
Implementing Security for Multidimensional Expression Queries

AHMAD MOUSA ALTAMIMI, MAHMOOD GHALEB ALBASHAYREH

Computer Science Department

Applied Science Private University

Amman

JORDAN

a_altamimi@asu.edu.jo, m_albashayreh@asu.edu.jo

Abstract: - As the security takes center stage in the recent years, most important projects underway are those

associated within security. Organizations collect and process data to operate their day-to-day business

successfully. Such data is stored in enterprises data warehouses and presented so that users can make decisions

more easily. Online Analytical Processing (OLAP) is the prevalent component of these systems where data is

organized in the form of multidimensional representation known as a data cube. A specialized query language

called multidimensional expression (MDX) is then used with specific syntax and semantics for manipulating

OLAP cubes. However, MDX users can override- either intentionally or unintentionally - the security policy of

the system to disclose sensitive information and breach an individual’s privacy. In this paper, we present a

framework that removes security threats by re-writing MDX queries to ensure consistent data accessing.

Experimental results demonstrate that security can be ensured without affecting the usefulness of OLAP systems.

Key-Words: - OLAP, data cube, MDX, data privacy, security polices, query rewriting

1 Introduction
Current database systems, with large numbers of

users, require security control mechanisms that

restrict access to the stored sensitive data/objects.

While numerous mechanisms have been provided for

relational model [1,2,3], little effort has been made to

address the unique security requirements of the

multi-dimensional context. Due to the difference

between the natures of the two models objects, the

former mechanisms cannot be applied to the latter. In

particular, objects in a relational context include

logical elements such as tables, records within those

tables, and fields within each record. In contrast,

objects in a multi-dimensional model are elements of

the more abstract conceptual model and include the

dimensions of the cube, the hierarchies within each

dimension, and the aggregated cells (or facts). This

changes the logic or focus of the security mechanism.

For instance, a user in a relational environment may

be allowed direct access to a specific record or field

in that record; while a user in cube model may be

given permission to dynamically aggregate measure

values at a specific level of detail in one dimension

hierarchies. Anything below this level would also be

considered sensitive, and hence should be protected.

In fact, the hierarchical nature of the cube allows

users to bypass partial constraints defined at alternate

aggregation levels - intentionally or unintentionally -

and as consequence reveals the sensitive data.

In this work, we target the multi-dimensional

model that uses Multidimensional Expressions

(MDX) language. MDX is a query language for

OLAP databases, much like SQL is a query language

for relational databases. MDX has become widely

used in the field of analytical applications such as

Microsoft Analysis Services [4], IBM Cognos [5],

Mondrian OLAP server [6], and Essbase [7]. Most of

these systems provide simple, very basic security

control. As result, there is a clear need to provide

advanced security countermeasure for these given

DBMS platforms. As a result, many security

frameworks have been proposed, most of them deal

with SQL language such as [8,9]. Theses frameworks

aim to eliminate unauthorized accesses for SQL

queries.

In this paper, we provide a security framework

that achieves the same security functionality but for

MDX language and it consists of three main parts.

The Interpreter and Decomposer module parses and

translates the MDX query into an intermediate

representation algebra (IR). The IR identifies the core

operations associated with the data cube model like

the Selection and Projection operations. We note at

the outset is that MDX is not a language that is based

upon extensive formal research, but is instead of the

product of a corporate entity. As such, its structure

can sometimes be obscure, with an “ad hoc” feel that

makes it difficult to guarantee full IR/MDX

WSEAS TRANSACTIONS on COMPUTERS Ahmad Mousa Altamimi, Mahmood Ghaleb Albashayreh

E-ISSN: 2224-2872 64 Volume 15, 2016

equivalency. Our motivation therefore is demonstrate

how MDX/IR translation works in the general case.

We leave it to future work to address some of the

possible edge cases. Finally, the Analyser and

Evaluator module which explores, and modifies the

query (if necessary) before evaluating it. Our

framework employed a set of powerful and efficient

methods to provide significant performance

improvements for query checking. It can be sited on

top of an OLAP server, so it provides reliable and

useable DBMS.

To further ground the research, we have

considered five distinct types of MDX queries: The

simple form with members and children functions,

the slicer specification with the WHERE clause, the

drilling down and rolling up, queries with filters, and

the calculated member’s queries. As a second round

of testing, we have employed a well-known

benchmark APB-1, release I to demonstrate that the

framework can translate various types of queries. The

experimental analysis support the claim that

translating and security checking can, in fact, be

carried out without a meaningful impact upon final

query execution times.

The rest of the paper is organized as follows. The

related work is presented in Section 2, Section 3

describes briefly the architecture of our framework.

Experiment results are presented in Section 4, and the

final conclusions and future works are then offered in

Section 5.

2 Related Work
Mathematical Researchers have considered security

in relational databases for a long time [10,11].

Several defined frameworks are likely too restrictive

for production databases. For instance, while view

based access control approach is used to define the

accessible elements for a set of users, it is not

applicable when the number of users is large [20,21].

Fine grained access control has not received a lot of

attention until recently [3], which allows to give

access permits at more granularity level of rows or

columns. Another performs access control

enforcement in the application code instead of the

database which needs to ensure that set of access

control policy rules are consistent across different

applications [22].

In contrast a number of security models that

restrict data warehouse access have been proposed in

the literature [12,13,14]. Some of them focus strictly

on the design process. Others have extended the

Unified Modeling Language to specify security

constraints on multi-dimensional data [12]. In fact, a

number of researchers have looked at similar

techniques for setting access constraints at an early

stage in the OLAP design process. Others have

developed security requirements for the entire Data

Warehouse life cycle [15]. In this case, they first

propose a model (agent-goal-decision-information)

to support the early and late requirements for the

development of DWs, then extend that model to

capture security aspects in order to prevent

illegitimate attempts to access the warehouse. Such

models have great value of course, particularly if one

has the option to create the warehouse from scratch.

That being said, their focus is not on authentication

and authorization algorithms per se, but rather on

design methodologies that that use the already

existing technologies, such as: Model Driven

Architecture (MDA) and Software Process

Engineering Meta-model Specification (SPEM)

[23,24].

Query rewriting has also been explored in DBMS

environments in a variety of ways, with search and

optimization being common targets [25]. Beyond

that, however, rewriting has also been utilized to

provide fine grained access control in Relational

databases [16]. To answer a query Q, a masked

versions of related tables are generated by replacing

all the cells that are not allowed to be seen with

NULL. After that, Q is evaluated as a normal query

on the masked versions of the tables. This approach

does not leak information not allowed to be seen, but

it returns incorrect results when a query contains any

negation, as expressed using the keywords MINUS,

NOT EXISTS or NOT IN [17].

Ultimately, MDX is designed as a highly

multidimensional expression syntax for querying and

manipulating multidimensional data stored in OLAP

cubes [28,29]. MDX was invented by Microsoft as

part of the OLE DB for OLAP specification in 1997,

then followed by commercial release of Microsoft

OLAP Services 7.0 [30]. Many researches have been

conducted on MDX in the field of Data Warehousing

and Big Data [31,32]. They mainly focused on MDX

as a tool for analysing and mining big data to extract

useful patterns. Others are considered the

recommending MDX queries to better navigating

data cubes [26,27]. Authors are described their works

theoretically and then validated through experiments.

On the other hand, researchers have provided

security mechanisms and frameworks that are applied

on the schema used by MDX. Specifically, portions

of OLAP schema (total, dimension or cell) can be

restricted from being viewed by defining a set of

WSEAS TRANSACTIONS on COMPUTERS Ahmad Mousa Altamimi, Mahmood Ghaleb Albashayreh

E-ISSN: 2224-2872 65 Volume 15, 2016

restrictions and then assigned these restrictions to

certain user roles. Herein, only the permissible parts

of the schema will be accessible by specified roles

[5,6]. This is different from what we are presenting,

our framework uses query re-writing technique to

secure multi-dimensional OLAP environments by

applying a series of rules that dynamically and

transparently transform the query.

3 Framework Design
Our security framework serves as guard for data to

perform a prerequisite security checking to decide

which query should be passed for executing and

which should be rejected without any optimization or

resolution. In this section, we will describe briefly its

components and the relationship between them by

describing the security process as shown in Fig.1.

Figure 1. The Framework Architucture.

3.1 The security process
The proposed security process is a multistep:

 Receive the user query/request in MDX format.

However, the framework does not understand the

MDX, but an internal algebra that identifies the

core operations associated with the data cube

model. Thus, the Interpreter and Decomposer

module (IDM) parses, interprets and decomposes

the user query into the core operations of the

internal algebra, which can be used to efficiently

express queries, and easily reflect the changes

that will be done by our model.

 The Analyser and Evaluator module (AEM)

extracts the user identity/credentials and the

requested elements (e.g., dimensions, attributes,

hierarchies, etc.) from the query. Then the

module authenticates the user by verifying her

credentials against a list of valid accounts. If the

provided credentials are valid, the authentication

is successful.

 The module then determines if the user is

permitted to access the requested resources. A set

of query re-writing rules is applied to ensure

consistent data access over the data cube. The

query rewriting process is accomplished by

adding or changing specific conditions within the

query according to a set of concise but robust

transformation rules.

 Once the query passes the previous checking, the

query will be converted back to its original

format and transparently delivered to the server

for execution. Results are then returned to the

user. However, the query will be rejected and the

user will be informed otherwise.

3.2 Parsing the MDX Query

As mentioned in the previous subsection, the user's

query is represented in MDX format. In order to

properly authenticate the query, it must first be

parsed and decomposed into its algebraic

components. The purpose of this step is to determine

if the query is semantically and syntactically valid

and it is done in two phases:

In the first phase, the DOM parser utility is

employed and used by the IDM to produce a DOM

tree that represents the raw contents of the MDX

query. In this phase, the parser not only builds the tree

but also verifies that the received query has valid

syntax corresponding to a DTD query grammar. A

query is considered as valid if it contains only those

elements defined in the DTD. If the query is

syntactically valid, the query proceeds to the second

phase. Otherwise, a parsing error message is returned

to the user.

For example, suppose a marketing company is

storing its data in a simple data cube called (Furniture

Sales) with four dimensions (Customer, Supplier,

Part and Date) and one fact table (Lineorder).

Assume a user John queries the data cube that

summarizes the total sales of Quebec's stores in 2011.

The corresponding node tree is shown in Figure 2.

WSEAS TRANSACTIONS on COMPUTERS Ahmad Mousa Altamimi, Mahmood Ghaleb Albashayreh

E-ISSN: 2224-2872 66 Volume 15, 2016

Figure 2. The DOM tree.

We can easily see that the content of this parse tree

is equivalent to the original query. Specifically, it is

executed against the cube Furniture Sales and

consists of two OLAP operations (Projection and

Selection). The projection operation returns the

dimension attribute Customer.Province, as well as

one measure attribute --- Sales. The Selection

operation filters the returned information via two

conditions on the dimensions Customer (i.e.,

Province = Quebec) and Time (Year = 2010). The

user name ``John'' and the password ``J86mn''

represent the user credentials. This tree is stored as

cached object in the memory for further processing.

In the second phase, the DOM tree is converted

into an internal algebra representation (IR). This

algebra represents all the query elements (i.e.,

returned attributes, query conditions along with its

dimensions and attributes, and user credentials). The

purpose of this conversion process is to transform the

user query into a simple, minimal data structure that

represents the query in a compact but expressive

form. IR is discussed in details in the next section.

Once the parsing is completed, the Analyser and

Evaluator module extracts the user credentials to

verify them against a valid account stored in a back

database. If the verification is successful, the DBMS

proceeds with the authorization process. Otherwise,

the query is rejected and the user is notified.

3.3 Converting the Parse Tree to an Internal

Representation
While there are some similarity between MDX and

SQL such as same keywords serving similar

functions, there are some differences also. For

example, in the SQL case we receive the data from

the table, and in MDX case we receive data from the

cube. Moreover, SQL basically gives us relational

view of the data, which is always two-dimensional,

while in the MDX world, any number of dimensions

(axes) can be specified to form result of the query. It

can zero, one, two, three or any other number of axes.

Before discussing the converting process, we give

a brief description of the Internal Representation

(IR), however a details description could be found on

[18]. The IR identifies the core operations associated

with the data cube model. For example, the

SELECTION operator identifies one or more cells

from within the full d-dimensional search space. Its

application produces what is commonly referred to as

“slicing and dicing”. PROJECTION Operator,

identifies the schema of the output cube, including

both the measure attribute(s) and dimension

members. IR also provides OLAP set operations

(UNION, INTERSECTION and DIFFERENCE) that

can be applied to data cubes. The FROM clause

represents the cube source name.

For example, recall the Furniture Sales data cube

with the four dimensions (Customer, Supplier, Part

and Date) and one fact table (Lineorder). Assume the

following simple query, which aggregates the

discount on parts of category Cat#11 that sold in

Canada on 2013. An equivalent query is then

illustrated in Query’ written in our algebra.

Query:
SELECT [Measures].[LoQuantity] ON COLUMNS,

[part].[pCategory].[Cat#11] ON ROWS

FROM [Sales]

WHERE ([date].[dYear].[2013],

[customer].[cNation].[CANADA])

Query’:
PROJECTION:

Attributes: part.pCategory

Measures: LoDiscount

SELECTION:

 part.pCategory = Cat#11

 date.dYear = 2013

customer.cNation = CANADA

FROM

 Sales

It is important to mention that our IR can

represents five main forms of MDX queries: Simple

form with members and children functions, Slicer

Specification with the WHERE clause, queries with

drilling down and rolling up using descendants and

ancestors functions, queries with filters, and queries

with calculated members. In the next subsections we

give a detailed descriptions of how our framework

translate these forms.

WSEAS TRANSACTIONS on COMPUTERS Ahmad Mousa Altamimi, Mahmood Ghaleb Albashayreh

E-ISSN: 2224-2872 67 Volume 15, 2016

1. Simple form with members and children

functions:
The simple form of MDX queries consists of two

main clauses (SELECT and FROM). These clauses

serve exactly the same purpose they do in SQL.

Indeed, the SELECT keyword tells what data will be

returned back after query execution, the FROM

keyword specifies the source of the data. For

example, to show quantities of sales and there

discounts over the Asian customer’s region, the

MDX query will look like:

Query1:

SELECT [Measures].[LoQuantity],

[Measures].[LoDiscount] ON

COLUMNS,

[Customer].[cRegion].CHILDREN,

[Customer].[cRegion].[ASIA] ON

ROWS

FROM [Sales]

There is no special meaning to rows and to

columns in MDX other than for display purposes.

Therefore in our example COLUMNS will be

definition of the axis displayed vertically, and ROWS

will be definition of the axis displayed horizontally.

The CHILDREN and MEMBERS functions are used

often in formulating expressions. The CHILDREN

function returns the child members for a particular

member within the dimension. The MEMBERS

function returns the members for the specified

dimension or dimension level.

To translate such query to our algebra, the

measures and returned attributes are translated into

the PROJECTION Element (i.e., to Attributes and

Measures elements). If the query has specified

members, they are translated to the SELECTION

Element. Finally, the cube name is translated to the

FROM clause. The translation of the previous query

is illustrated next:

Query1’:

PROJECTION:

Attributes: Customer.cRegion

Measures: LoQuantity, LoDiscount

SELECTION:

Customer.cRegion = ASIA

FROM
Sales

2. Slicer specification with the WHERE clause:
Slicing is one of the basic operations in data

analysis. Slicing supported through the syntax of

WHERE keyword. The WHERE clause in SQL

different from WHERE in MDX. In the former, it

means filtering of rows by specified criteria, while in

the later means slicing the multidimensional query. If

one were required to query the sales quantities for the

year 2013, for the customers summarized at the

region level, cross referenced against the part

category, one would have to define a slicer

specification. This requirement can be expressed by

the following query:

Query2:

SELECT [customer].[cRegion].MEMBERS

ON COLUMNS,

[part].[p Category].MEMBERS

ON ROWS

FROM [Sales]
WHERE (Measures.[LoQuantity],

[date].[dYear].[2013])

The slicer specification in the WHERE clause is

actually a dimensional slice of the cube. Thus the

WHERE clause can, and often does, extend to other

dimensions (i.e., date dimension). To translate this

kind of queries, the returned attributes are translated

into the PROJECTION Element. If the slicer contains

any condition, it will translate as new condition to the

SELECTION Element. The translation of this query

is similar to Query1 translation and thus no need to

show it up.

3. Drilling down and rolling up:
The Descendants and Ancestors Functions are

used to provide the ability to drill down to a lower

level within the hierarchy or roll up to a higher level.

These functions allows one to go to any level in the

dimension hierarchy. Using DESCENDANTS it

becomes possible to query the cube for information

at the individual supplier nation level for AMERICA

region, For example:

Query3:

SELECT [Measures].[LoQuantity]

ON COLUMNS,

DESCENDANTS([Supplier].

[suppHierarchy].[sRegion].

[AMERICA],[Supplier].[suppHiera

rchy].[sNation]) ON ROWS

FROM [Sales]

WSEAS TRANSACTIONS on COMPUTERS Ahmad Mousa Altamimi, Mahmood Ghaleb Albashayreh

E-ISSN: 2224-2872 68 Volume 15, 2016

To translate a query with Descendants function,

the lowest level that all its members are returned is

translated to the PROJECTION Element (i.e.,

nation), while the higher level that used to specify a

value is translated to the SELECTION Element. The

translation of Query3 will look like:

Query3’:

PROJECTION:

Attributes: Supplier.sNation

Measures: LoQuantity

SELECTION:

Supplier.sRegion = AMERICA

FROM

 Sales

The vice versa of Descendants is Ancestors,

where a user can get the summarize information for a

high level (i.e., region level) using a lower level (i.e.

nation). For example:

Query4:

SELECT [Measures].[Lo Quantity]

 ON COLUMNS,

ANCESTORS([Supplier].[suppHiera

rchy]. [s Nation].[CANADA],

[Supplier].[suppHierarchy].

[sRegion]) ON ROWS

FROM [Sales]

To translate a query with Ancestors function, the

highest level that all its members are returned is

translated to the PROJECTION Element (i.e.,

nation), while the higher level that used to specify a

value is translated to the SELECTION Element. The

translation of Query4 is shown next:

Query4’:

PROJECTION:

Attributes: Supplier. sRegion

Measures: LoQuantity

SELECTION:

Supplier. sNation = CANADA

FROM Sales

4. Filters:
The Filter function returns the set that results from

filtering according to the specified search condition.

It evaluates the specified logical expression against

each tuple in the specified set. The function returns a

set that consists of each tuple in the specified set

where the logical expression evaluates to true. The

following example shows the top suppliers, defined

by those who is supplied quantity exceed 30M:

Query5:

SELECT
FILTER([Supplier].[sRegion].members,

[Measures].[Loquantity] > 30000000)

ON ROWS,

[Measures].[Loquantity] ON

COLUMNS

FROM [Sales]

To translate Query5, the condition on the quantity

is mapped as condition on aggregation function. In

other words, this condition is similar to Having

clause in SQL format. The translation of the query is

depicted next.

Query5’:

PROJECTION:

Attributes: Supplier. sRegion

Measures: LoQuantity

SELECTION:

SUM(Loquantity) > 30000000

FROM

 Sales

5. Calculated Members
An important concept when working with MDX

expressions is that of calculated members. Calculated

members allow one to define formulas and treat the

formula as a new member. Suppose we have Query6:

Query6:

WITH MEMBER [Measures].[Profit] AS

’[Measures].[LoDiscount] *

[Measures].[LoQuantity]’,

FORMAT STRING = ’#.00%’

SELECT NON EMPTY

([Date].[dYear].CHILDREN) ON

COLUMNS

FROM [Sales]

WHERE ([Measures].[Profit],

[Supplier].[sNation].[Canada])

The WITH MEMBER command defines a new

measure that relates already defined measures. Thus,

when we translate this command all the defined

measures are extracted and mapped to Measures in

the PROJECTION Element, also any returned

attribute and/or condition should be mapped to its

WSEAS TRANSACTIONS on COMPUTERS Ahmad Mousa Altamimi, Mahmood Ghaleb Albashayreh

E-ISSN: 2224-2872 69 Volume 15, 2016

corresponding element. The translation of this query

will look like:

Query6’:

PROJECTION:

Attributes: Date.dYear

Measures: LoDiscount*LoQuantity AS Profit

SELECTION:

Supplier.sNation = Canada

FROM

 Sales

3.3 The Transformation Rules
When a user requests access to a particular resource,

the request is validated against the permitted resource

list assigned to that user. If the requested resource

produces a valid match, the user request is allowed to

execute as originally written. Otherwise, the query

will either be rejected outright or modified according

to a set of flexible transformation rules. In other

words, in our framework the AEM takes the

responsibility for authentication and authorization.

AEM is first extracts the user’s credentials and

validates them against a valid list. If the user is

authenticated, the requested resources in the query

are then verified against the accessible resources

assigned to that user. If the requested resource is not

permitted, the query is rewritten in order to provide

the valid resources. To do this, AEM is based on a

query rewriting technique that rewrites queries

containing unauthorized data access to ensure that the

user only receives the data that he/she is authorized

to see. Rewriting is accomplished by adding or

changing specific conditions within the query

according to a set of concise but robust

transformation rules. In case of query modification,

the user is informed by a warning message that telling

him/her that the query is modified during security

concerns. However, in this case, the user should not

know what he/she is restricted from, since this may

be used as external information in some case to infer

the protected data. Due to the space limitations, we

just give a summarization for the transformation rules

in terms of its three possible outcomes Execute,

Modify, and Reject. The formalization of these rules

along with their proofs can be found in [19].

 The query is allowed to execute without

modification in two situations. The first situation

when a hierarchy level say Li is restricted and

there is an exception E, here if any upper level

exists in the Selection or Projection query

element, OR if the Li value or any value from the

levels below it exists in the Condition element

AND this value is equal to the exception value

Ev or any value under it, the query is then

executed without modification. In the second

situation, when a specific value of Li is restricted

and there is an exception E, here the query is also

executed without modification if the prohibited

value Lv or any value under it exists in the

Condition element AND it is equal to the

exception value Ev OR any value under it.

For example, suppose that we have the

following policy: An analyst Alice is invited to

analyse the Furniture Sales data. However, Alice

is restricted from viewing the suppliers’

quantities except for the Canadian suppliers. If

Alice submits the query depicted next. The query

will be executed without any modification

because Alice is asking to view the quantity sold

for a more detailed child level of her exception

(e.g., Quebec is province in Canada).

Query7:

PROJECTION:

Attributes: Date.dYear

Measures: LoQuantity

SELECTION:

Supplier.sProvince = Quebec

FROM
 Sales

 However, the query is modified in one situation,

when a hierarchy level say Li is restricted and

there is an exception E, here the query is

modified if level Li or any value from the levels

below it exists in the query Selection element

only, then we add the exception E as a new

condition, OR if the exception value Ev belongs

to the values under Lv, then we replace the

prohibited level in the Condition element by the

exception E.

For example, suppose that the previous policy

is changed as follows: Alice is now restricted

from viewing the suppliers’ quantities except for

the suppliers of Montreal city. Assume that Alice

resends Query7. It will be modified by condition

(e.g., Supplier.sProvince = Quebec) in the

Condition element with the exception (e.g.,

Supplier.sCity = Montreal). In this example,

Alice gets only the values that she is allowed to

see. The modified query will look like Query7’.

WSEAS TRANSACTIONS on COMPUTERS Ahmad Mousa Altamimi, Mahmood Ghaleb Albashayreh

E-ISSN: 2224-2872 70 Volume 15, 2016

Query7’:

PROJECTION:

Attributes: Date.dYear

Measures: LoQuantity

SELECTION:

Supplier.sCity = Montreal

FROM
 Sales

 Ultimately, the query is rejected in two

situations. The first situation when a level Li is

restricted, and there is no exception, then if the

level Li or any value from a lower level exists in

the Selection element only, OR if the level Li or

any value from the levels below it exists in the

Condition element the query is rejected. The

query is also rejected when a specific value P is

restricted, and there is no exception or if P or any

value under it exists in the Condition element.

For example, if Alice’s exception is no more

exited and she resubmit Query7, the query will

be rejected.

4 Experiments
In this section, we investigate the efficiency of the

MDX query translation. Specifically, we provide

initial performance results for the MDX conversion

middleware. However, in the second part of this

section, we investigate the queries checking times to

demonstrate that translation times are acceptable

comparing to the queries execution times.

For the following results, all testing was

conducted on a 12-core AMD Opteron server with a

CPU core frequency of 2100 MHz, L1/L2 cache size

of 128K and 512K respectively, and a shared 12MB

L3 cache. The server was equipped with 24 GB of

RAM, and eight 1TB Serial ATA hard drives in a

RAID 5 configuration. The supporting OS was

CentOS Linux Release 6.0. All OS and DBMS

caches were cleaned between runs. The machine is

coupled with a column store database management

systems (MonetDB) [33]. This system have been

shown to perform more than an order of magnitude

faster than traditional row-oriented database systems

(row-stores) for large, read-intensive data

repositories such as those found in data warehouses,

decision support, and business intelligence

applications that support analytical workloads. The

reason behind this performance advantage is

straightforward: column-stores are much more I/O

efficient for read-only queries since they only have to

read from disk those attributes actually referenced

(directly or indirectly) by a query [33].

We begin by defining the 10 MDX queries listed

in Appendix A. These queries cover the five main

forms of MDX queries discussed previously. All

queries are translated into the intermediate IR

representation before undergoing the checking

process. Figure 3 depicts the translation time. In all

cases, the translation process takes a small amount of

time, in the range of 27-56 milliseconds. In fact, these

times are acceptable comparing to the queries

execution times.

Figure 3. Translating Time of 10 MDX Queries.

To demonstrate the validity of our work, we

utilized a popular benchmark (namely, APB-1

benchmark, release I) [34]. In this round, the APB

database generator (with a channel of 40) was used to

load two fact tables: Actvars, with approximately 86

million records, and Planvars with approximately 62

million records. The fact tables are joined to four

dimension tables: Product, Customer, Time, and

Channel, each housing up to 36000 records. Again,

we focus on the translation and also the execution

times. In this case, we consider 10 analytic queries,

with each providing sophisticated restrictions on the

associated dimensions (i.e., some queries have only

one condition, others have up to four conditions). The

queries themselves are executed against two fact

tables (e.g., Actvars and Planvars tables). The full

query set can be found in [34]. APB queries are

needed to be translated into our algebra. Figure 4

shows the translation time. As seen, the translation

costs are quite small, in the range of 38-75

milliseconds.

In terms of the checking results, we have isolated

the APB queries into two query classes based on the

target fact table. For example, Figure 5 shows the

ratio of processing cost to query execution time

against the Actvar fact table, while Figure 6 shows

the results for the Planvars fact table. It is worth to

WSEAS TRANSACTIONS on COMPUTERS Ahmad Mousa Altamimi, Mahmood Ghaleb Albashayreh

E-ISSN: 2224-2872 71 Volume 15, 2016

mention that the query execution time is still listed

for queries that violate the policy and were not

candidates for re-writing, in order to give a better

sense of the relative balance between checking and

execution.

Figure 4. Translating Time of APB Queries.

It should be clear that the checking time is again

quite small, in the range of 39-600 milliseconds. This

implies that little or no I/O is required during the

checking phases once the DBMS process has started.

This is the case since the framework can pre-load

with the appropriate metadata. For the queries,

however, the benchmark database is extremely large

and we cannot expect them to be preloaded into

memory without enormous hardware resources. In

other words, there are strong limits on the amount of

optimization that can be performed during the

execution phase. We also note that, in terms of this

specific test case, the conditions of Query 1 and

Query 8 do not violate the policy constraints and thus

the checking times for each of them are less than for

other queries.

Figure 5. Performance for APB Queries against Actvars

table.

As a final point, we re-iterate that our framework is

efficiently practical. Specifically, it does not impact

query performance in a meaningful way. As such, it

is possible to plug-in any standards-compliant DBMS

server. For test purposes, in fact, this can be an

advantage as it provides more intuitive test results

and underscores the potential for integration with

standard database servers.

Figure 6. Performance for APB Queries against Planvars

table.

5 Conclusion and Future Work
In this paper, we have discussed an integrated

security framework for querying Multidimensional

data with MDX. We began by describing a set of

transformation rules that can be used to provide data

access functionality for DBMSs that use the popular

MDX query language. We then presented the general

translation process for MDX queries being mapped

into an intermediate representation (IR). We

specifically discussed how the IR could support five

general forms of MDX queries. To demonstrate the

validity of our work, we have provided initial test

results indicating that the process takes a small

amount of time, which are acceptable comparing to

the queries execution times. Then we coupled our

framework with MonetDB a popular column-store

database systems and used a well-known benchmark

APB to demonstrate that the framework can translate

various types of queries.

As a future work, we are planning to extend the

functionality of the current research in twofold. First,

at present the framework is supporting five main

MDX queries, the next goal is to cover all forms of

MDX functions types. Second, to validate whether

our framework are properly designed using model

testing driven so the common security patterns are

well applied and assessed. Our hope is that this will

eventually lead to provide more secure systems,

through refinement of this work.

WSEAS TRANSACTIONS on COMPUTERS Ahmad Mousa Altamimi, Mahmood Ghaleb Albashayreh

E-ISSN: 2224-2872 72 Volume 15, 2016

Acknowledgment

The authors are grateful to the Applied Science

Private University, Amman-Jordan, for the full

financial support granted to cover the publication fee

of this research article.

References

[1] Bender, Gabriel, Lucja Kot, and Johannes

Gehrke. "Explainable security for relational

databases." Proceedings of the 2014 ACM

SIGMOD international conference on

Management of data. ACM, 2014.

[2] Stern, Daniel A. "Balanced Design in

Information Systems Security Planning."The

International Conference in Information Security

and Digital Forensics. The Society of Digital

Information and Wireless Communication, 2014.

[3] Bhatnagar, Neerja. "Security in Relational

Databases." Handbook of Information and

Communication Security. Springer Berlin

Heidelberg, 2010. 257-272.

[4] Ferrari, Alberto, Marco Russo, and Chris

Webb. Microsoft SQL Server 2012 Analysis

Services: The BISM Tabular Model. Pearson

Education.

[5] Oehler, Karsten, et al. IBM Cognos TM1.

McGraw-Hill, 2012.

[6] Mondrian OLAP server.
http://community.pentaho.com/projects/mondrian

[7] Ruiz, Jose R. Oracle Essbase 11 Development

Cookbook. Packt Publishing Ltd, 2012.

[8] Johari, Rahul, and Pankaj Sharma. "A survey on

web application vulnerabilities (SQLIA, XSS)

exploitation and security engine for SQL

injection."Communication Systems and Network

Technologies (CSNT), 2012 International

Conference on. IEEE, 2012.

[9] Tajpour, Atefeh, et al. "Effective Measures for

Evaluation of SQL Injection Detection and

Prevention Tools." JCIT: Journal of

Convergence Information Technology 8.14

(2013): 13-28.

[10] Bertino, Elisa, and Ravi Sandhu. "Database

security-concepts, approaches, and

challenges." Dependable and Secure Computing,

IEEE Transactions on2.1 (2005): 2-19.

[11] Elmasri, R. Navathe. Fundamentals of database

systems. Pearson, 2014.

[12] Eduardo Fern´andez-Medina, Juan Trujillo,

Rodolfo Villarroel, and Mario Piattini

Developing secure data warehouses with a uml

extension. Inf. Syst., 32(6):826–856, September

2007.

[13] Altamimi, Ahmad, and Todd Eavis. "PICM: A

practical inference control model for protecting

OLAP cubes." Web Applications and

Networking (WSWAN), 2015 2nd World

Symposium on. IEEE, 2015.

[14] Altamimi, Ahmad, and Todd Eavis. "OSSM: The

OLAP Security Specification Model.

" Databases Theory and Applications. Springer

International Publishing, 2014. 26-37.

[15] Kimball, Ralph. The data warehouse lifecycle

toolkit. John Wiley & Sons, 2008.

[16] Rizvi, Shariq, et al. "Extending query rewriting

techniques for fine-grained access

control." Proceedings of the 2004 ACM

SIGMOD international conference on

Management of data. ACM, 2004.

[17] Wang, Qihua, et al. "On the correctness criteria

of fine-grained access control in relational

databases." Proceedings of the 33rd

international conference on Very large data

bases. VLDB Endowment, 2007.

[18] Altamimi, Ahmad. “Securing OLAP Cubes”.

Lambert Academic Publishing, Germany, 2015.

ISBN 978-3-659-39290-0

[19] Altamimi, Ahmad, and Todd Eavis. "Securing

Access to Data in Business Intelligence

Domains." International Journal on Advances

in Security Volume 5, Number 3 & 4, 2012.

[20] Xiaolei Qian, "View-based access control with

high assurance," in Security and Privacy, 1996.

Proceedings., 1996 IEEE Symposium on , vol.,

no., pp.85-93, 6-8 May 1996

[21] Bender Gabriel, Kot Lucja, and Gehrke

Johannes. “Explainable Security for Relational

Databases.” Proceedings of the 2014 ACM

SIGMOD International Conference on

Management of Data, SIGMOD '14, 2014.

[22] Toledo R., Nunez A. Tanter E., and Katz S.

"Aspectizing Java Access Control," in Software

Engineering, IEEE Transactions on , vol.38,

no.1, pp.101-117, Jan.-Feb. 2012

[23] Stahl Thomas, and Markus Völter. “Model-

driven Software Development.” Technology,

Engineering, Management. Chichester,

England: J. Wiley & Sons, 2013.

WSEAS TRANSACTIONS on COMPUTERS Ahmad Mousa Altamimi, Mahmood Ghaleb Albashayreh

E-ISSN: 2224-2872 73 Volume 15, 2016

[24] Marco Brambilla, Jordi Cabot, and Manuel

Wimmer. "Model-Driven Software Engineering

in Practice." Synthesis Lectures on Software

Engineering 2012 1:1, 1-182

[25] Georg Gottlob, Giorgio Orsi, and Andreas Pieris.

“Query Rewriting and Optimization for

Ontological Databases.” ACM Trans. Database

Syst. 39, 3, Article 25, 2014.

[26] Arnaud Giacometti, Patrick Marcel, and Elsa

Negre. “A framework for recommending OLAP

queries.” In Proceedings of the ACM 11th

international workshop on Data warehousing

and OLAP(DOLAP '08). ACM, New York, NY,

USA, 73-80.

[27] Saida Aissi, Mohamed Salah Gouider, Tarek

Sboui, and Lamjed Ben Said. “Personalized

recommendation of SOLAP queries: theoretical

framework and experimental evaluation.” In

Proceedings of the 30th Annual ACM Symposium

on Applied Computing (SAC '15). ACM, USA,

2015.

[28] George Spofford, Sivakumar Harinath, Chris

Webb, Dylan Hai Huang, Francesco

Civardi: “MDX-Solutions: With Microsoft SQL

Server Analysis Services 2005 and Hyperion

Essbase.” Wiley, 2006, ISBN 0-471-74808-0

[29] Mosha Pasumansky, Mark Whitehorn, Rob

Zare. “Fast Track to MDX.” Springer, 2006,

ISBN 1-84628-174-1

[30] Carl Nolan. "Manipulate and Query OLAP Data

Using ADOMD and Multidimensional

Expressions." Microsoft. Retrieved 2008.

[31] Alfredo Cuzzocrea, Ladjel Bellatreche, and Il-

Yeol Song. “Data warehousing and OLAP over

big data: current challenges and future research

directions.” In Proceedings of the sixteenth

international workshop on Data warehousing

and OLAP (DOLAP '13). ACM, USA, 2013.

[32] Alfredo Cuzzocrea. “Aggregation and

multidimensional analysis of big data for large-

scale scientific applications: models, issues,

analytics, and beyond.” In Proceedings of the

27th International Conference on Scientific and

Statistical Database Management, 2015.

[33] Boncz Peter, Zukowski Marcin, and Nes Niels.

“Monetdb/x100: Hyper pipelining query

execution.” 2005.

[34] OLAP Council: APB-1 OLAP Benchmark,

Release ii, 1998. http://www.olapcouncil.org/

research/bmarkly.htm.

Appendix A

• Query1:

SELECT {[Measures]·[loquantity],

[Measures]·[lodiscount]} ON COLUMNS,

{[customer]·[cregion]·CHILDREN} ON ROWS

FROM[Sales]

• Query2:

SELECT{[Measures]·[loquantity],

[Measures]·[lodiscount]} ON COLUMNS,

{[customer]·[cregion]·[AMERICA]} ON ROWS

FROM [Sales]

• Query3:

SELECT{[date]·[dyear]·[1998]} ON COLUMNS,

{[customer]·[c nation]·[CANADA],

[customer]·[cnation]·[UNITEDSTATES]}ON

ROWS

FROM [Sales] WHERE ([Measures]·[lo discount])

• Query4:

SELECT{[Measures]·[lodiscount]} ON

COLUMNS, {[part]·[pcategory]·[MFGR#11]} ON

ROWS

FROM [Sales]

WHERE ([date]·[dyear]·[1998],

[customer]·[cnation]·[CANADA])

• Query5:

SELECT [Measures]·[loquantity] ON COLUMNS,

{DESCENDANTS([supplier]·[sregion - snation -

scity]·[sregion]·[AMERICA],

[supplier]·[sregion - snation - scity]·[snation])} ON

ROWS FROM [Sales]

• Query6:

SELECT {[Measures]·[lo quantity]} ON

COLUMNS, {CROSSJOIN([part]·[p

brand1]·CHILDREN, [date]·[dyear]·[1998])} ON

ROWS FROM [Sales]

• Query7:

SELECT NON

EMPTY(FILTER({[customer]·[cregion]·CHILDRE

N},[customer]·[cregion]·CurrentMember·Name <>

’ AMERICA’)) ON COLUMNS,

NON EMPTY(FILTER({[date]·[dyear]·

CHILDREN}, [date]·[dyear]·CurrentMember·Name

WSEAS TRANSACTIONS on COMPUTERS Ahmad Mousa Altamimi, Mahmood Ghaleb Albashayreh

E-ISSN: 2224-2872 74 Volume 15, 2016

https://en.wikipedia.org/wiki/Special:BookSources/0471748080
https://en.wikipedia.org/wiki/Mosha_Pasumansky

> ’1997’)) ON ROWS FROM [Sales] WHERE

[Measures]·[lotax]

• Query8:

WITH MEMBER [Measures]·[profit] AS

’[Measures]·[lodiscount] *[Measures]·[loquantity]’

SELECT NON

EMPTY([date]·[dyear]·CHILDREN) ON

COLUMNS FROM [Sales] WHERE

([Measures]·[profit], [supplier]·[s nation]·[

Canada])

• Query9:

SELECT {[Measures]·[lo quantity] } ON

COLUMNS, FILTER

({[supplier]·[sregion]·MEMBERS}, [Measures]·[lo

quantity] > 30000000) ON ROWS

FROM [Sales]

• Query10:

SELECT {[Measures]·[lo discount], [Measures]·[lo

quantity]} ON COLUMNS,

FILTER(CROSSJOIN({[date]·[d

year]·[1995]:[date]·[d year]·[1997]}, {[part]·[p

mfgr]·CHILDREN}), [Measures]·[lo quantity] >

4670000) ON ROWS

FROM [Sale]

WSEAS TRANSACTIONS on COMPUTERS Ahmad Mousa Altamimi, Mahmood Ghaleb Albashayreh

E-ISSN: 2224-2872 75 Volume 15, 2016

