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Abstract: - As the security takes center stage in the recent years, most important projects underway are those 

associated within security. Organizations collect and process data to operate their day-to-day business 

successfully. Such data is stored in enterprises data warehouses and presented so that users can make decisions 

more easily. Online Analytical Processing (OLAP) is the prevalent component of these systems where data is 

organized in the form of multidimensional representation known as a data cube. A specialized query language 

called multidimensional expression (MDX) is then used with specific syntax and semantics for manipulating 

OLAP cubes. However, MDX users can override- either intentionally or unintentionally - the security policy of 

the system to disclose sensitive information and breach an individual’s privacy. In this paper, we present a 

framework that removes security threats by re-writing MDX queries to ensure consistent data accessing. 

Experimental results demonstrate that security can be ensured without affecting the usefulness of OLAP systems. 
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1 Introduction 
Current database systems, with large numbers of 

users, require security control mechanisms that 

restrict access to the stored sensitive data/objects. 

While numerous mechanisms have been provided for 

relational model [1,2,3], little effort has been made to 

address the unique security requirements of the 

multi-dimensional context. Due to the difference 

between the natures of the two models objects, the 

former mechanisms cannot be applied to the latter. In 

particular, objects in a relational context include 

logical elements such as tables, records within those 

tables, and fields within each record. In contrast, 

objects in a multi-dimensional model are elements of 

the more abstract conceptual model and include the 

dimensions of the cube, the hierarchies within each 

dimension, and the aggregated cells (or facts). This 

changes the logic or focus of the security mechanism. 

For instance, a user in a relational environment may 

be allowed direct access to a specific record or field 

in that record; while a user in cube model may be 

given permission to dynamically aggregate measure 

values at a specific level of detail in one dimension 

hierarchies. Anything below this level would also be 

considered sensitive, and hence should be protected. 

In fact, the hierarchical nature of the cube allows 

users to bypass partial constraints defined at alternate 

aggregation levels - intentionally or unintentionally - 

and as consequence reveals the sensitive data. 

In this work, we target the multi-dimensional 

model that uses Multidimensional Expressions 

(MDX) language. MDX is a query language for 

OLAP databases, much like SQL is a query language 

for relational databases. MDX has become widely 

used in the field of analytical applications such as 

Microsoft Analysis Services [4], IBM Cognos [5], 

Mondrian OLAP server [6], and Essbase [7]. Most of 

these systems provide simple, very basic security 

control. As result, there is a clear need to provide 

advanced security countermeasure for these given 

DBMS platforms. As a result, many security 

frameworks have been proposed, most of them deal 

with SQL language such as [8,9]. Theses frameworks 

aim to eliminate unauthorized accesses for SQL 

queries.  

In this paper, we provide a security framework 

that achieves the same security functionality but for 

MDX language and it consists of three main parts. 

The Interpreter and Decomposer module parses and 

translates the MDX query into an intermediate 

representation algebra (IR). The IR identifies the core 

operations associated with the data cube model like 

the Selection and Projection operations. We note at 

the outset is that MDX is not a language that is based 

upon extensive formal research, but is instead of the 

product of a corporate entity. As such, its structure 

can sometimes be obscure, with an “ad hoc” feel that 

makes it difficult to guarantee full IR/MDX 
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equivalency. Our motivation therefore is demonstrate 

how MDX/IR translation works in the general case. 

We leave it to future work to address some of the 

possible edge cases. Finally, the Analyser and 

Evaluator module which explores, and modifies the 

query (if necessary) before evaluating it. Our 

framework employed a set of powerful and efficient 

methods to provide significant performance 

improvements for query checking. It can be sited on 

top of an OLAP server, so it provides reliable and 

useable DBMS.  

To further ground the research, we have 

considered five distinct types of MDX queries: The 

simple form with members and children functions, 

the slicer specification with the WHERE clause, the 

drilling down and rolling up, queries with filters, and 

the calculated member’s queries. As a second round 

of testing, we have employed a well-known 

benchmark APB-1, release I to demonstrate that the 

framework can translate various types of queries. The 

experimental analysis support the claim that 

translating and security checking can, in fact, be 

carried out without a meaningful impact upon final 

query execution times.  

The rest of the paper is organized as follows. The 

related work is presented in Section 2, Section 3 

describes briefly the architecture of our framework. 

Experiment results are presented in Section 4, and the 

final conclusions and future works are then offered in 

Section 5. 

 

 

2 Related Work 
Mathematical Researchers have considered security 

in relational databases for a long time [10,11]. 

Several defined frameworks are likely too restrictive 

for production databases. For instance, while view 

based access control approach is used to define the 

accessible elements for a set of users, it is not 

applicable when the number of users is large [20,21]. 

Fine grained access control has not received a lot of 

attention until recently [3], which allows to give 

access permits at more granularity level of rows or 

columns. Another performs access control 

enforcement in the application code instead of the 

database which needs to ensure that set of access 

control policy rules are consistent across different 

applications [22].  

In contrast a number of security models that 

restrict data warehouse access have been proposed in 

the literature [12,13,14]. Some of them focus strictly 

on the design process. Others have extended the 

Unified Modeling Language to specify security 

constraints on multi-dimensional data [12]. In fact, a 

number of researchers have looked at similar 

techniques for setting access constraints at an early 

stage in the OLAP design process. Others have 

developed security requirements for the entire Data 

Warehouse life cycle [15]. In this case, they first 

propose a model (agent-goal-decision-information) 

to support the early and late requirements for the 

development of DWs, then extend that model to 

capture security aspects in order to prevent 

illegitimate attempts to access the warehouse. Such 

models have great value of course, particularly if one 

has the option to create the warehouse from scratch. 

That being said, their focus is not on authentication 

and authorization algorithms per se, but rather on 

design methodologies that that use the already 

existing technologies, such as: Model Driven 

Architecture (MDA) and Software Process 

Engineering Meta-model Specification (SPEM) 

[23,24]. 

Query rewriting has also been explored in DBMS 

environments in a variety of ways, with search and 

optimization being common targets [25]. Beyond 

that, however, rewriting has also been utilized to 

provide fine grained access control in Relational 

databases [16]. To answer a query Q, a masked 

versions of related tables are generated by replacing 

all the cells that are not allowed to be seen with 

NULL. After that, Q is evaluated as a normal query 

on the masked versions of the tables. This approach 

does not leak information not allowed to be seen, but 

it returns incorrect results when a query contains any 

negation, as expressed using the keywords MINUS, 

NOT EXISTS or NOT IN [17]. 

Ultimately, MDX is designed as a highly 

multidimensional expression syntax for querying and 

manipulating multidimensional data stored in OLAP 

cubes [28,29]. MDX was invented by Microsoft as 

part of the OLE DB for OLAP specification in 1997, 

then followed by commercial release of Microsoft 

OLAP Services 7.0 [30]. Many researches have been 

conducted on MDX in the field of Data Warehousing 

and Big Data [31,32]. They mainly focused on MDX 

as a tool for analysing and mining big data to extract 

useful patterns. Others are considered the 

recommending MDX queries to better navigating 

data cubes [26,27]. Authors are described their works 

theoretically and then validated through experiments. 

On the other hand, researchers have provided 

security mechanisms and frameworks that are applied 

on the schema used by MDX. Specifically, portions 

of OLAP schema (total, dimension or cell) can be 

restricted from being viewed by defining a set of 

WSEAS TRANSACTIONS on COMPUTERS Ahmad Mousa Altamimi, Mahmood Ghaleb Albashayreh

E-ISSN: 2224-2872 65 Volume 15, 2016



restrictions and then assigned these restrictions to 

certain user roles. Herein, only the permissible parts 

of the schema will be accessible by specified roles 

[5,6]. This is different from what we are presenting, 

our framework uses query re-writing technique to 

secure multi-dimensional OLAP environments by 

applying a series of rules that dynamically and 

transparently transform the query.  

 
 

3 Framework Design  
Our security framework serves as guard for data to 

perform a prerequisite security checking to decide 

which query should be passed for executing and 

which should be rejected without any optimization or 

resolution. In this section, we will describe briefly its 

components and the relationship between them by 

describing the security process as shown in Fig.1. 

 

 

Figure 1.  The Framework Architucture. 

3.1 The security process 
The proposed security process is a multistep: 

 Receive the user query/request in MDX format. 

However, the framework does not understand the 

MDX, but an internal algebra that identifies the 

core operations associated with the data cube 

model. Thus, the Interpreter and Decomposer 

module (IDM) parses, interprets and decomposes 

the user query into the core operations of the 

internal algebra, which can be used to efficiently 

express queries, and easily reflect the changes 

that will be done by our model. 

 The Analyser and Evaluator module (AEM) 

extracts the user identity/credentials and the 

requested elements (e.g., dimensions, attributes, 

hierarchies, etc.) from the query. Then the 

module authenticates the user by verifying her 

credentials against a list of valid accounts. If the 

provided credentials are valid, the authentication 

is successful.  

 The module then determines if the user is 

permitted to access the requested resources. A set 

of query re-writing rules is applied to ensure 

consistent data access over the data cube. The 

query rewriting process is accomplished by 

adding or changing specific conditions within the 

query according to a set of concise but robust 

transformation rules. 

 Once the query passes the previous checking, the 

query will be converted back to its original 

format and transparently delivered to the server 

for execution. Results are then returned to the 

user. However, the query will be rejected and the 

user will be informed otherwise. 

3.2 Parsing the MDX Query   

As mentioned in the previous subsection, the user's 

query is represented in MDX format. In order to 

properly authenticate the query, it must first be 

parsed and decomposed into its algebraic 

components. The purpose of this step is to determine 

if the query is semantically and syntactically valid 

and it is done in two phases: 

In the first phase, the DOM parser utility is 

employed and used by the IDM to produce a DOM 

tree that represents the raw contents of the MDX 

query. In this phase, the parser not only builds the tree 

but also verifies that the received query has valid 

syntax corresponding to a DTD query grammar. A 

query is considered as valid if it contains only those 

elements defined in the DTD. If the query is 

syntactically valid, the query proceeds to the second 

phase. Otherwise, a parsing error message is returned 

to the user. 

For example, suppose a marketing company is 

storing its data in a simple data cube called (Furniture 

Sales) with four dimensions (Customer, Supplier, 

Part and Date) and one fact table (Lineorder). 

Assume a user John queries the data cube that 

summarizes the total sales of Quebec's stores in 2011. 

The corresponding node tree is shown in Figure 2.  
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Figure 2.  The DOM tree. 

We can easily see that the content of this parse tree 

is equivalent to the original query. Specifically, it is 

executed against the cube Furniture Sales and 

consists of two OLAP operations (Projection and 

Selection). The projection operation returns the 

dimension attribute Customer.Province, as well as 

one measure attribute --- Sales. The Selection 

operation filters the returned information via two 

conditions on the dimensions Customer (i.e., 

Province = Quebec) and Time (Year = 2010). The 

user name ``John'' and the password ``J86mn'' 

represent the user credentials. This tree is stored as 

cached object in the memory for further processing. 

In the second phase, the DOM tree is converted 

into an internal algebra representation (IR). This 

algebra represents all the query elements (i.e., 

returned attributes, query conditions along with its 

dimensions and attributes, and user credentials). The 

purpose of this conversion process is to transform the 

user query into a simple, minimal data structure that 

represents the query in a compact but expressive 

form. IR is discussed in details in the next section. 

Once the parsing is completed, the Analyser and 

Evaluator module extracts the user credentials to 

verify them against a valid account stored in a back 

database. If the verification is successful, the DBMS 

proceeds with the authorization process. Otherwise, 

the query is rejected and the user is notified.  

3.3 Converting the Parse Tree to an Internal 

Representation 
While there are some similarity between MDX and 

SQL such as same keywords serving similar 

functions, there are some differences also. For 

example, in the SQL case we receive the data from 

the table, and in MDX case we receive data from the 

cube. Moreover, SQL basically gives us relational 

view of the data, which is always two-dimensional, 

while in the MDX world, any number of dimensions 

(axes) can be specified to form result of the query. It 

can zero, one, two, three or any other number of axes. 

Before discussing the converting process, we give 

a brief description of the Internal Representation 

(IR), however a details description could be found on 

[18]. The IR identifies the core operations associated 

with the data cube model. For example, the 

SELECTION operator identifies one or more cells 

from within the full d-dimensional search space. Its 

application produces what is commonly referred to as 

“slicing and dicing”. PROJECTION Operator, 

identifies the schema of the output cube, including 

both the measure attribute(s) and dimension 

members. IR also provides OLAP set operations 

(UNION, INTERSECTION and DIFFERENCE) that 

can be applied to data cubes. The FROM clause 

represents the cube source name. 

For example, recall the Furniture Sales data cube 

with the four dimensions (Customer, Supplier, Part 

and Date) and one fact table (Lineorder). Assume the 

following simple query, which aggregates the 

discount on parts of category Cat#11 that sold in 

Canada on 2013. An equivalent query is then 

illustrated in Query’ written in our algebra. 
 

Query:  
SELECT [Measures].[LoQuantity] ON COLUMNS, 

[part].[pCategory].[Cat#11] ON ROWS  

FROM [Sales]  

WHERE ([date].[dYear].[2013], 

[customer].[cNation].[CANADA]) 
 

Query’:  
PROJECTION: 

Attributes: part.pCategory 

Measures: LoDiscount 

SELECTION: 

       part.pCategory = Cat#11 

       date.dYear = 2013 

customer.cNation = CANADA 

FROM   

       Sales 
 

It is important to mention that our IR can 

represents five main forms of MDX queries: Simple 

form with members and children functions, Slicer 

Specification with the WHERE clause, queries with 

drilling down and rolling up using descendants and 

ancestors functions, queries with filters, and queries 

with calculated members. In the next subsections we 

give a detailed descriptions of how our framework 

translate these forms. 
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1. Simple form with members and children 

functions: 
The simple form of MDX queries consists of two 

main clauses (SELECT and FROM). These clauses 

serve exactly the same purpose they do in SQL. 

Indeed, the SELECT keyword tells what data will be 

returned back after query execution, the FROM 

keyword specifies the source of the data. For 

example, to show quantities of sales and there 

discounts over the Asian customer’s region, the 

MDX query will look like: 

 

Query1: 

SELECT [Measures].[LoQuantity], 

[Measures].[LoDiscount] ON 

COLUMNS, 

[Customer].[cRegion].CHILDREN, 

[Customer].[cRegion].[ASIA] ON 

ROWS 

FROM [Sales] 
 

There is no special meaning to rows and to 

columns in MDX other than for display purposes. 

Therefore in our example COLUMNS will be 

definition of the axis displayed vertically, and ROWS 

will be definition of the axis displayed horizontally. 

The CHILDREN and MEMBERS functions are used 

often in formulating expressions. The CHILDREN 

function returns the child members for a particular 

member within the dimension. The MEMBERS 

function returns the members for the specified 

dimension or dimension level. 

To translate such query to our algebra, the 

measures and returned attributes are translated into 

the PROJECTION Element (i.e., to Attributes and 

Measures elements). If the query has specified 

members, they are translated to the SELECTION 

Element. Finally, the cube name is translated to the 

FROM clause. The translation of the previous query 

is illustrated next: 

Query1’:  

PROJECTION: 

Attributes: Customer.cRegion 

Measures: LoQuantity, LoDiscount 

SELECTION: 

Customer.cRegion = ASIA 

FROM   
Sales 

 

2. Slicer specification with the WHERE clause: 
Slicing is one of the basic operations in data 

analysis. Slicing supported through the syntax of 

WHERE keyword. The WHERE clause in SQL 

different from WHERE in MDX. In the former, it 

means filtering of rows by specified criteria, while in 

the later means slicing the multidimensional query. If 

one were required to query the sales quantities for the 

year 2013, for the customers summarized at the 

region level, cross referenced against the part 

category, one would have to define a slicer 

specification. This requirement can be expressed by 

the following query:  

Query2:  

SELECT [customer].[cRegion].MEMBERS   

ON COLUMNS,  

[part].[p Category].MEMBERS      

ON ROWS  

FROM [Sales]  
WHERE (Measures.[LoQuantity], 

[date].[dYear].[2013]) 

 

The slicer specification in the WHERE clause is 

actually a dimensional slice of the cube. Thus the 

WHERE clause can, and often does, extend to other 

dimensions (i.e., date dimension). To translate this 

kind of queries, the returned attributes are translated 

into the PROJECTION Element. If the slicer contains 

any condition, it will translate as new condition to the 

SELECTION Element. The translation of this query 

is similar to Query1 translation and thus no need to 

show it up. 

3. Drilling down and rolling up:  
The Descendants and Ancestors Functions are 

used to provide the ability to drill down to a lower 

level within the hierarchy or roll up to a higher level. 

These functions allows one to go to any level in the 

dimension hierarchy. Using DESCENDANTS it 

becomes possible to query the cube for information 

at the individual supplier nation level for AMERICA 

region, For example:  
 

Query3:  

SELECT [Measures].[LoQuantity]  

ON COLUMNS, 

DESCENDANTS([Supplier]. 

[suppHierarchy].[sRegion]. 

[AMERICA],[Supplier].[suppHiera

rchy].[sNation]) ON ROWS 

FROM [Sales] 
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To translate a query with Descendants function, 

the lowest level that all its members are returned is 

translated to the PROJECTION Element (i.e., 

nation), while the higher level that used to specify a 

value is translated to the SELECTION Element. The 

translation of Query3 will look like: 
 

Query3’:  

PROJECTION: 

Attributes: Supplier.sNation 

Measures: LoQuantity 

SELECTION: 

Supplier.sRegion = AMERICA  

FROM   

       Sales 
 

The vice versa of Descendants is Ancestors, 

where a user can get the summarize information for a 

high level (i.e., region level) using a lower level (i.e. 

nation). For example: 
 

Query4:  

SELECT [Measures].[Lo Quantity] 

 ON COLUMNS, 

ANCESTORS([Supplier].[suppHiera

rchy].  [s Nation].[CANADA], 

[Supplier].[suppHierarchy]. 

[sRegion]) ON ROWS 

FROM [Sales] 
 

To translate a query with Ancestors function, the 

highest level that all its members are returned is 

translated to the PROJECTION Element (i.e., 

nation), while the higher level that used to specify a 

value is translated to the SELECTION Element. The 

translation of Query4 is shown next: 

 

Query4’:  

PROJECTION: 

Attributes: Supplier. sRegion  

Measures: LoQuantity 

SELECTION: 

Supplier. sNation = CANADA  

FROM Sales 

 

4. Filters: 
The Filter function returns the set that results from 

filtering according to the specified search condition. 

It evaluates the specified logical expression against 

each tuple in the specified set. The function returns a 

set that consists of each tuple in the specified set 

where the logical expression evaluates to true. The 

following example shows the top suppliers, defined 

by those who is supplied quantity exceed 30M:  
 

Query5:  

SELECT 
FILTER([Supplier].[sRegion].members, 

[Measures].[Loquantity] > 30000000) 

ON ROWS, 

[Measures].[Loquantity] ON 

COLUMNS 

FROM [Sales] 
 

To translate Query5, the condition on the quantity 

is mapped as condition on aggregation function. In 

other words, this condition is similar to Having 

clause in SQL format. The translation of the query is 

depicted next. 
 

Query5’:  

PROJECTION: 

Attributes: Supplier. sRegion 

Measures: LoQuantity 

SELECTION: 

SUM(Loquantity) > 30000000  

FROM   

       Sales 

5. Calculated Members 
An important concept when working with MDX 

expressions is that of calculated members. Calculated 

members allow one to define formulas and treat the 

formula as a new member. Suppose we have Query6: 

Query6:  

WITH MEMBER [Measures].[Profit] AS 

’[Measures].[LoDiscount] * 

[Measures].[LoQuantity]’, 

FORMAT STRING = ’#.00%’ 

 

SELECT NON EMPTY 

([Date].[dYear].CHILDREN) ON 

COLUMNS 

FROM [Sales] 

WHERE ([Measures].[Profit],  

[Supplier].[sNation].[ Canada]) 
 

The WITH MEMBER command defines a new 

measure that relates already defined measures. Thus, 

when we translate this command all the defined 

measures are extracted and mapped to Measures in 

the PROJECTION Element, also any returned 

attribute and/or condition should be mapped to its 
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corresponding element. The translation of this query 

will look like:  

 

Query6’:  

PROJECTION: 

Attributes: Date.dYear 

Measures: LoDiscount*LoQuantity AS Profit 

SELECTION: 

Supplier.sNation = Canada  

FROM   

       Sales 

3.3 The Transformation Rules 
When a user requests access to a particular resource, 

the request is validated against the permitted resource 

list assigned to that user. If the requested resource 

produces a valid match, the user request is allowed to 

execute as originally written. Otherwise, the query 

will either be rejected outright or modified according 

to a set of flexible transformation rules. In other 

words, in our framework the AEM takes the 

responsibility for authentication and authorization. 

AEM is first extracts the user’s credentials and 

validates them against a valid list. If the user is 

authenticated, the requested resources in the query 

are then verified against the accessible resources 

assigned to that user. If the requested resource is not 

permitted, the query is rewritten in order to provide 

the valid resources. To do this, AEM is based on a 

query rewriting technique that rewrites queries 

containing unauthorized data access to ensure that the 

user only receives the data that he/she is authorized 

to see. Rewriting is accomplished by adding or 

changing specific conditions within the query 

according to a set of concise but robust 

transformation rules. In case of query modification, 

the user is informed by a warning message that telling 

him/her that the query is modified during security 

concerns. However, in this case, the user should not 

know what he/she is restricted from, since this may 

be used as external information in some case to infer 

the protected data. Due to the space limitations, we 

just give a summarization for the transformation rules 

in terms of its three possible outcomes Execute, 

Modify, and Reject. The formalization of these rules 

along with their proofs can be found in [19]. 

 

 The query is allowed to execute without 

modification in two situations. The first situation 

when a hierarchy level say Li is restricted and 

there is an exception E, here if any upper level 

exists in the Selection or Projection query 

element, OR if the Li value or any value from the 

levels below it exists in the Condition element 

AND this value is equal to the exception value 

Ev or any value under it, the query is then 

executed without modification. In the second 

situation, when a specific value of Li is restricted 

and there is an exception E, here the query is also 

executed without modification if the prohibited 

value Lv or any value under it exists in the 

Condition element AND it is equal to the 

exception value Ev OR any value under it. 

For example, suppose that we have the 

following policy: An analyst Alice is invited to 

analyse the Furniture Sales data. However, Alice 

is restricted from viewing the suppliers’ 

quantities except for the Canadian suppliers. If 

Alice submits the query depicted next. The query 

will be executed without any modification 

because Alice is asking to view the quantity sold 

for a more detailed child level of her exception 

(e.g., Quebec is province in Canada). 
 

Query7:  

PROJECTION: 

Attributes: Date.dYear 

Measures: LoQuantity  

SELECTION: 

Supplier.sProvince = Quebec  

FROM   
       Sales 
 

 However, the query is modified in one situation, 

when a hierarchy level say Li is restricted and 

there is an exception E, here the query is 

modified if level Li or any value from the levels 

below it exists in the query Selection element 

only, then we add the exception E as a new 

condition, OR if the exception value Ev belongs 

to the values under Lv, then we replace the 

prohibited level in the Condition element by the 

exception E. 

For example, suppose that the previous policy 

is changed as follows: Alice is now restricted 

from viewing the suppliers’ quantities except for 

the suppliers of Montreal city. Assume that Alice 

resends Query7. It will be modified by condition 

(e.g., Supplier.sProvince = Quebec) in the 

Condition element with the exception (e.g., 

Supplier.sCity = Montreal). In this example, 

Alice gets only the values that she is allowed to 

see. The modified query will look like Query7’. 
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Query7’:  

PROJECTION: 

Attributes: Date.dYear 

Measures: LoQuantity  

SELECTION: 

Supplier.sCity = Montreal  

FROM   
       Sales 
 

 Ultimately, the query is rejected in two 

situations. The first situation when a level Li is 

restricted, and there is no exception, then if the 

level Li or any value from a lower level exists in 

the Selection element only, OR if the level Li or 

any value from the levels below it exists in the 

Condition element the query is rejected. The 

query is also rejected when a specific value P is 

restricted, and there is no exception or if P or any 

value under it exists in the Condition element.  

For example, if Alice’s exception is no more 

exited and she resubmit Query7, the query will 

be rejected.  

 

 

4 Experiments  
In this section, we investigate the efficiency of the 

MDX query translation. Specifically, we provide 

initial performance results for the MDX conversion 

middleware. However, in the second part of this 

section, we investigate the queries checking times to 

demonstrate that translation times are acceptable 

comparing to the queries execution times.  

For the following results, all testing was 

conducted on a 12-core AMD Opteron server with a 

CPU core frequency of 2100 MHz, L1/L2 cache size 

of 128K and 512K respectively, and a shared 12MB 

L3 cache. The server was equipped with 24 GB of 

RAM, and eight 1TB Serial ATA hard drives in a 

RAID 5 configuration. The supporting OS was 

CentOS Linux Release 6.0. All OS and DBMS 

caches were cleaned between runs. The machine is 

coupled with a column store database management 

systems (MonetDB) [33]. This system have been 

shown to perform more than an order of magnitude 

faster than traditional row-oriented database systems 

(row-stores) for large, read-intensive data 

repositories such as those found in data warehouses, 

decision support, and business intelligence 

applications that support analytical workloads. The 

reason behind this performance advantage is 

straightforward: column-stores are much more I/O 

efficient for read-only queries since they only have to 

read from disk those attributes actually referenced 

(directly or indirectly) by a query [33]. 

We begin by defining the 10 MDX queries listed 

in Appendix A. These queries cover the five main 

forms of MDX queries discussed previously. All 

queries are translated into the intermediate IR 

representation before undergoing the checking 

process. Figure 3 depicts the translation time. In all 

cases, the translation process takes a small amount of 

time, in the range of 27-56 milliseconds. In fact, these 

times are acceptable comparing to the queries 

execution times. 

 

 

Figure 3.  Translating Time of 10 MDX Queries. 

To demonstrate the validity of our work, we 

utilized a popular benchmark (namely, APB-1 

benchmark, release I) [34]. In this round, the APB 

database generator (with a channel of 40) was used to 

load two fact tables: Actvars, with approximately 86 

million records, and Planvars with approximately 62 

million records. The fact tables are joined to four 

dimension tables: Product, Customer, Time, and 

Channel, each housing up to 36000 records. Again, 

we focus on the translation and also the execution 

times. In this case, we consider 10 analytic queries, 

with each providing sophisticated restrictions on the 

associated dimensions (i.e., some queries have only 

one condition, others have up to four conditions). The 

queries themselves are executed against two fact 

tables (e.g., Actvars and Planvars tables). The full 

query set can be found in [34]. APB queries are 

needed to be translated into our algebra. Figure 4 

shows the translation time. As seen, the translation 

costs are quite small, in the range of 38-75 

milliseconds.  

In terms of the checking results, we have isolated 

the APB queries into two query classes based on the 

target fact table. For example, Figure 5 shows the 

ratio of processing cost to query execution time 

against the Actvar fact table, while Figure 6 shows 

the results for the Planvars fact table. It is worth to 
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mention that the query execution time is still listed 

for queries that violate the policy and were not 

candidates for re-writing, in order to give a better 

sense of the relative balance between checking and 

execution. 
 

 

Figure 4.  Translating Time of APB Queries. 

It should be clear that the checking time is again 

quite small, in the range of 39-600 milliseconds. This 

implies that little or no I/O is required during the 

checking phases once the DBMS process has started. 

This is the case since the framework can pre-load 

with the appropriate metadata. For the queries, 

however, the benchmark database is extremely large 

and we cannot expect them to be preloaded into 

memory without enormous hardware resources. In 

other words, there are strong limits on the amount of 

optimization that can be performed during the 

execution phase. We also note that, in terms of this 

specific test case, the conditions of Query 1 and 

Query 8 do not violate the policy constraints and thus 

the checking times for each of them are less than for 

other queries. 

 

 

Figure 5.  Performance for APB Queries against Actvars 

table.  

As a final point, we re-iterate that our framework is 

efficiently practical. Specifically, it does not impact 

query performance in a meaningful way. As such, it 

is possible to plug-in any standards-compliant DBMS 

server. For test purposes, in fact, this can be an 

advantage as it provides more intuitive test results 

and underscores the potential for integration with 

standard database servers. 

 

 

Figure 6.  Performance for APB Queries against Planvars 

table. 

 

5 Conclusion and Future Work 
In this paper, we have discussed an integrated 

security framework for querying Multidimensional 

data with MDX. We began by describing a set of 

transformation rules that can be used to provide data 

access functionality for DBMSs that use the popular 

MDX query language. We then presented the general 

translation process for MDX queries being mapped 

into an intermediate representation (IR). We 

specifically discussed how the IR could support five 

general forms of MDX queries. To demonstrate the 

validity of our work, we have provided initial test 

results indicating that the process takes a small 

amount of time, which are acceptable comparing to 

the queries execution times. Then we coupled our 

framework with MonetDB a popular column-store 

database systems and used a well-known benchmark 

APB to demonstrate that the framework can translate 

various types of queries.  

As a future work, we are planning to extend the 

functionality of the current research in twofold. First, 

at present the framework is supporting five main 

MDX queries, the next goal is to cover all forms of 

MDX functions types. Second, to validate whether 

our framework are properly designed using model 

testing driven so the common security patterns are 

well applied and assessed. Our hope is that this will 

eventually lead to provide more secure systems, 

through refinement of this work. 
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Appendix A 

• Query1:  

SELECT {[Measures]·[loquantity], 

[Measures]·[lodiscount]} ON COLUMNS, 

{[customer]·[cregion]·CHILDREN} ON ROWS 

FROM[Sales] 

 

• Query2:  

SELECT{[Measures]·[loquantity], 

[Measures]·[lodiscount]} ON COLUMNS, 

{[customer]·[cregion]·[ AMERICA]} ON ROWS 

FROM [Sales] 

 
• Query3: 

SELECT{[date]·[dyear]·[1998]} ON COLUMNS, 

{[customer]·[c nation]·[ CANADA], 

[customer]·[cnation]·[ UNITEDSTATES]}ON 

ROWS 

FROM [Sales] WHERE ([Measures]·[lo discount]) 

 
• Query4:  

SELECT{[Measures]·[lodiscount]} ON 

COLUMNS, {[part]·[pcategory]·[ MFGR#11]} ON 

ROWS 

FROM [Sales] 

WHERE ([date]·[dyear]·[1998], 

[customer]·[cnation]·[ CANADA]) 

 
• Query5:  

SELECT [Measures]·[loquantity] ON COLUMNS, 

{DESCENDANTS([supplier]·[sregion - snation - 

scity]·[sregion]·[ AMERICA], 

[supplier]·[sregion - snation - scity]·[snation])} ON 

ROWS FROM [Sales] 

 
• Query6:  

SELECT {[Measures]·[lo quantity]} ON 

COLUMNS, {CROSSJOIN([part]·[p 

brand1]·CHILDREN, [date]·[dyear]·[1998])} ON 

ROWS FROM [Sales] 

 
• Query7:  

SELECT NON  

EMPTY(FILTER({[customer]·[cregion]·CHILDRE

N},[customer]·[cregion]·CurrentMember·Name <> 

’ AMERICA’)) ON COLUMNS, 

NON EMPTY(FILTER({[date]·[dyear]· 

CHILDREN}, [date]·[dyear]·CurrentMember·Name 
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> ’1997’)) ON ROWS FROM [Sales] WHERE 

[Measures]·[lotax] 

 
• Query8:  

WITH MEMBER [Measures]·[profit] AS 

’[Measures]·[lodiscount] *[Measures]·[loquantity]’ 

SELECT NON 

EMPTY([date]·[dyear]·CHILDREN) ON 

COLUMNS FROM [Sales] WHERE 

([Measures]·[profit], [supplier]·[s nation]·[ 

Canada]) 

 
• Query9:  

SELECT {[Measures]·[lo quantity] } ON 

COLUMNS, FILTER 

({[supplier]·[sregion]·MEMBERS}, [Measures]·[lo 

quantity] > 30000000) ON ROWS 

FROM [Sales] 

 
• Query10:  

SELECT {[Measures]·[lo discount], [Measures]·[lo 

quantity]} ON COLUMNS, 

FILTER(CROSSJOIN({[date]·[d 

year]·[1995]:[date]·[d year]·[1997]}, {[part]·[p 

mfgr]·CHILDREN}), [Measures]·[lo quantity] > 

4670000) ON ROWS 

FROM [Sale] 
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