector. We aim to provide a survey of lock-free patterns and approaches, estimate the potential performance 

gain for lock-free solutions. By our opinion, the most challenging problem for concurrent programming is the 

coordination and data flow organizing, rather than relatively low-level data structures. So, as the most 

promising from the practical point of view lock-free programming pattern, we choose the framework based on 

the Software Transactional Memory. 
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1 Introduction 
When writing multi-threaded code, it is often 

necessary to share data between threads. If multiple 

threads are simultaneously reading and writing the 

shared data structures, memory corruption can occur 

[1]. The simplest way of solving this problem is to 

use locks [2]. 

A lock is a thread synchronization mechanism. 

Let us see this classical example in Java code (Code 

snippet 1):  

 

public class Counter{ 

 

  private int count = 0; 

 

  public int increase(){ 

    synchronized(this){ 

      return ++count; 

    } 

  } 

} 

Code snippet 1. Thread synchronization 

 

In this code, the synchronized (this) block in the 

increase() method makes sure that only one thread 

can execute the return ++count at a time.  

 

A package java.util.concurrent.lock supports 

another thread synchronization mechanism. The 

main goal is similar to synchronized blocks, but it is 

more flexible and more sophisticated. It is a 

classical implementation of mutex [3] 

 

Lock lock = new ReentrantLock(); 

lock.lock(); 

/*  

  here is a critical section 

*/ 

lock.unlock(); 

Code snippet 2. A critical section 

 

First a Lock object is created. Then it's lock() 

method is called and the instance of  Lock object is 

locked. Now any other thread calling lock() will be 

blocked until the thread that locked the lock calls 

unlock(). In the critical section, we can perform 

some calculation with the shared data. Finally 

unlock() method is called, and the instance of Lock 

object becomes unlocked, so other threads can lock 

it.  

But locking includes various penalties. And it is 

not only the performance. For example in Java, one 

serious question is the ability for Java Virtual 

Machine (JVM) to optimize the workflow (change 

the order of calculations). Locks are very often 
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preventing JVM from this optimization. By this 

reason, lock-free patterns and data structures are an 

important part of the programming techniques.  

Lock-free programming (lockless in several 

papers [4]) covers not only programming without 

the locks (mutexes). More broadly (practically), the 

lock is the ability for one thread to block by some 

way another thread. So, in the lock-free application, 

any thread cannot block the entire application. 

From the latest definition, we can conclude that 

in lock-free programming one suspended thread will 

never prevent other threads from making progress, 

as a group, through their own lock-free operations. 

It highlights the importance of lock-free 

programming for real-time systems, where certain 

operations must be completed completely within a 

certain time limit. And the ability to finish 

operations should not depend on the rest of the 

program [5]. A methodology for creating fast wait-

free data structures is presented in [6]. There are two 

basic moments: low-level lock-free data structures 

and relatively high-level solutions (e.g., 

frameworks) lock-free programming models [7].  

 

The rest of the paper is organized as follows. In 

section 2 we discuss atomic operations. In section 3 

we describe the basic lock-free patterns. And section 

4 is devoted to the usage of lock-free approach. 

 

2 Atomic operations 
Atomic operations are the key moment for lock-

free programming support. The definition for atomic 

operation is very simple - no thread can observe the 

operation half-complete. Actually, on modern 

processors, many operations are already atomic. For 

example, aligned reads and writes of simple types 

are usually atomic. Figure 1 illustrates the tree: 

 

 
 

Fig. 1. Atomic vs. non-atomic operations [8] 

 

An operation, acting on shared memory, is atomic as 

soon as it completes in a single step relative to other 

threads. This “single step” is the warranty that no 

other thread can observe the modification half-

complete.  

When an atomic load is performed on a shared 

variable, it reads the entire value as it is at a single 

moment of time. Non-atomic loads and stores do not 

make those guarantees. For example, in Java atomic 

operations are: 

 

• all assignments of primitive types except 

for long and double 

• all assignments of references 

• all operations of classes  of the 

java.concurrent.Atomic package 

 

Without atomic operations, lock-free programming 

would be impossible. The reason is obvious – we 

cannot let different threads manipulate a shared 

variable at the same time without atomic operations. 

Suppose we have the two threads perform write 

operations on a shared variable concurrently. 

Because the thread scheduling algorithm can swap 

between threads at any time, we do not know the 

order in which the threads will attempt to gain 

access the shared variable. So, the result of the 

change in data depends on the thread scheduling 

algorithm. In other words, both threads are racing to 

gain access the data. It is so-called race condition 

[9].  

 

This problem often occur when one thread performs 

so-called a "check phase-then-act phase" (e.g. 

"check" if the value is 5, then "act" to do something 

that depends on the value being 5), and another 

thread performs something with the value in 

between the "check phase" and the "act phase".  For 

example, 

 

if (x == 5) // Check phase 

{ 

   x = x * 2; //  Act phase 

} 

Code snippet 3. Act & check phases 

 

Another thread can change x value in between "if (x 

== 5)" and "x = x * 2" operators.  

The point being, x could be 10, or it could be 

anything, depending on whether another thread 

changed x in between the check and act phases.  So, 

as soon as two threads operate (access to write) on a 

shared variable concurrently, both threads must use 

atomic operations. Code snippet 4 illustrates an 
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example of atomic operations in Java 

(AtomicInteger class).  

The next set of very important atomic elements are 

so-called Read-Modify-Write (RMW) operations 

[10]. They let us perform more complex transactions 

atomically. RMW operations are especially useful 

when our algorithm must support multiple writers. 

When the several threads attempt to perform a 

RMW operation on the same data, they will be 

effectively serialized (line up) in a row and execute 

those operations one-at-a-time. Here is a typical 

example, presented in [10]. Two transactions 

perform operations on their snapshot isolated from 

other transactions and eventually check for conflicts 

at commit time. The transactions temporarily store 

data changes (insert, update, and delete operations) 

in a local buffer and apply them to the shared data 

store during the commit phase. The commit of a 

transaction T1 will only be successful if none of the 

items in the write set have been changed externally 

by another transaction T2 which is committing or 

has committed since T1 has started. Suppose, T2 

and T1 are running in parallel and modify (update 

operations) the same item.  If one transaction writes 

the changed item to the shared store before it is read 

by the second, then we should notify the second 

transaction about the conflict. The typical solution 

involves atomic RMW operations such as load-link 

and store-conditional (LL/SC) [11]. LL/SC is the 

pair of instructions that reads a value (load-link) and 

allows update the latter atomically only if it has not 

changed in the meantime (store-conditional). 

Actually, it is a key operation for conflict detection 

in transactions. If one of the LL/SC operations fails, 

the respective data item has been modified.  

Note, the implementation for LL/LC depends on the 

hardware (CPU). E.g., all of Alpha, PowerPC, 

MIPS, and ARM provide LL/SC instructions.  

 

public class AtomicIntegerTest{ 

AtomicInteger counter= new 

AtomicInteger(10); 

class AddThread implements 

Runnable{ 

@Override 

public void run() {  

//ads the 5 in current value 

counter.addAndGet(5); } } 

Code snippet 4.  Atomic operations 

 

Technically, the following atomic operations are 

mentioned in the computer science papers:  

• Atomic read-write 

• Atomic swap  

• Test-and-set 

• Fetch-and-add 

• Compare-and-swap 

• Load-Link/Store-Conditional 

These instructions operations can be used directly 

by compilers and operating systems. Also, they can 

be abstracted exposed as libraries (packages) in 

higher-level languages. 

 

Technically, when there are multiple instructions 

which must be completed without interruption, we 

can use a CPU instruction which temporarily 

disables interrupts. So, potentially, we can achieve 

the atomicity of any sequence of instructions by 

disabling interrupts while executing it. However, it 

means the monopolization of the CPU and may lead 

to hang and infinite loops. Also, in multiprocessor 

systems, it is usually impossible to disable interrupts 

on all processors at the same time. The compare-

and-swap pattern, described below, allows any 

processor to atomically test and modify a memory 

location, preventing such multiple-processor 

collisions. It is one of the reasons for its popularity. 

 

3 Lock-free programming patterns  
In this section, we would like to discuss so-called 

Compare-And-Swap operations. Technically, it is 

also atomic operation (as it is described in section 

2). As we have mentioned in section 2, the 

implementation for atomic operations depends on 

the hardware. So, depending on the hardware 

platform, there are two main atomic operations 

hardware implementations: the above-mentioned 

Load-Link/Store-Conditional (LL/SC) on Alpha, 

PowerPC, MIPS, ARM and Compare-And-Swap 

(CAS) on x86 line [12].  

The above-mentioned Load-Link/Store-

Conditional uses the following pattern: the 

application reads the data with load-link, computes a 

new value to write, and writes it with store-

conditional. If the value has changed concurrently, 

the store-conditional operation will fail. 

CAS compares a memory location with a given 

value, and if they are the same the new value is set. 

The returned value from CAS operation is the value 

before the swap was attempted.   

In the both cases, we can know if the memory 

location was written to between our read and write. 

This conclusion is leading to the common 

programming pattern, used here. It is so-called read-

modify CAS sequence (CAS loop): the application 

reads the data, computes a new value to write, and 

writes it with a CAS. If the value changes 

concurrently, the CAS writing will fails then the 
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application tries again (repeats the loop). Let us see 

this Java code: 

AtomicReference<Object> cache =  

new AtomicReference<Object> (); 

Object cachedValue =  

new Object(); 

cache.set(cachedValue); 

 

AtomicReference is an object reference that may 

be updated atomically. Later in the code, we can 

calculate a new value and conditionally update 

(Code snippet 6) 

 

Code snippet 5. Atomic operations 

 

Object cachedValueToUpdate = someFunction(cachedValue); 

boolean success = cache.compareAndSet(cachedValue,cachedValueToUpdate); 

Code snippet 6. CAS operation 

 

 

 

Another example is a well-known Singleton 

pattern. Here is the classical implementation (Code 

snippet 7) 

 

private Singleton singleton = null;  

protected Singleton createSingleton() 

{ synchronized (this)  

{ // locking on 'this' for simplicity  

if (singleton == null) { singleton = new Singleton(); }  

return singleton; }} 

 

Code snippet 7. Classical singleton 

 

This classical model contains a synchronized 

block. And the code blow presents the lock-free 

implementation for singleton pattern. It uses the 

same AtomicReference object. The method 

weakCompareAndSet atomically reads and 

conditionally writes a variable, but does not create 

any happens-before orderings. This method provides 

no guarantees with respect to previous or 

subsequent reads and writes of any variables other 

than the target of the weakCompareAndSet. It is 

illustrated in Code snippet 8. 

 

 

private AtomicReference singletonRef = new AtomicReference(null);  

protected Singleton createSingleton()  

{  

   Singleton singleton = singletonRef.get();  

   if (singleton == null)  

   {  

        singleton = new Singleton();  

        if (!singletonRef.weakCompareAndSet(null, singleton))  

        {  

            singleton = singletonRef.get();  

        } 

    }  

   return singleton; } 

Code snippet 8. Lock-free singleton 

 

In order to estimate the performance gain in lock 

versus lock-free implementations, we have followed 

to the test suite, provided by M.Thompson [13]. It is 

a concurrent test for reading/writing x-y coordinates 

for some moving object. Figure 2 [13] illustrates the 

performance for 2 readers – 2 writers test case. In 

our own tests, it shows the following approximate 

performance for reading (in thousands reads/sec): 

 

Synchronized  3100  

ReadWriteLock 2700 

ReentrantLock 5900 

LockFree 21000 

 

WSEAS TRANSACTIONS on COMPUTERS Dmitry Namiot

E-ISSN: 2224-2872 120 Volume 15, 2016



The performance gain in writing is less, but still 

is significant (in thousands writes/sec): 

Synchronized  3300 

ReadWriteLock 4500 

ReentrantLock 4600 

LockFree 9500 

The average performance gains (in 20 tests, Java 

language) for lock-free vs. traditional (in percents) 

are: 

Reading: 

Synchronized  650%  

ReadWriteLock 760% 

ReentrantLock 320% 

 

Writing: 

Synchronized  280% 

ReadWriteLock 210% 

ReentrantLock 205% 

 

 
Fig. 2. Lock vs. lock-free performance 

 

The common problem for CAS-based solutions 

is so-called ABA problem [14]. The definition for 

ABA is very simple. Between the time that our code 

reads the original value and try to replace it with the 

new value, it could have been changed to something 

else and back to the original value. Obviously, in 

this case, we cannot detect the intermediate change.  

The simplest solution to this problem is to associate 

the counter with our values. This counter could be 

incremented at each operation. So, we can compare 

not only values but counters also. The counter will 

be changed in case of intermediate operations. 

 

4 Lock-free programming use cases  
Usually, in computer science papers, non-blocking 

synchronization and non-blocking operations are 

divided for three primary classes. They have own 

set of warranties for non-blocking actions: 

 

• Obstruction Freedom [15]. The application 

(algorithm) provides for any single-thread progress 

guarantees in the absence of conflicting operations. 

It is the weakest requirement. An obstruction-free 

operation does not need to wait for actions by other 

threads, regardless of where they have stopped or 

not. 

 

• Lock Freedom [16]. The application provides 

system-wide progress warranties. At least one active 

invocation of an operation is guaranteed to complete 

in a finite number of steps. Lock-free progress 

combines obstruction-free progress with live-lock 

freedom [17]. 

 

• Wait Freedom [18]. The application supports per-

operation progress warranties. Every active 

invocation of an operation completes in a finite 

number of steps. It combines lock-free restrictions 

with starvation-freedom [19]. So, any wait-free 

operation is guaranteed to complete in a finite 

number of its own steps, regardless of the actions or 

inaction of other operations. 

 

Conventional locks are neither non-blocking nor 

wait-free. Any wait-free algorithm is also lock-free 

and obstruction-free. Any lock-free algorithm is also 

obstruction-free. A non-blocking data structures are 

structures with operations that satisfy the progress 

warranties in the above-mentioned non-blocking 

hierarchy. But there are two important remarks.  It is 

allowed to implement a data structure that provides 

a non-blocking status for a limited number of 

readers or writers only. And secondly, it is possible 

also for a data structure to provide different non-

blocking warranties for the different sets of 

operations [20].  

 

The typical use case for non-blocking solutions is 

quite obvious. We have multithreading system and 

some of the threads have wait for actions (data) by 

other threads. Of course, any such solution (design) 

makes the whole system potentially vulnerable to 

deadlocks, live-locks, or simply to long delays. 

Examples of such uses are [21]: 

 

• Kill-safe systems. Such systems should stay 

available even if processes may be terminated at 

arbitrary points. The typical example is a server-side 

multi-user framework. Any process could be killed 

by the user. And, of course, any process could be 

terminated while it is operating on shared structures 
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or services. So, if other processes are waiting for 

some actions from the terminated process (they are 

blocked), it will never happen. It means non-

blocking operations are the only possible solution 

for this case.  

 

• Asynchronous signal safety. The handlers of 

asynchronous signals should be able to share data 

with the interrupted threads and never wait for 

actions by the interrupted thread. In other words, 

interrupted threads should not stop signals handlers.  

Asynchronous handlers should be safe.  

 

• Priority inversion and preemption tolerance. The 

active thread should not be blocked awaiting action 

by other threads that are delayed for a long time. It 

is very important for stream processing, for 

example. 

 

In the connection with non-blocking operations, we 

would like to mention three key elements. At the 

first hand, it is automatic code generation. 

Technically, a code for non-blocking algorithms is 

more complex. That is why it is very important to 

simplify the development. Plus, automatic code 

generation allows some formal methods for 

verification. We discuss this stuff in the connection 

with IoT programming in our papers [22, 23]. 

 

Traditionally, much attention is paid to the so-called 

non-blocking data structures [24, 25]. The practical 

design of non-blocking data structures may be 

different.   One of the widely used approaches can 

present non-blocking data elements as shared data 

structures that support linearization of concurrent 

operations as the main correctness invariant. They 

support seemingly instantaneous execution of every 

operation on the shared data, so that an equivalent 

sequential ordering of the concurrent operations can 

always be constructed [26]. In the parallel 

(concurrent) programming developers will 

obviously the increased use of data and resource 

sharing for utilizing. It is what parallelism is about. 

The whole applications are split into subtasks. And 

subtasks (processes) share data. So, data structures 

are crucially important for the performance.   

 

Classical (standard) implementations of data 

structures are based on locks in order to avoid 

inconsistency of the shared data due to possible 

concurrent modifications. Of course, it reduces the 

possibility for parallelism and leads to possible 

deadlocks. So, lock-free implementations of data 

structures should support concurrent access. It 

means that all steps of the supported operations for a 

lock-free structure can be executed concurrently. It 

means they should employ an optimistic conflict 

control approach and allow multiple processes to 

access the shared data object at the same time. The 

delays should be suffered only when there is an 

actual conflict between operations. This conflict can 

cause some of the parallel operations to retry. Of 

course, such architecture increases the scalability. 

According to the above-mentioned definitions, an 

implementation of a data structure is lock-free if it 

allows multiple processes to gain access to the data 

structure concurrently and guarantees that at least 

one of those processes finishes in a finite number of 

its own steps regardless s of the state of the other 

processes. A consistency requirement for lock-free 

data structures could be described via linearizability 

[27]. It means ensures that each operation on the 

data appears to take effect instantaneously during its 

actual duration. The effect of all operations is 

consistent with the object’s sequential specification 

[28].  

 

Methods for implementing the non-blocking data 

structures vary depending on the type of structure. 

For example, let us see non-blocking stack 

implementations. Stack (queue) is one of the 

simplest sequential data structures. The obvious 

implementation for the stack is a sequentially linked 

list with a pointer to the top and a global lock for 

access control to the stack. The minimal lock-free 

concurrent stack implementation [29] includes a 

singly-linked list, a pointer to the top, but uses CAS 

to modify the top pointer atomically. But this lock-

free solution does not solve the scalability issues, 

because the top pointer is still a bottleneck. So, the 

real implementation will include more sophisticated 

code. E.g., it could be so-called elimination 

technique [30]. It introduces pairs of operations with 

reverse semantics (push and pop for the stack), 

which complete without any central coordination. 

The idea is that if a pop operation can find a 

concurrent push operation to associate with, then 

this pop operation can use the value from the 

detected push. In other words, both operations 

eliminate each other’s effect. So, both operations 

can return values immediately.  

 

This last statement actually leads to the next 

important conclusion. The most important elements 

for concurrent programming are the coordination 

and data flow organizing, rather than relatively low-

level data structures.  The various elements of 

concurrent programming are used together in real 

applications. It is the biggest issue. Each individual 

element (the individual abstraction) solves 
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effectively own tasks only. But it does not solve the 

complexity problem for the whole application. So, 

by our opinion, the proper solution here should be 

based on the frameworks [31] and programming 

languages especially oriented to concurrent 

programming [32].   

 

For example, languages like Erlang have built-in 

concurrency features. In Erlang, concurrency is 

achieved through Message passing and the Actor 

Model [33]. On the top level, process mailbox in 

Erlang is lock-free. Although, a locking scheme can 

be used internally by the virtual machine [34]. 

Concurrent Haskell [35] uses so-called Software 

Transactional Memory (STM) [36].  

 

STM is a low-level application programming 

interface for synchronizing shared data without 

locks [37]. It uses the standard definition for 

transactions – it is a sequence of steps executed by a 

single thread. Transactions are atomic. So, each 

transaction either completes all steps or aborts 

completely (all step/changes should be discarded).  

And transactions are linearizable (see above the 

remarks about consistency checking for lock-free 

data structures).  Transactions take effect in one at a 

time order. So, STM API lets applications mark the 

sequence of operations on possibly shared data as a 

transaction. This mark is just a pair of calls: start 

transaction and commit transaction. If the commit 

succeeds, the transaction’s operations take effect, 

otherwise, they are discarded. Originally this 

conception was proposed for hardware architecture 

and later extended as a software API. It has several 

implementations (including Open Source) for 

various programming systems (languages). STM 

enables to compose scalable applications. It is, 

probably, the biggest advantage. The performance 

of STM applications depends on several factors. 

One of them, by our experience, is a size for 

transactions. But it is a directly managed parameter 

and it could be easily changed in the source code. 

 

5 Conclusion 

It this paper, we discuss lock-free programming. 

The aim of the study was the choice of the methods 

of work with memory (memory management) in a 

parallel implementation of a virtual machine. Lock-

free programming provides a model to share 

changing data among several threads without paying 

the cost of acquiring and releasing locks. We 

provide a survey of lock-free data structures and 

algorithms, lock-free programming patterns and 

approaches. Also, we estimate the potential 

performance gain without the cost of locks. It lets us 

estimate the applicable overhead for multi-threading 

support. The most promising lock-free programming 

pattern, by our opinion, is STM. 
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