
On lock-free programming patterns

DMITRY NAMIOT

Faculty of Computational Mathematics and Cybernetics

Lomonosov Moscow State University

MSU, Russia, 119991, Moscow, GSP-1, 1-52, Leninskiye Gory

RUSSIA

dnamiot@gmail.com

Abstract: - Lock-free programming is a well-known technique for multithreaded programming. Lock-free

programming is a way to share changing data among several threads without paying the cost of acquiring and

releasing locks. On practice, parallel programming models must include scalable concurrent algorithms and

patterns. Lock-free programming patterns play an important role in scalability. This paper is devoted to lock-

free data structures and algorithms. Our task was to choose the data structures for the concurrent garbage

collector. We aim to provide a survey of lock-free patterns and approaches, estimate the potential performance

gain for lock-free solutions. By our opinion, the most challenging problem for concurrent programming is the

coordination and data flow organizing, rather than relatively low-level data structures. So, as the most

promising from the practical point of view lock-free programming pattern, we choose the framework based on

the Software Transactional Memory.

Key-Words: - parallel programming, thread, lock, mutex, semaphore, scalability, atomic

1 Introduction
When writing multi-threaded code, it is often

necessary to share data between threads. If multiple

threads are simultaneously reading and writing the

shared data structures, memory corruption can occur

[1]. The simplest way of solving this problem is to

use locks [2].

A lock is a thread synchronization mechanism.

Let us see this classical example in Java code (Code

snippet 1):

public class Counter{

 private int count = 0;

 public int increase(){

 synchronized(this){

 return ++count;

 }

 }

}

Code snippet 1. Thread synchronization

In this code, the synchronized (this) block in the

increase() method makes sure that only one thread

can execute the return ++count at a time.

A package java.util.concurrent.lock supports

another thread synchronization mechanism. The

main goal is similar to synchronized blocks, but it is

more flexible and more sophisticated. It is a

classical implementation of mutex [3]

Lock lock = new ReentrantLock();

lock.lock();

/*

 here is a critical section

*/

lock.unlock();

Code snippet 2. A critical section

First a Lock object is created. Then it's lock()

method is called and the instance of Lock object is

locked. Now any other thread calling lock() will be

blocked until the thread that locked the lock calls

unlock(). In the critical section, we can perform

some calculation with the shared data. Finally

unlock() method is called, and the instance of Lock

object becomes unlocked, so other threads can lock

it.

But locking includes various penalties. And it is

not only the performance. For example in Java, one

serious question is the ability for Java Virtual

Machine (JVM) to optimize the workflow (change

the order of calculations). Locks are very often

WSEAS TRANSACTIONS on COMPUTERS Dmitry Namiot

E-ISSN: 2224-2872 117 Volume 15, 2016

preventing JVM from this optimization. By this

reason, lock-free patterns and data structures are an

important part of the programming techniques.

Lock-free programming (lockless in several

papers [4]) covers not only programming without

the locks (mutexes). More broadly (practically), the

lock is the ability for one thread to block by some

way another thread. So, in the lock-free application,

any thread cannot block the entire application.

From the latest definition, we can conclude that

in lock-free programming one suspended thread will

never prevent other threads from making progress,

as a group, through their own lock-free operations.

It highlights the importance of lock-free

programming for real-time systems, where certain

operations must be completed completely within a

certain time limit. And the ability to finish

operations should not depend on the rest of the

program [5]. A methodology for creating fast wait-

free data structures is presented in [6]. There are two

basic moments: low-level lock-free data structures

and relatively high-level solutions (e.g.,

frameworks) lock-free programming models [7].

The rest of the paper is organized as follows. In

section 2 we discuss atomic operations. In section 3

we describe the basic lock-free patterns. And section

4 is devoted to the usage of lock-free approach.

2 Atomic operations
Atomic operations are the key moment for lock-

free programming support. The definition for atomic

operation is very simple - no thread can observe the

operation half-complete. Actually, on modern

processors, many operations are already atomic. For

example, aligned reads and writes of simple types

are usually atomic. Figure 1 illustrates the tree:

Fig. 1. Atomic vs. non-atomic operations [8]

An operation, acting on shared memory, is atomic as

soon as it completes in a single step relative to other

threads. This “single step” is the warranty that no

other thread can observe the modification half-

complete.

When an atomic load is performed on a shared

variable, it reads the entire value as it is at a single

moment of time. Non-atomic loads and stores do not

make those guarantees. For example, in Java atomic

operations are:

• all assignments of primitive types except

for long and double

• all assignments of references

• all operations of classes of the

java.concurrent.Atomic package

Without atomic operations, lock-free programming

would be impossible. The reason is obvious – we

cannot let different threads manipulate a shared

variable at the same time without atomic operations.

Suppose we have the two threads perform write

operations on a shared variable concurrently.

Because the thread scheduling algorithm can swap

between threads at any time, we do not know the

order in which the threads will attempt to gain

access the shared variable. So, the result of the

change in data depends on the thread scheduling

algorithm. In other words, both threads are racing to

gain access the data. It is so-called race condition

[9].

This problem often occur when one thread performs

so-called a "check phase-then-act phase" (e.g.

"check" if the value is 5, then "act" to do something

that depends on the value being 5), and another

thread performs something with the value in

between the "check phase" and the "act phase". For

example,

if (x == 5) // Check phase

{

 x = x * 2; // Act phase

}

Code snippet 3. Act & check phases

Another thread can change x value in between "if (x

== 5)" and "x = x * 2" operators.

The point being, x could be 10, or it could be

anything, depending on whether another thread

changed x in between the check and act phases. So,

as soon as two threads operate (access to write) on a

shared variable concurrently, both threads must use

atomic operations. Code snippet 4 illustrates an

WSEAS TRANSACTIONS on COMPUTERS Dmitry Namiot

E-ISSN: 2224-2872 118 Volume 15, 2016

example of atomic operations in Java

(AtomicInteger class).

The next set of very important atomic elements are

so-called Read-Modify-Write (RMW) operations

[10]. They let us perform more complex transactions

atomically. RMW operations are especially useful

when our algorithm must support multiple writers.

When the several threads attempt to perform a

RMW operation on the same data, they will be

effectively serialized (line up) in a row and execute

those operations one-at-a-time. Here is a typical

example, presented in [10]. Two transactions

perform operations on their snapshot isolated from

other transactions and eventually check for conflicts

at commit time. The transactions temporarily store

data changes (insert, update, and delete operations)

in a local buffer and apply them to the shared data

store during the commit phase. The commit of a

transaction T1 will only be successful if none of the

items in the write set have been changed externally

by another transaction T2 which is committing or

has committed since T1 has started. Suppose, T2

and T1 are running in parallel and modify (update

operations) the same item. If one transaction writes

the changed item to the shared store before it is read

by the second, then we should notify the second

transaction about the conflict. The typical solution

involves atomic RMW operations such as load-link

and store-conditional (LL/SC) [11]. LL/SC is the

pair of instructions that reads a value (load-link) and

allows update the latter atomically only if it has not

changed in the meantime (store-conditional).

Actually, it is a key operation for conflict detection

in transactions. If one of the LL/SC operations fails,

the respective data item has been modified.

Note, the implementation for LL/LC depends on the

hardware (CPU). E.g., all of Alpha, PowerPC,

MIPS, and ARM provide LL/SC instructions.

public class AtomicIntegerTest{

AtomicInteger counter= new

AtomicInteger(10);

class AddThread implements

Runnable{

@Override

public void run() {

//ads the 5 in current value

counter.addAndGet(5); } }

Code snippet 4. Atomic operations

Technically, the following atomic operations are

mentioned in the computer science papers:

• Atomic read-write

• Atomic swap

• Test-and-set

• Fetch-and-add

• Compare-and-swap

• Load-Link/Store-Conditional

These instructions operations can be used directly

by compilers and operating systems. Also, they can

be abstracted exposed as libraries (packages) in

higher-level languages.

Technically, when there are multiple instructions

which must be completed without interruption, we

can use a CPU instruction which temporarily

disables interrupts. So, potentially, we can achieve

the atomicity of any sequence of instructions by

disabling interrupts while executing it. However, it

means the monopolization of the CPU and may lead

to hang and infinite loops. Also, in multiprocessor

systems, it is usually impossible to disable interrupts

on all processors at the same time. The compare-

and-swap pattern, described below, allows any

processor to atomically test and modify a memory

location, preventing such multiple-processor

collisions. It is one of the reasons for its popularity.

3 Lock-free programming patterns
In this section, we would like to discuss so-called

Compare-And-Swap operations. Technically, it is

also atomic operation (as it is described in section

2). As we have mentioned in section 2, the

implementation for atomic operations depends on

the hardware. So, depending on the hardware

platform, there are two main atomic operations

hardware implementations: the above-mentioned

Load-Link/Store-Conditional (LL/SC) on Alpha,

PowerPC, MIPS, ARM and Compare-And-Swap

(CAS) on x86 line [12].

The above-mentioned Load-Link/Store-

Conditional uses the following pattern: the

application reads the data with load-link, computes a

new value to write, and writes it with store-

conditional. If the value has changed concurrently,

the store-conditional operation will fail.

CAS compares a memory location with a given

value, and if they are the same the new value is set.

The returned value from CAS operation is the value

before the swap was attempted.

In the both cases, we can know if the memory

location was written to between our read and write.

This conclusion is leading to the common

programming pattern, used here. It is so-called read-

modify CAS sequence (CAS loop): the application

reads the data, computes a new value to write, and

writes it with a CAS. If the value changes

concurrently, the CAS writing will fails then the

WSEAS TRANSACTIONS on COMPUTERS Dmitry Namiot

E-ISSN: 2224-2872 119 Volume 15, 2016

application tries again (repeats the loop). Let us see

this Java code:

AtomicReference<Object> cache =

new AtomicReference<Object> ();

Object cachedValue =

new Object();

cache.set(cachedValue);

AtomicReference is an object reference that may

be updated atomically. Later in the code, we can

calculate a new value and conditionally update

(Code snippet 6)

Code snippet 5. Atomic operations

Object cachedValueToUpdate = someFunction(cachedValue);

boolean success = cache.compareAndSet(cachedValue,cachedValueToUpdate);

Code snippet 6. CAS operation

Another example is a well-known Singleton

pattern. Here is the classical implementation (Code

snippet 7)

private Singleton singleton = null;

protected Singleton createSingleton()

{ synchronized (this)

{ // locking on 'this' for simplicity

if (singleton == null) { singleton = new Singleton(); }

return singleton; }}

Code snippet 7. Classical singleton

This classical model contains a synchronized

block. And the code blow presents the lock-free

implementation for singleton pattern. It uses the

same AtomicReference object. The method

weakCompareAndSet atomically reads and

conditionally writes a variable, but does not create

any happens-before orderings. This method provides

no guarantees with respect to previous or

subsequent reads and writes of any variables other

than the target of the weakCompareAndSet. It is

illustrated in Code snippet 8.

private AtomicReference singletonRef = new AtomicReference(null);

protected Singleton createSingleton()

{

 Singleton singleton = singletonRef.get();

 if (singleton == null)

 {

 singleton = new Singleton();

 if (!singletonRef.weakCompareAndSet(null, singleton))

 {

 singleton = singletonRef.get();

 }

 }

 return singleton; }

Code snippet 8. Lock-free singleton

In order to estimate the performance gain in lock

versus lock-free implementations, we have followed

to the test suite, provided by M.Thompson [13]. It is

a concurrent test for reading/writing x-y coordinates

for some moving object. Figure 2 [13] illustrates the

performance for 2 readers – 2 writers test case. In

our own tests, it shows the following approximate

performance for reading (in thousands reads/sec):

Synchronized 3100

ReadWriteLock 2700

ReentrantLock 5900

LockFree 21000

WSEAS TRANSACTIONS on COMPUTERS Dmitry Namiot

E-ISSN: 2224-2872 120 Volume 15, 2016

The performance gain in writing is less, but still

is significant (in thousands writes/sec):

Synchronized 3300

ReadWriteLock 4500

ReentrantLock 4600

LockFree 9500

The average performance gains (in 20 tests, Java

language) for lock-free vs. traditional (in percents)

are:

Reading:

Synchronized 650%

ReadWriteLock 760%

ReentrantLock 320%

Writing:

Synchronized 280%

ReadWriteLock 210%

ReentrantLock 205%

Fig. 2. Lock vs. lock-free performance

The common problem for CAS-based solutions

is so-called ABA problem [14]. The definition for

ABA is very simple. Between the time that our code

reads the original value and try to replace it with the

new value, it could have been changed to something

else and back to the original value. Obviously, in

this case, we cannot detect the intermediate change.

The simplest solution to this problem is to associate

the counter with our values. This counter could be

incremented at each operation. So, we can compare

not only values but counters also. The counter will

be changed in case of intermediate operations.

4 Lock-free programming use cases
Usually, in computer science papers, non-blocking

synchronization and non-blocking operations are

divided for three primary classes. They have own

set of warranties for non-blocking actions:

• Obstruction Freedom [15]. The application

(algorithm) provides for any single-thread progress

guarantees in the absence of conflicting operations.

It is the weakest requirement. An obstruction-free

operation does not need to wait for actions by other

threads, regardless of where they have stopped or

not.

• Lock Freedom [16]. The application provides

system-wide progress warranties. At least one active

invocation of an operation is guaranteed to complete

in a finite number of steps. Lock-free progress

combines obstruction-free progress with live-lock

freedom [17].

• Wait Freedom [18]. The application supports per-

operation progress warranties. Every active

invocation of an operation completes in a finite

number of steps. It combines lock-free restrictions

with starvation-freedom [19]. So, any wait-free

operation is guaranteed to complete in a finite

number of its own steps, regardless of the actions or

inaction of other operations.

Conventional locks are neither non-blocking nor

wait-free. Any wait-free algorithm is also lock-free

and obstruction-free. Any lock-free algorithm is also

obstruction-free. A non-blocking data structures are

structures with operations that satisfy the progress

warranties in the above-mentioned non-blocking

hierarchy. But there are two important remarks. It is

allowed to implement a data structure that provides

a non-blocking status for a limited number of

readers or writers only. And secondly, it is possible

also for a data structure to provide different non-

blocking warranties for the different sets of

operations [20].

The typical use case for non-blocking solutions is

quite obvious. We have multithreading system and

some of the threads have wait for actions (data) by

other threads. Of course, any such solution (design)

makes the whole system potentially vulnerable to

deadlocks, live-locks, or simply to long delays.

Examples of such uses are [21]:

• Kill-safe systems. Such systems should stay

available even if processes may be terminated at

arbitrary points. The typical example is a server-side

multi-user framework. Any process could be killed

by the user. And, of course, any process could be

terminated while it is operating on shared structures

WSEAS TRANSACTIONS on COMPUTERS Dmitry Namiot

E-ISSN: 2224-2872 121 Volume 15, 2016

or services. So, if other processes are waiting for

some actions from the terminated process (they are

blocked), it will never happen. It means non-

blocking operations are the only possible solution

for this case.

• Asynchronous signal safety. The handlers of

asynchronous signals should be able to share data

with the interrupted threads and never wait for

actions by the interrupted thread. In other words,

interrupted threads should not stop signals handlers.

Asynchronous handlers should be safe.

• Priority inversion and preemption tolerance. The

active thread should not be blocked awaiting action

by other threads that are delayed for a long time. It

is very important for stream processing, for

example.

In the connection with non-blocking operations, we

would like to mention three key elements. At the

first hand, it is automatic code generation.

Technically, a code for non-blocking algorithms is

more complex. That is why it is very important to

simplify the development. Plus, automatic code

generation allows some formal methods for

verification. We discuss this stuff in the connection

with IoT programming in our papers [22, 23].

Traditionally, much attention is paid to the so-called

non-blocking data structures [24, 25]. The practical

design of non-blocking data structures may be

different. One of the widely used approaches can

present non-blocking data elements as shared data

structures that support linearization of concurrent

operations as the main correctness invariant. They

support seemingly instantaneous execution of every

operation on the shared data, so that an equivalent

sequential ordering of the concurrent operations can

always be constructed [26]. In the parallel

(concurrent) programming developers will

obviously the increased use of data and resource

sharing for utilizing. It is what parallelism is about.

The whole applications are split into subtasks. And

subtasks (processes) share data. So, data structures

are crucially important for the performance.

Classical (standard) implementations of data

structures are based on locks in order to avoid

inconsistency of the shared data due to possible

concurrent modifications. Of course, it reduces the

possibility for parallelism and leads to possible

deadlocks. So, lock-free implementations of data

structures should support concurrent access. It

means that all steps of the supported operations for a

lock-free structure can be executed concurrently. It

means they should employ an optimistic conflict

control approach and allow multiple processes to

access the shared data object at the same time. The

delays should be suffered only when there is an

actual conflict between operations. This conflict can

cause some of the parallel operations to retry. Of

course, such architecture increases the scalability.

According to the above-mentioned definitions, an

implementation of a data structure is lock-free if it

allows multiple processes to gain access to the data

structure concurrently and guarantees that at least

one of those processes finishes in a finite number of

its own steps regardless s of the state of the other

processes. A consistency requirement for lock-free

data structures could be described via linearizability

[27]. It means ensures that each operation on the

data appears to take effect instantaneously during its

actual duration. The effect of all operations is

consistent with the object’s sequential specification

[28].

Methods for implementing the non-blocking data

structures vary depending on the type of structure.

For example, let us see non-blocking stack

implementations. Stack (queue) is one of the

simplest sequential data structures. The obvious

implementation for the stack is a sequentially linked

list with a pointer to the top and a global lock for

access control to the stack. The minimal lock-free

concurrent stack implementation [29] includes a

singly-linked list, a pointer to the top, but uses CAS

to modify the top pointer atomically. But this lock-

free solution does not solve the scalability issues,

because the top pointer is still a bottleneck. So, the

real implementation will include more sophisticated

code. E.g., it could be so-called elimination

technique [30]. It introduces pairs of operations with

reverse semantics (push and pop for the stack),

which complete without any central coordination.

The idea is that if a pop operation can find a

concurrent push operation to associate with, then

this pop operation can use the value from the

detected push. In other words, both operations

eliminate each other’s effect. So, both operations

can return values immediately.

This last statement actually leads to the next

important conclusion. The most important elements

for concurrent programming are the coordination

and data flow organizing, rather than relatively low-

level data structures. The various elements of

concurrent programming are used together in real

applications. It is the biggest issue. Each individual

element (the individual abstraction) solves

WSEAS TRANSACTIONS on COMPUTERS Dmitry Namiot

E-ISSN: 2224-2872 122 Volume 15, 2016

effectively own tasks only. But it does not solve the

complexity problem for the whole application. So,

by our opinion, the proper solution here should be

based on the frameworks [31] and programming

languages especially oriented to concurrent

programming [32].

For example, languages like Erlang have built-in

concurrency features. In Erlang, concurrency is

achieved through Message passing and the Actor

Model [33]. On the top level, process mailbox in

Erlang is lock-free. Although, a locking scheme can

be used internally by the virtual machine [34].

Concurrent Haskell [35] uses so-called Software

Transactional Memory (STM) [36].

STM is a low-level application programming

interface for synchronizing shared data without

locks [37]. It uses the standard definition for

transactions – it is a sequence of steps executed by a

single thread. Transactions are atomic. So, each

transaction either completes all steps or aborts

completely (all step/changes should be discarded).

And transactions are linearizable (see above the

remarks about consistency checking for lock-free

data structures). Transactions take effect in one at a

time order. So, STM API lets applications mark the

sequence of operations on possibly shared data as a

transaction. This mark is just a pair of calls: start

transaction and commit transaction. If the commit

succeeds, the transaction’s operations take effect,

otherwise, they are discarded. Originally this

conception was proposed for hardware architecture

and later extended as a software API. It has several

implementations (including Open Source) for

various programming systems (languages). STM

enables to compose scalable applications. It is,

probably, the biggest advantage. The performance

of STM applications depends on several factors.

One of them, by our experience, is a size for

transactions. But it is a directly managed parameter

and it could be easily changed in the source code.

5 Conclusion

It this paper, we discuss lock-free programming.

The aim of the study was the choice of the methods

of work with memory (memory management) in a

parallel implementation of a virtual machine. Lock-

free programming provides a model to share

changing data among several threads without paying

the cost of acquiring and releasing locks. We

provide a survey of lock-free data structures and

algorithms, lock-free programming patterns and

approaches. Also, we estimate the potential

performance gain without the cost of locks. It lets us

estimate the applicable overhead for multi-threading

support. The most promising lock-free programming

pattern, by our opinion, is STM.

References:

[1] Szenasi, S., "Difficulties and Solutions in the

Field of Teaching Parallel Programming",

MAFIOK 2013, Miscolc, 26-28 Aug. 2013,

pp.1-6, ISBN 978-963-358-037-0.

[2] Lee, Edward A. “The problem with threads.”

Computer 39.5 (2006): 33-42

[3] Andrews, Gregory R. Concurrent

programming: principles and practice.

Benjamin/Cummings Publishing Company,

1991.

[4] van den Brink B. Providing an Efficient

Lockless Hash Table for Multi-Core

Reachability in Java. – 2014.

[5] Ravindran, B., Jensen, E. D., & Li, P. (2005,

May). On recent advances in time/utility

function real-time scheduling and resource

management. In Object-Oriented Real-Time

Distributed Computing, 2005. ISORC 2005.

Eighth IEEE International Symposium on (pp.

55-60). IEEE.

[6] Kogan, A., & Petrank, E. (2012, February). A

methodology for creating fast wait-free data

structures. In ACM SIGPLAN Notices (Vol.

47, No. 8, pp. 141-150). ACM.

[7] Prokopec, A., Miller, H., Schlatter, T., Haller,

P., & Odersky, M. (2013). FlowPools: A lock-

free deterministic concurrent dataflow

abstraction. In Languages and Compilers for

Parallel Computing (pp. 158-173). Springer

Berlin Heidelberg.

[8] Atomic vs. Non-Atomic Operations

http://preshing.com/20130618/atomic-vs-non-

atomic-operations/ Retrieved: Jan, 2015.

[9] Abadi, M., Flanagan, C., & Freund, S. N.

(2006). Types for safe locking: Static race

detection for Java. ACM Transactions on

Programming Languages and Systems

(TOPLAS), 28(2), 207-255.

[10] Loesing, S., Pilman, M., Etter, T., &

Kossmann, D. (2013). On the Design and

Scalability of Distributed Shared-Memory

Databases.

[11] E. Jensen, G. Hagensen, and J. Broughton. A

new approach to exclusive data access in

shared memory multiprocessors. Technical

Report UCRL-97663, 1987

[12] Petrović, D., Ropars, T., & Schiper, A. (2014,

February). Leveraging hardware message

passing for efficient thread synchronization. In

Proceedings of the 19th ACM SIGPLAN

WSEAS TRANSACTIONS on COMPUTERS Dmitry Namiot

E-ISSN: 2224-2872 123 Volume 15, 2016

symposium on Principles and practice of

parallel programming (pp. 143-154). ACM.

[13] Lock-Based vs. Lock-Free Concurrent

Algorithms http://mechanical-

sympathy.blogspot.ru/2013/08/lock-based-vs-

lock-free-concurrent.html Retrieved: Jan, 2015

[14] Michael, M. M. (2003). CAS-based lock-free

algorithm for shared deques. In Euro-Par 2003

Parallel Processing (pp. 651-660). Springer

Berlin Heidelberg.

[15] Herlihy, M., Luchangco, V., & Moir, M. (2003,

May). Obstruction-free synchronization:

Double-ended queues as an example. In

Distributed Computing Systems, 2003.

Proceedings. 23rd International Conference on

(pp. 522-529). IEEE.

[16] Fraser, K. (2004). Practical lock-freedom

(Doctoral dissertation, University of

Cambridge).

[17] John D. Valois. Lock-Free Linked Lists Using

Compare-and-Swap. In Proceedings of the 14th

Annual ACM Symposium on Principles of

Distributed Computing, pp. 214–222, August

1995.

[18] Barbera, M. V., Epasto, A., Mei, A., Perta, V.

C., & Stefa, J. (2013, October). Signals from

the crowd: uncovering social relationships

through smartphone probes. In Proceedings of

the 2013 conference on Internet measurement

conference (pp. 265-276). ACM.

[19] Rajwar, R., & Goodman, J. R. (2002).

Transactional lock-free execution of lock-based

programs. ACM SIGOPS Operating Systems

Review, 36(5), 5-17.

[20] Herlihy, M., Luchangco, V., Moir, M., &

Scherer III, W. N. (2003, July). Software

transactional memory for dynamic-sized data

structures. In Proceedings of the twenty-second

annual symposium on Principles of distributed

computing (pp. 92-101). ACM.

[21] Michael, M. M. (2013). The balancing act of

choosing nonblocking features.

Communications of the ACM, 56(9), 46-53.

[22] Namiot, D., & Sneps-Sneppe, M. (2014). On

IoT Programming. International Journal of

Open Information Technologies, 2(10), 25-28.

[23] Namiot, D., & Sneps-Sneppe, M. (2014). On

M2M Software. International Journal of Open

Information Technologies, 2(6), 29-36.

[24] Shavit, N. (2011). Data structures in the

multicore age. Communications of the ACM,

54(3), 76-84.

[25] Cederman, D., Gidenstam, A., Ha, P., Sundell,

H., Papatriantafilou, M., & Tsigas, P. (2013).

Lock-free concurrent data structures. arXiv

preprint arXiv:1302.2757.

[26] Li, X., An, H., Liu, G., Han, W., Xu, M., Zhou,

W., & Li, Q. (2011, May). A Non-blocking

Programming Framework for Pipeline

Application on Multi-core Platform. In Parallel

and Distributed Processing with Applications

(ISPA), 2011 IEEE 9th International

Symposium on (pp. 25-30). IEEE.

[27] Herlihy, Maurice, and Nir Shavit. "The art of

multiprocessor programming." PODC. Vol. 6.

2006.

[28] M. Herlihy and J. Wing. “Linearizability: a

Correctness Condition for Concurrent Objects.”

ACM Transactions on Programming

Languages and Systems, 12(3): 463–492, 1990

[29] Kaur, Ranjeet, and Pushpa Rani Suri.

"Concurrent Access Algorithms for Different

Data Structures: A Research Review." Global

Journal of Computer Science and Technology

14.3 (2014).

[30] Michael, M. M., & Scott, M. L. (1996, May).

Simple, fast, and practical non-blocking and

blocking concurrent queue algorithms. In

Proceedings of the fifteenth annual ACM

symposium on Principles of distributed

computing (pp. 267-275). ACM.

[31] N. Shavit and D. Touitou. Elimination trees and

the construction of pools and stacks. Theory of

Computing Systems, 30:645–670, 1997

[32] Ricci, Alessandro, Mirko Viroli, and Giulio

Piancastelli. "simpA: An agent-oriented

approach for programming concurrent

applications on top of Java." Science of

Computer Programming 76.1 (2011): 37-62.

[33] Feo, John T., ed. A comparative study of

parallel programming languages: the Salishan

problems. Elsevier, 2014.

[34] Armstrong J. Programming Erlang: software

for a concurrent world. – Pragmatic Bookshelf,

2007.

[35] Jones, S. P., Gordon, A., & Finne, S. (1996,

January). Concurrent haskell. In POPL (Vol.

96, pp. 295-308).

[36] Di Sanzo, P., Ciciani, B., et.al. (2012). On the

analytical modeling of concurrency control

algorithms for software transactional

memories: the case of commit-time-locking.

Performance evaluation 69(5), 187-205.

[37] Dragojevic, A., Harris, T., (2012, April). STM

in the small: trading generality for performance

in software transactional memory. In

Proceedings of the 7
th
 ACM European

Conference on Computer Systems (pp. 1-14).

ACM.

WSEAS TRANSACTIONS on COMPUTERS Dmitry Namiot

E-ISSN: 2224-2872 124 Volume 15, 2016

