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Abstract: This paper discusses the technology of extracting the chemical knowledge from the structured 

electronic sources, problem-oriented systems of science data analytics, and methods of science data analysis. 

Application of the feed-forward artificial neural network for predicting the reactivity of a compound (the 

classical potential barrier) in reactions of hydrocarbons with hydrogen atom in solution is presented. Empirical 

indexes of reactionary centers for groups of such reactions had identified. The artificial neural network is 

learned using a set of the experimental thermochemical and kinetic data. The artificial neural network has 

predicted classic potential barrier for hydrogen atom in reactions with hydrocarbons in solution at a temperature 

of 298 K with satisfactory accuracy. Special attention is placed the use of fuzzy knowledge base to predict the 

classical potential barrier and to calculate the rate constants of the bimolecular radical reactions of phenyl 

radical with hydrocarbons in the liquid phase on the experimental data. The hybrid algorithm of calculation of 

rate constants of bimolecular radical reactions on the experimental thermochemical data and an empirical index 

of the reactionary center is offered. This algorithm uses a fuzzy knowledge base or an artificial neural network 

for prediction of classical potential barrier of bimolecular radical reactions at some temperature, a database of 

experimental characteristics of reaction and Arrhenius's formula for calculation of rate constant. Results of 

prediction of the classical potential barrier are discussed. 

 

Key-Words: chemical kinetic, thermochemistry, data warehouse, data science analytic, expert system, artificial 

neural network, fuzzy logic. radical reaction, activation energy, classical potential barrier, reactionary center. 

 

1 Introduction 
Chemical society watches closely the 

development of methods of artificial intelligence 

and applies them in the research [1-3]. In particular 

it studies the use of applied methods of artificial 

intelligence for extraction and production of new 

knowledge on the kinetic and thermochemical data 

from the electronic collections.  

Creation of electronic data banks and databases 

on kinetic and thermochemical data [4-9] gave 

researchers new opportunities for the system 

analysis of the experimental data and data obtained 

from the mathematical modeling (data discovery 

and data mining from database) to derive new data 

on the rate constants of radical reactions and 

thermochemical properties of molecules. 

Authors of the kinetic and thermochemical 

databases initially developed computer systems to 

obtain new knowledge – the reaction activation 

energies, enthalpies of formation and molecule bond 

strengths not known previously. The use of 

mathematical modeling or artificial intelligence 

elements (development of knowledge models, 

mathematical deduction, expert systems, artificial 

neural networks) and application of methods of 

fuzzy modeling was supposed in the following 

evolution of the created data banks and databases. 

Development of such approach was the core of the 

process of intellectual data analysis applied in 

organic synthesis, chemical kinetics and 

thermochemisty. 

Thus the problem of extraction of new 

knowledge from the electronic sources of chemical 

kinetics and thermochemistry called for the 

development of use of the new information models 

for presentation, conservation, selection and 

production of new knowledge base of the 

intellectual data analysis. 

The purpose of this article is to give a review of 

the most important open sources of kinetic and 

thermochemical information and to discuss the most 

promising approaches to extract new knowledge 

from them. 
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Particularly, one of the purposes of this article is 

to develop and discuss the use of the feed-forward 

artificial neural network, which have learned using a 

set of the experimental thermochemical and kinetic 

data, to predict the classical potential barrier for 

hydrogen atom in reactions with hydrocarbons in 

solution at a temperature of 298 K. 

Other of the purposes of this paper is the use of 

the Mamdani method [10] to identify the empirical 

dependence of classical potential barrier of reactions 

between phenyl radicals and hydrocarbons in the 

liquid phase based on experimental kinetic data. 

Section 2 contains short review on application of 

data warehouse technology for creating electronic 

collections of the kinetic and thermochemical data. 

Software architecture of data warehouse for 

production of new knowledge in kinetics and 

thermochemistry (based on the example of storing 

rate constants of liquid-phase radical reactions and 

bond dissociation energies of organic compounds) is 

given. 

Section 3.1 describes in short empirical models 

of radical bimolecular reactions of abstraction that 

give the expert a chance to classify such reactions 

based on the empirical index of the reactionary 

center obtained by statistical methods. 

Section 3.2 describes how such classification 

opens a way to build hybrid production expert 

systems based on the decision tables. The decision 

table lets successfully use multi-agent technologies 

in realization of the expert systems built into the 

portal.  

Section 3.3 shows an example of the use of 

artificial neural networks for approximation of a 

classical potential barrier in reactions of hydrogen 

atom with hydrocarbons in solutions. 

Section 3.4 shows an example of the use of fuzzy 

knowledge base for approximation of a classical 

potential barrier in reactions of phenyl radical with 

hydrocarbons in solutions, using the Mamdani 

algorithm. 

Algorithm is proposed that combines approaches 

of artificial neural networks and fuzzy databases for 

prediction of a classical potential barrier of radical 

bimolecular reactions of abstraction. 

As conclusion, the advantages and disadvantages 

of the approaches examined above are discussed.  

 

2 Problem Formulation 
One of the approaches to representation of 

domain knowledge in electronic resources designed 

for data analysis is the use of data warehouse 

technology [11]. The eye of the problem is in 

integration of the problem-oriented databases on 

chemical kinetics and thermochemistry based on 

data warehouse and data mart technology.  

In the NIST report of 2004 [12] Allison T.C. 

mentions the possibility to use data warehouse 

technology for the database [5]. In 2004 with the 

participation of NIST employees the data warehouse 

technology was used in the NIST-PrIMe Warehouse 

project [13], in the same place the question of 

integration of the kinetic and thermochemical data 

in the data warehouse for modeling of combustion 

processes was introduced. 

In 2001 in the IPCP RAS in the context of 

development of data bank on rate constants of 

liquid-phase radical reactions and the database of 

bond dissociation energies of organic compounds a 

research of the use of data warehouse technology in 

physical chemistry of radical reactions was started. 

The use of data warehouse technology to represent 

data in electronic data collections on liquid-phase 

radical kinetics and thermochemistry was proposed 

in [14]. 

Data warehouse of this system contains empirical 

and calculated facts, production rules and 

procedures for calculating, and in conjunction with 

expert systems constitutes a virtual subsystem for 

production of new professional knowledge (the 

constants of rate and energies of radical reactions 

activation, energies of molecular bonds 

dissociation). 

Data warehouse as a component of new 

professional knowledge production includes (Fig. 

1): 

 Exploration Data Warehouse, which contains 

experimental data on the reactivity of radical 

reactions in the liquid phase; 

 integrated expert system to manage the 

evaluation of reactivity of reagents radical 

reactions, representing a combination of 

intellectual and reactive agents); 

 intellectual agent to evaluate the rate constants 

and activation energies of reactions in the liquid 

and gas phase; 

 web service, through which the call of trained 

artificial neural networks is performed to predict 

the values of rate constants and activation 

energies of liquid-phase radical reactions of 

certain classes; 

 derivative data warehouse containing the 

calculated data on the reactivity of radical 

reactions in liquid and gas phases; 

 integrated expert system to evaluate the bond 

dissociation energy of molecular by kinetic data 

of radical reactions; 
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 data warehouse of bonds dissociation energies 

of organic molecules, which can be 

supplemented with new data as a result of work 

of expert system for evaluation of bonds 

dissociation energy of molecular by kinetic data 

of radical reactions; 

 thesaurus of key terms and concepts in the 

subject domain; 

 thesaurus of descriptions of algorithms and 

procedures for predicting physicochemical 

characteristics of molecules; 

 knowledge base containing production rules and 

facts, which are used by integrated expert 

systems. 

 

 
Fig. 1. Data warehouse of subject-oriented 

science intelligence system in physical chemistry of 

radical reactions. 

 

As a result of the work of the system users the 

data warehouse is updated with new professional 

knowledge. As the mechanisms of production of 

new knowledge in this present system the expert 

systems integrated into the portal, trained artificial 

neural networks and intellectual agents are used. 

 

3 Problem Solution 
3.1 Empirical models of free radical 

reactions 
Experimentally the activation energy (Е) or a 

classical potential barrier (Ee) determines the 

reactivity of organic molecules in the bimolecular 

radical reaction: 

 

)(5.0 RThLEE ie    (1) 

 

where νi is a frequency of the stretching vibrations 

for the bond being broken, R is the gas constant, h is 

the Planck constant, L is the Avogadro constant, and 

T is the reaction temperature (K). 

In [15,16] proposed empirical models of 

elementary bimolecular radical reactions of 

abstraction, which allows to build non-linear 

correlations between the classical potential barrier 

radical bimolecular reaction and thermochemical 

properties of reactants (nonlinear correlation): 

a. non-linear correlation [15]: 
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b. non-linear correlation [16]: 
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where He = Di - Df + 0.5 (hLi - hLf ) is the 

enthalpy of reaction, including the difference 

between the zero-point energies to rupture or form 

the bonds,i andf are the frequencies of the 

stretching vibrations for the bond being broken and 

the bond being formed, respectively; Di and Df are 

the dissociation energies for the breaking and the 

forming bond, respectively; Dei = Di + 0.5hLi,, Def 

= Df + 0,5hLf ; i and f are the reduced masses of 

atoms for the breaking and the forming bond, 

respectively; the coefficients b = (2i)
1/2i , bf = 

(2f)
1/2f and  = b/bf, the distance re, which the 

abstracted atom is displaced in the course of the 

reaction. 

We will designate bre empirical index of the 

reactionary center of the radical reaction. 

These models are the basis for the developed 

approaches to extraction of new knowledge from 

subject-oriented data warehouse of the radical 

reactions given on physical chemistry. 

 

3.2 Expert Systems 
Research review on development of expert 

systems in chemistry is given in the monograph 

[17]. 

The expert system for prediction of reactivity of 

organic molecules in liquid and gas phase radical 

reactions of abstraction based on the experimental 

kinetic and thermochemical data and the expert 

system for estimation of bond dissociation energies 

in liquid phase radical reactions based on the kinetic 

data were developed in the IPCP RAS [6]. As a 

result the estimation of more than 1000 bond 
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dissociation energies in complex organic 

compounds was made.  

Fig. 2 schematically shows the multi-agent 

software architecture integrated into the portal of 

expert system.  

 

 
Fig. 2. The multi-agent software architecture 

integrated into the portal of expert system. 

 

At Fig. 2 software agents operate in a simple 

model "Query-Answer-Agreement." After receiving 

the input data a survey of resident agents is 

performed. Based on the responses received the 

decision is made to what agent should be delegated 

with performing actions referred to in the expert 

system. After interviewing the agents the matrix of 

responses is formed and based on its analysis it is 

decided which agent shall be given the task to be 

solved. Under certain conditions, the solution of the 

task may be given to the two agents. 

The approach that we use to form knowledge 

base of the expert system for prediction of reactivity 

is based on the statistical manipulation of the 

experimental kinetic data, which is partially typical 

for the EROS expert system too [18]. 

Only a small number of publications are devoted 

to problems of the use of expert systems for 

prediction of molecule reactivity in radical 

reactions. Among those the works made under the 

guidance of Prof. J. Gasteiger within the project of 

development of the EROS expert system should be 

marked [18]. It should be observed that this expert 

system is more directed towards the organic 

synthesis support, rather than the prediction of 

reactivity of organic molecules in radical reactions.  

Molecule reactivity can be estimated in the 

SPARC expert system [19], which is available in the 

Internet. This program uses quantum chemical 

methods by calculation of the rate constants 

reaction, equilibrium constants and enthalpies of 

molecule formation. 

Thus, the expert system technology was used for 

the prediction of the bond dissociation energies of 

molecules, classical potential barrier and enthalpies 

of free radical formation. 

 

3.3 Artificial neural networks  
Currently artificial neural networks are widely 

used by solution of the applied problems of 

automatic research data processing in 

interdisciplinary research in chemistry [20, 21]. One 

of such topical applied problems is the prediction of 

molecule reactivity in chemical reactions (activation 

energies and rate constants), bond dissociation 

energies and enthalpies of molecule formation. 

A series of author’s works [22-25] is devoted to 

research of the use of artificial neural network 

trained on the experimental selection from databases 

[6], for estimation of rate constants and activation 

energies of radical reactions. 

A series of works is devoted to the use of 

artificial neural network N technology for prediction 

of bond dissociation energies [26] (based on the 

experimental data from databases [6]) and [27] 

(with the use of the set of chemical descriptors). 

We can assume (2) the existence of a non-linear 

dependence of the classical potential barrier of the 

reactions of hydrocarbons with hydrogen atom in 

solution from the thermochemical characteristics of 

reagents and kinetic characteristics of this reaction: 

 

),,,( eefeie brDDfE   (4) 

and approximate of this dependence by artificial 

neural network.  

The experimental data set consist of 53 radical 

reactions of the hydrogen atom with a variety of 

hydrocarbons in solution, of which 8 were in test 

set. The rate constants are taken from the database 

object-oriented system of scientific knowledge in 

the physical chemistry of radical reactions [6], the 

dissociation energies of the C-H bonds are used 

from [28,29]. 

The activation energy in the bimolecular 

reactions of hydrocarbons with hydrogen in solution 

was calculated by the formula: 

 

)ln(
0nA

k
RTE      (5) 

where 0A  is the pre-exponential factor per 

equireactive bond in the molecule and equal to 1011 
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L mol-1 s-1, n is the number of equireactive bonds in 

the molecule, k is the reaction rate constant, E is the 

activation energy from (1). 

For a given set Df = 436 kJ/mol [28] and  = 

0.905 are permanent. Reactions were selected which 

occurred in solution. Therefore, the dependence (4) 

becomes: 

 

),(
_ indeeie

brDE   (6) 

 

where bre_ind is the empirical index of the 

reactionary center, calculated by the statistical 

method according to the formula (2) for groups of 

compounds with similar centers. 

Empirical indexes of the reactionary centers for 

this set are shown in Table 1. 

 

Table 1. Empirical indexes of the reactionary 

centers. 

Classes of 

Organic 

Compounds 

The radical reaction 

center 

An 

empirical 

index 

(kJ/mol)0.5 

Alkanes -C˚(CH3)2 

-C˚HCH3 

cyclo-[C˚H(CH2)k] 

15.88±0.14 

15.82±0.10 

16.17±0.16 

Alkenes =CHC˚H(CH2)kCH3  

cyclo-

[CH=CHC˚H(CH2)k] 

17.31±0.04 

 

17.96±0.06 

Arenas -C6H4C˚H2   

C6H5C˚H(CH2)кCH3  

-C6H4C˚(CH3)2    

15.83±0.08 

16.78±0.19 

17.57 

Alcohols C˚H2OH 

-C˚HOH 

-CH2C˚OH 

=С(OH)C˚H2  

14.38 

13.90 

14.33 

15.03 

Ketones -C(O)C˚H2 

-C(O)C˚HCH3         

-C(O)C˚(CH3)2  

cyclo-[C(O)C˚H(CH2)к]  

15.00 

15.60±0.01 

16.07 

15.40 

Ethers -OC˚(CH3)2   

cyclo-[OC˚H(CH2)k] 

cyclo-

[OC˚H(CH2)kO(CH2)m] 

14.34 

14.36 

 

14.52 

Acids C˚H2C(O)OH 

-C˚HC(O)OH 

=C˚C(O)OH 

14.68 

15.29±0..02 

15.58 

 

To approximate the dependence (6) was used 

feed-forward artificial neural network with two 

inputs, two hidden inner layers with 7 and 5 

neurons, respectively, and one output. In the neural 

network, each neuron has an activation function 

[30]: 

 
xe

x



1

1
)(  (7) 

 

An artificial neural network was trained for 52000 

iterations using the error back propagation algorithm 

[30]. The results of training on the test set are shown 

in Table. 2. 

 

Table 2. Training results of artificial neural network 

Compound Ee EANN Ee - 

EANN 

kJ/mol 

CH3(CH2)4CH3 54.74 54.05 0.69 

cyclo-

[CH(CH3)(CH2)4] 

49.37 50.40 -1.03 

CH2=CH(CH2)3CH3 43.61 44.50 -0.89 

C6H5CH2CH3 45.59 45.95 -0.36 

CH3CH2OH 34.17 34.20 -0.03 

CH3C(O)CH2CH3 44.78 44.71 0.07 

cyclo-[O(CH2)4] 34.59 34.52 0.07 

CH3CH2C(O)OH 44.66 44.09 0.57 

 

As seen from Table 2, developed artificial neural 

network with high accuracy predict the classical 

reaction barrier (activation energy) EANN in reactions 

of hydrocarbons with hydrogen in solution. The 

mean square error for the entire set is 0.80±0.75 
kJ/mol. Maximum absolute error calculation 

classical potential barrier is ±2.83 kJ/mol, the 

minimum is ±0.02 kJ/mol, which is in good 

agreement with the experimental methods of 

determining the accuracy of the activation energy 

for such reactions ±4 kJ/mol. 

Thus the possibility to use artificial neural 

network technology for prediction of bond 

dissociation energies of molecules, classical 

potential barriers and enthalpies of molecule 

formation based on the experimental selections was 

shown.  

 

3.4 Fuzzy Knowledge Base  
Recently high attention is emphasized on 

problems of the use of fuzzy logic methods and 

fuzzy knowledge bases in chemistry [31]. However 

there are currently only a few papers dedicated to 

the use of fuzzy logic in chemical kinetics and 

thermochemisty [see the review in 22]. 

A work on determination of bond dissociation 

energies with the use of fuzzy knowledge base and 

fuzzy neural networks [26] based on selections from 

databases [6] should be noted. 

Thus, we can assume the existence of nonlinear 

dependence of the classical potential barrier 

bimolecular reaction of radical abstraction from the 
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thermochemical characteristics of reagents and 

kinetic characteristics of such a reaction: 

 

),,,( eefeie brDDfE   (8) 

 

and approximate of this dependence.  

To determine the parameter space of 

identification (input data) of activation energy of 

radical reactions Ee we use the correlation ratio (2). 

Here we consider experimental sample of the 

reactions: 

 

  Ph˚ + RH -> PhH + R˚ 

 

The experimental sample of 97 reactions of the 

phenyl radical with various hydrocarbons is 

obtained from the database on rate constants of 

liquid phase radical reactions [6], which 12 were the 

control sample. The dissociation energy of the C-H 

bonds is taken from [28]. For this sample Df = 474 

kJ/mol [28] and α = 0.945 are constant. Therefore, 

the dependence (8) takes the form: 

 

),( eeie brDE   (9) 

 

Then the analysis of the kinetic parameter 

values bre was performed for various reaction 

centers and the experimental index of the 

reaction center bre_ind was calculated, as shown 

in Table 3. We used bre_ind calculated for the 

certain reaction centers for prediction of the 

classical potential barrier. 
 

Table 3. Empirical indexes of the reaction centers. 

The class of 

compounds 

The radical reaction 

center 

An 

empirical 

index 

(kJ/mol)0.5 

Alkanes 

-CH2C˚H2 

-CH2C˚HС(CH3) 

(CH3)3C˚ 

cyclo-[C˚H(CH2)k] 

cyclo-[C˚(CH3)(CH2)k] 

16.96 

16.88 

17.48 

17.10 

16.85 

Alkenes 

CH2=CHC˚HCH2- 

CH2=C(CH3)C˚H- 

-C=C(CH3)C˚H2 

cyclo-

[CH=CHC˚H(CH2)k] 

18.39 

18.45 

18.53 

18.38 

Alkynes 
-CCC˚H2 

-CCC˚H- 

18.51 

18.51 

Arenes 
PhC˚H2 

PhC(CH3)2C˚H2 

17.83 

16.85 

X-C6H4C˚H2 

(CH3)5C6C˚H2 

(PH)2C˚H 

(Ph)3C˚ 

17.8 

17.87 

18.36 

17.27 

Alcohols 

C˚H2OH 

CH3C˚HOH 

C˚H2(CH3)2COH 

(CH3)2C˚OH 

PhC˚HOH 

17.29 

15.82 

16.05 

15.89 

16.01 

Aldehydes 

CH3C˚(O) 

PhC(CH3)2C˚(O) 

X-C6H4C˚(O) 

17.60 

17.61 

17.87 

Ketones 

-C(O)C˚H2 

PhC(O)C˚H2 

-CH2OC˚H- 

=CHOC˚(CH3)2 

17.38 

16.80 

17.27 

17.44 

Ethers 

-OC˚H2 

cyclo-[OC˚H2(CH2)k] 

PhOC˚H2 

17.21 

16.44 

17.81 

Esters 

-C(O)OC˚H2 

C˚H[C(O)O-]2 

PhC(O)OC˚H2 

17.84 

17.92 

17.01 

Nitrites 

C˚H2CN 

-C˚HCN 

PhC(CH3)(C˚H2)CN 

17.86 

17.86 

17.05 

Nitro 

compounds 

C˚H2NO2 

-C˚HNO2 

=C˚NO2 

17.76 

16.76 

17.76 

 

In this case, the kinetic parameter bre used as an 

experimental index of the reaction center of radical 

bimolecular reaction. 

Fuzzy knowledge base was built by experts and 

includes 85 linguistic rules of the form: 

 

Ri IF Dei about 433.3257 AND bre about 17.48  

THEN Ee about 50,077 

 

The membership function of fuzzy terms was: 

 
2

1

1








 




c

bx
xG    (10) 

 

To approximate the values of the classical 

potential barrier the Mamdani's fuzzy inference 

method was used based on the using the matching 

degree to which they belong to each of the fuzzy 

rule via membership functions, equal the real 

number αi, characterizing the degree of membership 

of input 
''

2

'

1 ,....,, nAAA  to fuzzy sets inii AAA ,...,, 21  

in the background of the i-th rule 
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where Xj is the domain of the variables (x1 = Dei и x2 

= bre). 

In our case, the algorithm output consists of the 

following steps: 

- For each rule Ri, i = 1,2, ..., 85 is computed 

matching degree of each rules 
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- For each rule defined individual outputs 

(Mamdani implication) 
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- Calculate the aggregation of individual outputs 
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- The resulting fuzzy set is converted to a clear 

value by defuzzification technique “center of 

gravity” 
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As a result, when Dei = 432.326 and bre = 17.48 

the system produces Ee = 49.97 in well agreement 

with the experimental value of 50.07 kJ/mol. 

Table 4 shows a comparison of the values of 

classical potential barrier activation of reactions for 

phenyl radicals with hydrocarbons Ee, obtained with 

the fuzzy knowledge base, and the calculated ones 

from the experimental values of the activation 

energy of these reactions Eexp. 

 

Table 4. Comparison of the values of classical 

potential barrier activation of reactions for phenyl 

radicals with hydrocarbons. 

Hydrocarbons Ee Eexp  

kJ/mol 

(CH3)2CHCH(CH3)2 37.28 37.24 0.04 

(CH3)2CH(CH2)2CH3 38.19 38.16 0.03 

CH3CH2CH(CH3)(CH2)2CH3 37.58 37.54 0.04 

(CH3)3CCH2CH3 42.93 42.90 0.03 

(CH3)4C 50.08 50.06 0.02 

(CH3)2CHCH2CH(CH3)2 40.79 40.77 0.02 

(CH3)2CHCH2CH2CH(CH3)2 39.02 38.98 0.04 

(CH3)3CCH2CH(CH3)2 40.75 40.71 0.04 

(CH3)3CCH2CH2CH(CH3)2 38.35 38.32 0.03 

C6H5OCH3 40.98 40.94 0.04 

CH3C(O)OH 47.60 47.56 0.04 

C6H5CH(CH3)2 31.59 31.55 0.04 

 

 

As can be seen in Table 2, there is good 

agreement between the experimental and obtained 

by fuzzy inference values of classical potential 

barrier. The average error is 0.0340.008 kJ/mol. 

The values of classical potential barrier allow to 

calculate the activation energy (1) and the rate 

constant of radical reactions by the formula: 

 

  )/exp(0 RTEnAk   
 

where: A0 is the collision frequency per one 

equireactive bond, n is the number of equireactive 

bonds in a molecule. 

Figure 3 show a basic scheme of the algorithm of 

calculation of rate constant of bimolecular radical 

reaction on the experimental data with using fuzzy 

knowledge base or artificial neural network. 

 

 

Di, Df, T

bre_ind

A0, n
Selectfuzzification

Fuzzy 

Knowledge 

Base

Fuzzy 

Inference 

Engine

defuzzification

Artificial Neural 

Network

k, T

 
Fig. 3. The algorithm of calculation of rate 

constant of bimolecular radical reaction on the 

experimental data with using fuzzy knowledge 

base or artificial neural network. 

 

3.5 Discussion  
Using expert systems for prediction of a classical 

potential barrier of radical bimolecular reactions and 

bond dissociation energies based on the 
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experimental kinetic and thermochemical data has 

one important advantage. The obtained estimations 

of dissociation energy and classical potential barrier 

are in accordance with the kinetics of the elementary 

bimolecular reactions. Using the developed expert 

system allowed to increase by a third the number of 

known values of dissociation energies of C-H-

bonds. Further it will be also possible to fill the data 

warehouses by experts and users through the 

Internet. The disadvantage of the approach is the 

lack of necessary set of the experimental kinetic and 

thermochemical data on radical reactions. 

Using artificial neural networks for estimation of 

classical potential barrier gives advantage in 

approximation of the dependence of classical 

potential barrier from the enthalpy of reaction and 

properties of reagents, for such dependence may be 

specified implicitly (3). 

Main disadvantages of using artificial neural 

networks for prediction of a classical potential 

barrier of radical bimolecular reactions of 

abstraction are:  

1) the choice of the variable space (for example, 

if one examines the reaction of hydrogen atom with 

hydrocarbons in water, one has to take into account 

pH of the solution, the effect of which is non-

linear), 

2) the ambiguity in the training set (there may be 

several identical reactions with various activation 

energies obtained by different authors; this fact may 

cause the divergence of the network in training if 

the values of rate constants differ significantly). 

Using fuzzy neural networks for estimation of 

classical potential barrier in radical bimolecular 

reactions is the most promising approach, although 

there is an ambiguity problems mentioned above. 

However it may be solved either by adding another 

linguistic variable, or by averaging if values of 

classical potential barrier don’t differ much. I.e. it is 

practically possible to use fuzzy neural 

approximator for ambiguous functions.  

 

4 Conclusion 
In this paper a review of the most important open 

sources of kinetic and thermochemical information 

and of the main approaches to analysis and 

extraction of the new knowledge from them is 

given.  

Developed artificial neural network predicts the 

value of the classical potential barrier for hydrogen 

atom in reactions with hydrocarbons in solution 

with an accuracy of about 1 - 3 kJ/mol, which 

agrees well with an accuracy of determining the 

activation energy of these reactions experimental 

methods.  

On the example of reactions between substituted 

phenyl radicals and hydrocarbons an attempt was 

made to identify the dependence of classical 

potential barrier of radical reactions by the fuzzy 

knowledge base built on basis of quantitative and 

qualitative parameters. 

Using a fuzzy knowledge base built by experts, 

and Mamdani's fuzzy inference method using 

membership functions (10) produces a good 

approximation of the values of the classical 

potential barrier for phenyl radical reactions with 

hydrocarbons. 
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