
Lossy Compression in the Chroma Subsampling Process

PAVEL POKORNY

Department of Computer and Communication Systems

Faculty of Applied Informatics, Tomas Bata University in Zlín

Nad Stráněmi 4511, 760 05 Zlín

CZECH REPUBLIC

pokorny@fai.utb.cz http://fai.utb.cz

Abstract: - Nowadays, compression algorithms are frequently used in the computer software field. The reason

is the large amounts of data that is processed by applications. These compression algorithms, in different forms,

are deployed in many raster image processing cases. The reasons for this are the quite high compression ratios

and also, the usually high compression/decompression speed (the success of these two major parameters of the

compression algorithms depends on the image information content). In addition, the images can often allow one

to use lossy compression algorithms which cause a substantially greater reduction of the image data size. The

JPEG graphic format is the most widely used. Here, the loss rate is determined in two ways by the subsampling

color components and the quantization of the coefficients that are obtained by the Discrete Cosine Transform

calculation. In this paper, attention is focused on the subsampling process of the color components. The content

compares the most frequently used sampling techniques - mainly to the quality and size of the processed image.

Key-Words: - Image Compression, Lossy Compression, Image Quality, Sampling, Colors

1 Introduction
Data compression is the art or science of

representing information in a compact form. We

create these compact representations by identifying

and using structures that exist in the data. Data can

be characters in a text file, numbers that are samples

of speech or image waveforms, or sequences of

numbers that are generated by other processes. The

reason we need data compression is that more and

more of the information that we generate and use is

in digital form - in the form of numbers represented

by bytes of data. And the number of bytes required

to represent multimedia data can be huge. For

example, in order to digitally represent 1 second of

video without compression (using the CCIR 601

format), we need more than 20 megabytes, or 160

megabits [1].
Compression can be either lossy or lossless.

Lossless compression reduces bits by identifying

and eliminating statistical redundancy. No

information is lost in lossless compression i.e. the

original data can be recovered exactly from the

compressed data. Lossless compression is possible

because most real-world data have statistical

redundancy. For example, an image may have areas

of color that do not change over several pixels;

instead of coding "red pixel, red pixel ..." the data

may be encoded as "279 red pixels". This is a basic

example of run-length encoding; there are many

schemes to reduce file size by eliminating

redundancy. Many files and graphic formats use this

principle with different modifications.

Lossy compression techniques involve some loss

of information, and data that has been compressed

using lossy techniques generally cannot be

recovered or reconstructed exactly. In return for

accepting this distortion in the reconstruction, we

can generally obtain much higher compression

ratios than is possible with lossless compression [1].

Lossy data compression schemes are designed by

research on how people perceive the data in

questions. For example, the human eye is more

sensitive to subtle variations in luminance than it is

to the variations in color. JPEG image compression

or Wavelet Transform work in part by rounding off

nonessential bits of information [2].

Programs using simple or complex graphics are

appearing in virtually every area of computing

applications: e.g. games, education, desktop

publishing or graphical design, just to mention a

few. These programs all have one factor in common.

The images they use consume prodigious amounts

of memory or disk storage space. The raster

representation method is very often used for images

(a display mode for the vast majority of hardware).

The amount of image data depends on the resolution

and color depth in this case. For example, a single

WSEAS TRANSACTIONS on COMPUTERS Pavel Pokorny

E-ISSN: 2224-2872 76 Volume 15, 2016

image with a resolution 800 x 600 pixel and 224

color depth consumes over 1.4 MB of memory. It

isn’t hard to imagine applications that would require

literally hundreds of these images to be accessed

[9].

Compression offers the solution to this problem.

In images, its objective is to reduce the irrelevance

and redundancy of the image data in order to be able

to store or transmit data in an efficient form. Lossy

methods are especially suitable for natural images

such as photographs in applications where minor

(sometimes imperceptible) loss of fidelity is

acceptable in order to achieve a substantial

reduction in bit rate.

A range of different lossy compression methods

are used currently. One of them is to reduce color

space to the most common colors in the image (i.e.

the selected colors are specified in the color palette

that is included in the image file). Another method

is based on transform coding. This is the most

commonly used method and forms the core of the

jpeg images [3][11][8].

The third lossy compression method is chroma

subsampling, which takes advantage of the fact that

the human eye perceives spatial changes of

brightness more sharply than those of color [4][5].

This paper is focused on this (third) compression

method. The second chapter describes the theory of

the subsampling process. The first section of the

second chapter presents the color transformations

that are necessary in order to separate brightness and

color components. The second section lists the most

commonly used subsampling methods at present.

The third chapter shows the created application and

describes both the user’s and programmer’s views.

The fourth chapter provides information about the

results that these created applications allowed us to

obtain and a discussion about data-saving and

decreasing image quality.

2 Chroma Subsampling
The Chroma subsampling process requires color

transformations. The following text also begins by

describing these, and then goes on to delineate

chroma subsampling methods.

2.1 Color Transformation
As mentioned above, the subsampling algorithms

concern only the color components of the picture.

The images themselves are mostly represented by

the RGB or CMYK color models, or by the internal

color space of CCD cameras. For this reason, the

first step is to separate the brightness (sometimes

called “luma”) and color components. This

conversion process usually means a transformation

to one of the models used in color analog television

techniques e.g. YIQ (the PAL TV standard), YUV

(the NTSC TV standard) or YCbCr (the SECAM

TV standard).

This transformation between two color spaces is

lossless, i.e. there is no possibility of losing any

image information. So, if one converts an image into

a second one with any color space used in TV

techniques, it is possible to convert it back to the

RGB or CMYK color model at any time and we

always get a result identical to the original image.

[10]

The transformation equation between RGB and

YIQ is:

B0.311 -G 0.523 - R0.212 = Q

 B0.321 +G 0.275 - R0.596 = I

B0.114 +G 0.587 + R0.299 = Y







 (1)

The relation between RGB and YIQ is given by

the equation:

B0.100 -G 0.515 - R0.615 = V

B0.436 +G 0.289 - R0.147 - = U

B0.114 +G 0.587 + R0.299 = Y







 (2)

 Fig. 1 Top left: Original image; Top right: The Y

component; Bottom left: The Cb component;

Bottom right: The Cr component [12]

WSEAS TRANSACTIONS on COMPUTERS Pavel Pokorny

E-ISSN: 2224-2872 77 Volume 15, 2016

The RGB and YCbCr transformation equation is:

128 + B0.0813 -G 0.4187 - R0.5 =Cr

128 + B0.5 +G 0.3313 - R0.1687 - = Cb

B0.114 +G 0.587 + R0.299 = Y







 (3)

The main concern of this article is the last-

mentioned color model (YCbCr), because it is used

very often, for example, in the JPEG graphic format.

The reverse conversion is performed according to

the following formula:

128)-(Cb1.772 + Y = B

128)-(Cr 0.71414 - 128)-(Cb 0.34414 - Y =G

128)-(Cr1.402 + Y = R







 (4)

Figure 1 shows the original image and the same

image with the separated components Y, Cb and Cr.

It is possible to clearly see that the most significant

component is precisely Y in this picture. In contrast,

the Cb and Cr components reported low intensity.

For this reason, the subsampling algorithms refer

only to these components.

2.2 Subsampling
There are several ways how to make the chroma

subsampling process. It is possible to find them in

all analog color television standards (SECAM, PAL,

NTSC) in a certain form. Usually, two subsampling

methods are performed - these methods are often

used in the JPEG graphic format. The first method

calculates the ratio of the color of the neighboring

pixels that are placed on the screen in a row. The

second algorithm calculates the average color of the

four neighboring pixels (these pixels are placed in

the two adjacent rows and columns on the screen).

Both methods are lossy; when the algorithm

calculates the final color component, in the first

case, the size of the raster data is reduced by about

33%, in the second case by about 50%. [6][12]

In practice, subsampling is designated by a string

of 3 (or sometimes 4) integers separated by colons,

e.g. 4:2:2:4. The relationship among the integers

denotes the degree of vertical and horizontal

subsampling. At the outset of digital video,

subsampling notation was logical; unfortunately,

technology outgrew the notation. [7] Today’s

notation means:

• The first number represents the horizontal

sampling reference (the width of the area in pixels,

which are subsampled). Usually, this value is equal

to 4.

• The second number is the horizontal factor of the

Cb and Cr components (i.e. number of chrominance

samples in the rows of the processed area).

• The third number describes the vertical factor of

the Cb and Cr components (i.e. number of

chrominance samples in the columns of the

processed area).

• The fourth number is like the first number. The

difference is, it represents the horizontal sampling

reference for the alpha channel (i.e. transparency) in

the case where the image supports it. This number is

not used without the transparency.

The most commonly used leading digit of 4 is a

historical reference to a sample rate roughly four

times the NTSC or PAL color subcarrier frequency;

the notation originated when subcarrier-locked

sampling was under discussion for component video

[7]. The most common chroma subsamplings are:

• 4:4:4 – without subsampling. Each of the three

YCbCr components has the same sample rate, like

the input resolution. This scheme is commonly used

in cinematic post-production and a different

compression method is usually used in the following

steps.

• 4:2:2 - both chroma components are each

subsampled by a factor of 2 horizontally; their

effective positions are coincident (co-sited) with

alternate brightness. Many digital video formats and

interfaces use this scheme.

• 4:1:1 - in this scheme, the Cb and Cr components

are each subsampled by a factor of 4 horizontally

and are coincident with every fourth brightness

sample. Currently, this subsampling is used for low-

end and consumer applications.

• 4:2:0 – the Cb and Cr components are each

subsampled by a factor of 2 horizontally and a

factor of 2 vertically. This scheme is used in

JPEG/JFIF still-frames in computing, in H.261 (for

video-conferencing), in MPEG-1, in consumer

576i25 DV25, and in most variants of MPEG-2.

Different technologies support different variants of

4:2:0 subsampling. In JPEG/JFIF, H.261, and

MPEG-1, Cb and Cr are sited interstitially,

horizontally halfway between alternate brightness

samples. In MPEG-2, Cb and Cr are co-sited

horizontally.

• 4:1:0 – This ratio uses half of the vertical and one-

fourth of the horizontal color resolutions, with only

one-eighth of the bandwidth of the maximum color

resolutions used. An uncompressed video in this

format with 8-bit quantization uses 10 bytes for

WSEAS TRANSACTIONS on COMPUTERS Pavel Pokorny

E-ISSN: 2224-2872 78 Volume 15, 2016

every macro-pixel (which is 4 x 2 pixels). Some

codecs support this ratio - but it is not widely used.

• 3:1:1 – the Cb and Cr components are each

subsampled by a factor of 3 horizontally. The

chroma samples are then divided by every third

brightness sample. 36 bytes of the R, G and B

components are also reduced to 20, effecting

approximately 2:1 compression. [7]

The above described differences among chroma

subsamplings 4:4:4, 4:2:2, 4:1:1 and 4:2:0 are

shown in Figure 2.

Fig. 2 Top left: Subsampling 4:4:4; Top right:

Subsampling 4:2:2; Bottom left: Subsampling 4:1:1;

Bottom right: Subsampling 4:2:0

3 A Testing Application
In order to evaluate the results of the subsampled

color components, an application based on HTML5

and the Javascript programming language was

created. [13] The advantage of these techniques is

there simplicity and flexibility because this

application can be run in any web browser.

3.1. User’s View
The user interface of this application is shown in

Figure 3. Its largest part is a pair of two windows

that are defined by the HTML5 canvas element. In

the left window, the original image is shown, while

the right window represents the output image, which

is generated according to the set parameters. The

lower part of the user interface contains the whole

control commands and parameters. The first button

allows one to load any image from a file (bmp, gif,

png and jpg are supported image formats). A pop-up

menu (drop-down list) is to the right of this button,

where the user can choose the subsampling method.

The third button includes text “Calculate” and

clicking the mouse on it starts a subroutine in the

Javascript language, which ensures the subsampling

calculation according to the selected method and

then displays its result in the right window. The last

button, called “Reset Output”, erases subsampling

results and clears the right window.

Fig. 3 User interface of application to test the image

subsampling

3.2. Programmer’s View
The design of the created application is organized

into two files - index.html and script.js. The

index.html file contains the whole HTML code and

also all properties that are set by the help of

Cascading Style Sheets (CSS). The HTML code is

normally determined by tags. Each of them has its

own identifier (the "id" attribute). The buttons (tag

<input>) have additional "value" properties, which

contain a text description of each button. The drop-

down menu for selecting the type of color

subsampling is designed by the <select> tag. This

tag includes the "name" attribute that uniquely

identifies it. The content of the <select> tag is

formed by the <option> tags that represent all of the

options of this selection menu. Each option has its

own "value" attribute, with a unique name, in order

to clearly identify which method has been chosen.

Both images (input and output) are displayed in

the windows. Each window is defined by the

<canvas> tag. These tags have their own attributes -

dimension (width and height) and a unique identifier

for working in the correct window. The HTML

<canvas> element is used to draw graphics or

pictures on the fly, via scripting (usually

JavaScript).

The location of all user environment elements is

given by Cascading Style Sheets (CSS). CSS is a

stylesheet language that describes the presentation

of an HTML of XML document. In our application,

it mainly set the colors of each tag and the

background color behind them. It also aligns the

texts in the user environment (the "text-align"

WSEAS TRANSACTIONS on COMPUTERS Pavel Pokorny

E-ISSN: 2224-2872 79 Volume 15, 2016

parameter) and all edges including borders

("margin", "border", "border-radius", and "padding"

properties). For mutual placement of the windows,

the left canvas has the property "float: left" set

additionally.

3.2.1 Javascript

The whole program code is divided into individual

functions. Global initializations represent only

exceptions from this. These initializations include

the canvasses specifications, access to user interface

buttons and declarations of global variables.

The user can draw on the canvas using its

primary rendering context, which can be obtained

on the basis of an object handle. This handle can be

derived by calling the "document.getElementById"

function, which contains a single parameter (object

identifier). In this case, this means the id attribute of

relevant canvas. Access to the context is then given

by calling the "getContext" method, see below:

var canvas1 = document.getElementById ("Can1"),

canvas1Context = canvas1.getContext ("2d");

Using this, it is possible to generate the contexts

of both canvasses. These contexts provide one with

a large number of methods that programmers can

use to draw many graphic elements - like rectangles,

complex paths or images, to set customizing

drawing styles, or use various transformations.

In order to communicate with the user through

the application interface, it is also necessary to

obtain the handles of whole command elements.

These elements include buttons and the drop-down

menu, as mentioned above. To do this, we use the

"document.getElementById" function again.

The application also contains only two global

variables (objects) – "image" and "imageData". The

"image" variable represents an image object. Its

declaration is performed by the command:

image = new Image();

After this initialization, the programmer can set

the image source and draw it on the selected canvas.

The "imageData" object represents pure data of an

image, i.e. typically R(ed), G(reen), B(lue) and the

A(lpha) values of each pixel in the given image.

This is necessary so as to have direct access to the

whole range of color and transparency components

and to calculate the subsampling process.

When the user clicks on the selected button

(Load Image, Calculate or Reset Output), this action

causes an event that can be detected by the help of

the "onclick" method. This method can run any

function that can do whatever a programmer wants.

Clicking the Load Image button runs the function

that ensures loading the selected image from a file.

The loaded image is stored in the image object and

it is immediately drawn on the canvas with the help

of the "drawImage" method. This method allows

drawing in different forms – direct draw, image

scaling before drawing or image clipping in the

rectangle form or scaling and drawing on the canvas

in the defined position.

The Reset Output button causes the calling of a

simple function, where only one command deletes

the output canvas window. This command is

performed by the help of the "clearRect" method.

The function that is called by clicking on the

Calculate Button is the most complex. It has to

perform several operations in the correct order:

 "image" to "ImageData" conversion

 RGB to YCbCr transformation

 chroma subsampling based on selected method

 YCbCr to RGB transformation

 "ImageData" to "image" conversion

The "image" to "ImageData" conversion is

performed by the "getImageData" method which

transfers pixel values from the input canvas into the

"ImageData" object. The reverse process at the end

of the operation list is performed by the

"putImageData" method. The color transformation

processes and chroma subsampling calculation are

programmed based on the algorithms described in

the previous chapters of this paper.

4 Results and Discussion
To test the created application, several different

images were used. The commonly used jpg graphic

format was avoided because it already includes

lossy compressed data and the results would be

inaccurate. That is the reason why images were used

and why were rendered in the Blender software

[15]. The rendered images were exported to the

PNG graphic format because this format uses the

lossless compression algorithm. Figure 4 shows a

zoomed selected part of one image - a roof with a

chimney in 64 x 64 pixel resolution. The original

image is in the top left corner, the other images

represent outputs created using the 4: 2: 2, 4: 1: 1

and 4: 2: 0 subsampling algorithms. The differences

are not very noticeable in the full resolution of these

images. So, this zoomed part of the image was

created in order to see more visible differences in

WSEAS TRANSACTIONS on COMPUTERS Pavel Pokorny

E-ISSN: 2224-2872 80 Volume 15, 2016

the various types of the subsampling algorithms.

The most significant changes are logically evident

after using the 4: 1: 1 and 4: 2: 0 subsampling. [14]

The subsampling process causes merging

(usually by using the averaging calculation) of the

color components of the neighboring pixels. In

essence, this leads to the blurring effect that is more

pronounced with the increasing number of merged

pixels. This implies that this method is particularly

suitable for photographs or rendered images which

don’t contain sharp edges or color gradients. In

these cases, the subsampling of the color

components is the most visible.

Table 1 shows the data-saving for each type of

subsampling. This is the total savings of the original

data, i.e. the percentage numbers include all three

components.

Tab. 1 Data-saving using different subsampling

methods

Subsampling

method
4:4:4 4:2:2 4:1:1 4:2:0

Save 0% 33% 50% 50%

A comparison of Figure 4 and Table 1 evokes the

idea of seeking a compromise between image

quality and the quantity of image data. If the highest

image quality is preferred, avoiding the losing

compression algorithms including the subsampling

processes is the best solution. The second thing is, if

the images are intended for common user purposes,

some loss rate can usually be tolerated, because the

image quality can be decreased very slightly. And,

Table 1 shows that the user can obtain very

interesting memory storage savings.

There is a problem to define the term “acceptable

image quality”. How much image information can

be lost so one ever could say that image still

provides sufficiently high quality image

information? Classical methods that identify an

image quality (expressed errors) are not applicable

because their solution offers strange results. For

example, a comparison of the differences between

the original image and the image with the

subsampled color components can often give the

result that none of the pixels have the same value.

So, the typical method for error measurement (i.e.

the sum of the squares of the differences of color

pixel values) can return high values, even where the

differences between these images are almost

unnoticeable. [11]

5 Conclusion
Subsampling algorithms offer a very interesting

option to reduce the amount of image data. Due to

the fact that the loss concerning image information

is the least noticeable to the human eye, this process

is preceded by the conversion process, where

separated brightness and color components are

separated. Then, subsampling is only used for these

color components.

Currently, several different types of subsampling

algorithms are used in the image processing process

and - depending on its type, this leads to the

corresponding compression results. Practical

experience shows that the subsampling process is

suitable for images with high color depths and larger

resolutions; and lost colors are more visible in

images that contain sharp edges or color gradients.

In order to test the subsampling algorithms, the

application in HTML5 in combination with the

JavaScript programming language was created. This

application allows one to subsample components by

using 4:4:4, 4:2:2, 4:1:1 and 4:0:0 methods.

Currently, these standards are often used in some

graphics images and many video formats. This

application that was created could be further

extended in the future. This extension can contains

further subsampling algorithms including

transparency or the support of different color

representations (e.g. YUV, YIQ). In addition, this

application could support other user-friendly

features such as zoom in/out and navigation of the

images, or save the output into a file.

The increased compression ratios can be further

reached by using it in combination with other

compression algorithms - just as the JPEG standards

do. Future work will also proceed in this direction.

References:

[1] K. Sayood, Introduction to Data Compression,

3
rd

 edition, Elsevier, 2006, 680 p., ISBN

9780126208627.

[2] A. Khasman and K. Dimililer, Haar Image

Compression Using a Neutral Network,

ACC’08 Proceedings of the WSEAS

International Conference on Applied

Computing Conference, 2008, pp. 412-417,

ISBN 9606766671.

[3] M. Petrou and C. Petrou, Image Processing:

The Fundamentals, A John Wiley and Sons.

Ltd., 2010, 794 p., ISBN 9780470745861.

[4] H. Chen, S. Mingzhe and Eckehard Steinbach,

Compression of Bayer-pattern video sequences

using adjusted chroma subsampling. IEEE

WSEAS TRANSACTIONS on COMPUTERS Pavel Pokorny

E-ISSN: 2224-2872 81 Volume 15, 2016

Transactions on Circuits and Systems for Video

Technology, vol. 19, 2009, pp. 1891-1896.

[5] Ch. Glenn, Toward Better Chroma

Subsampling Recipient of the 2007 SMPTE

Student Paper Award, SMPTE Motion Imaging

Journal, vol. 117, 2008, pp. 39-45.

[6] C. Hass (2008). JPEG Chroma Subsampling

[Online]. Available:

http://www.impulseadventure.com/photo/chro

ma-subsampling.html

[7] Ch. Poynton (2008). Chroma Subsampling

notation [Online]. Available:

http://w.poynton.com/PDFs/Chroma_subsampli

ng_notation.pdf

[8] Prepressure contributors (2015). The JPEG file

format [Online]. Available:

http://www.prepressure.com/library/compressio

n-algorithm/jpeg

[9] M. Nelson, Lossy Graphics Compression, The

Data Compression Book, 2 edition, Willey,

Cambridge, UK, 1995, pp 216-255.

[10] Y. Wiseman (2013). The still image lossy

compression standard – JPEG [Online].

Available:

http://u.cs.biu.ac.il/~wiseman/jpeg2.pdf

[11] P. Tisnovsky (2006). Lossy compression with

JPEG [Online]. Available:

http://www.root.cz/clanky/ztratova-komprese-

obrazovych-dat-pomoci-jpeg/#ic=serial-

box&icc=text-title

[12] P. Tisnovsky (2006). Programming JPEG –

color transformation and subsampling [Online].

Available:

http://www.root.cz/clanky/programujeme-jpeg-

transformace-a-podvzorkovani-

barev/#ic=serial-box&icc=text-title

[13] W3C contributors (2014). HTML5 - a

vocabulary and associated APIs for HTML and

XHTML [Online]. Available:

http://www.w3.org/TR/html5/

[14] Red contributors (2015). Chroma subsampling

techniques [Online]. Available:

http://www.red.com/learn/red-101/video-

chroma-subsampling

[15] Blender Foundation (2015). Blender – Free and

Open 3D Creation Software [Online].

Available: http://www.blender.org/

Top left: Original image; Top right: The 4:2:2 image subsampling;

Bottom left: The 4:1:1 image subsampling; Bottom right: The 4:2:0 image subsampling

WSEAS TRANSACTIONS on COMPUTERS Pavel Pokorny

E-ISSN: 2224-2872 82 Volume 15, 2016

