
Software Library for Fast Digital Input and Output for the Arduino
Platform

JAN DOLINAY, PETR DOSTÁLEK, VLADIMÍR VAŠEK

Department of Automation and Control Engineering
Tomas Bata University in Zlin

 nám. T. G. Masaryka 5555, 76001 Zlín
CZECH REPUBLIC
dolinay@fai.utb.cz

Abstract: - This article presents software library for the Arduino platform which significantly improves the
speed of the functions for digital input and output. This allows the users to apply these functions in whole range
of applications, without being forced to resort to direct register access or various 3rd party libraries when the
standard Arduino functions are too slow for given application. The method used in this library is applicable also
to other libraries which aim to abstract the access to general purpose pins of a microcontroller.

Key-Words: - Arduino, AVR, digitalRead , digitalWrite, embedded system, pin abstraction, software library

1 Introduction
Arduino is described as a prototyping platform
which consists of a board with microcontroller,
program libraries for this microcontroller and an
integrated development environment (IDE) for
writing the programs [1]. Started in 2005 to provide
cheap microcontroller platform for student projects,
Arduino gained enormous popularity in the do-it-
yourself community and made its way into the
educational institutions as well [2], [3]. There are
many books focused on this platform available [4],
[5] and it is even used in research projects as a
cheap and easy-to-use platform for controlling
various apparatus or performing experiments in
many areas. For example, [6] describes the use of
Arduino for controlling microfluidic devices, in [7]
extensive timing tests of Arduino programs are
described with respect to use of this platform in
psychological and neurophysiological experiments
and in [8] the platform is used for studying
lymphatic biomechanics in vitro.
Analyzing the reasons for the popularity of this
platform is beyond the scope of this article.
However, we believe it originates from the ease of
use combined with the low price of the hardware
and open source license, which lead to sharply
increasing number of users worldwide.
As it is clear with the hindsight, there was great
demand for cheap, easy to use microcontroller
platform, which would allow people without deep
knowledge of electronics and programming create
devices which interact with the outside world. In the

“pre-Arduino” era, the efforts of many such users
were fragmented among the various manufacturer-
specific microcontroller boards and development
environments. Once these users found a common
platform (the Arduino), the community started
growing quickly, attracting more and more users to
the platform and generating large collection of
libraries and example programs. Nowadays if one
needs to work with any sensor, it is very likely there
will be code examples and wiring diagrams for the
Arduino for this sensor; we can say that Arduino
became de facto prototyping standard.
Also educational institutions naturally follow this
trend and begin to use Arduino for teaching
embedded system design, programming courses and
similar subjects [3], [9], [10]. It is possible that it
will soon become de facto standard for this area
also. Our perception is that there is increasing
number of teachers who promote Arduino as
educational tool opposed by a group of teachers who
consider it inappropriate for serious education of
embedded systems programming.
One of the main arguments for Arduino in education
seems to be the ease of use, which helps to motivate
students [2]. Also, the big community of users
makes learning easier; students can obtain code
examples and answers to their questions quickly. As
stated in [2], including Arduino in the course
allowed students to create more interesting projects
because they were not limited by some of the
challenges of working with more advanced
development environments.

WSEAS TRANSACTIONS on COMPUTERS Jan Dolinay, Petr Dostálek, Vladimír Vašek

E-ISSN: 2224-2872 819 Volume 14, 2015

The opponents argue that there is a big gap between
Arduino and the real embedded world which
prevents most users from migrating to some real
IDE and real-world projects. The Arduino IDE is
very simple and there is no debugger. Another
argument can be the quality of the microcontroller
libraries provided with the platform. Interesting
discussion on this can be found in [11] (including
the reader’s opinions on the article).
In our view the suitability of Arduino for any course
depends on the aim of the course in the first place.
For example, for a future embedded programmer,
learning the high-level Arduino functions will not
be sufficient; such a student should gain solid
understanding of the device registers and skills in
working with development environment including
debugging the program. On the other hand, for
students who are not supposed to make their living
by embedded programming the platform may
provide all that is needed.
At our faculty we have two different courses which
deal with embedded systems – one is intended for
students focused on information technologies and
programming, the other is for students focused on
security technologies, where programming is a
marginal subject. For the latter, we plan to start
using Arduino in the upcoming semester, replacing
boards with Freescale HCS08 microcontroller used
so far. The reasons discussed above apply to this
course – it seems that the “barrier” of learning C
language in a full-featured IDE is too high for these
students. For the programming-focused course we
will continue to use more traditional approach
without Arduino, but in the oncoming
modernization of the equipment we chose a board
with Arduino compatible layout, with ARM based
microcontroller), so the hardware will be “Arduino-
friendly” even in this course. It should be mentioned
that a trend can be seen in the evaluation boards
offered by many microcontroller vendors to follow
Arduino pinout, allowing the users to utilize
Arduino expansion boards (shields). This means one
can choose from many boards with different
microcontrollers (and different development
environments) for the course and still have the
hardware compatible with other courses, institutions
and the do-it-yourself community.
For both the scientific and educational use it is
important to keep in mind that despite the
advantages and popularity, the Arduino platform is
not flawless. There is quite a big room for
improvement in the microcontroller software
libraries, although it is not easily visible to the
typical Arduino user, who is usually not an
experienced embedded developer.

In this article we want to present our software
library for Arduino which significantly improves the
speed of the functions for digital input and output
(I/O). The digital I/O is one of the areas where the
standard Arduino library leaves room for
improvement. The default implementation of the
digital I/O functions is not efficient and writing or
reading pins is much slower than it could be.
Although in most situations this is not a problem
and the speed of I/O operations is more than
sufficient, there are applications where the speed is
critical and the default functions cannot be used. In
such applications, the solution typically is using
direct register access, by which the program loses
the portability between different Arduino boards and
the implementation becomes very vendor
(hardware) specific. Another option is using 3rd
party libraries for fast digital I/O, but these libraries
typically improve the speed only in if the pin
number is known at compile-time (it is a constant).
In our solution we reach the goal of maximum speed
for constant pin numbers but also improve the speed
for non-constant pin numbers. This makes it
possible to use the same functions in whole range of
applications, without the need to resort to direct
register access or various 3rd party libraries when
the standard Arduino functions are too slow for the
task. The method used in our library is applicable
also to other libraries which aim to abstract the
access to general purpose pins of a microcontroller.

2 Problem Formulation
Arduino board interacts with the outside world by
means of input and output pins. The programming
model identifies these pins by a number, starting
from 0 up to the maximum available value,
depending on the board variant.
For digital I/O, Arduino library defines functions
digitalRead and digitalWrite which read (or write
to) a pin. These functions take pin number as input
argument. For example, the following line of code
will set pin 13 to logical 1 level (high):

digitalWrite(13, HIGH);

However, in the actual microcontroller, which is the
“brain” of the Arduino board, pins are not organized
into flat space. Instead, pins are grouped into ports,
each port having typically 8 pins. The ports are
named by capital letters A, B, C, etc. Therefore, we
have pins 0 thru 7 on port A, pins 0 thru 7 on port B
and so forth.
In a traditional embedded program one controls the
pins by setting and clearing bits in special registers

WSEAS TRANSACTIONS on COMPUTERS Jan Dolinay, Petr Dostálek, Vladimír Vašek

E-ISSN: 2224-2872 820 Volume 14, 2015

which control each port separately. This low-level
programming is (arguably) hard to understand for
beginners and one of the reasons for Arduino’s
success is probably the fact, that it hides this and
other hardware related details behind easy-to-use
functions, such as the digitalWrite. Nevertheless, the
Arduino software library has to translate the linear
pin number to the corresponding port and pin. The
efficiency of this translation then determines the
performance of the library. And what seems like an
easy task proves to be a tricky problem.

2.1 Implementation used in Arduino
Arduino library uses the following approach to
translate the Arduino pin number to
microcontroller pin and port. There is an array
stored in memory which maps pin number to
port number. The number of elements in this
array is the same as the number of pins
available in given board.
Figure 1 shows part of this array for Arduino
Uno board.

 Fig. 1 Code which defines the mapping of pin number to
port number

The PD and PB symbols seen in figure 1 are
constants which represent zero-based port
number (0 for port A, 1 for port B, etc).
As follows from the definition seen in figure 1,
Arduino pins 0 through 7 are located on port D,
pins from 8 up are on port B.
For mapping the port number to the actual
address of the MCU register which controls this
port there is a second array, shown in figure 2.
In fact, there are several similar arrays for the
various registers involved in controlling digital
I/O. This is also the reason why the pin-to-
register mapping is two-staged (pin-to-register
number; register number-to-register address).

Fig. 2 Code which defines the mapping of port number to
port register address

If the mapping was simple pin-to-register
address, then each of the arrays with register
addresses would have to contain as many
elements as there are available pins on the
board; which can be a high number. For
example, there are over 50 pins in Arduino
Mega board. Such solution would consume too
much memory.
As already mentioned, functions for digital I/O,
such as digitalWrite, receive pin number as
input argument. It is then used as the index into
the first array to obtain register number for
given pin. This register number is consequently
used as the index into the second array to obtain
the address of the register.
The arrays are saved in program memory (flash)
rather than in RAM, because the amount of
RAM is typically very limited in
microcontrollers. The speed of reading from
flash memory is lower than from the RAM, but
not significantly. For example, the AVR MCU
used in Arduino needs 3 clock cycles to read
from flash (LPM instruction) and it needs 2
clock cycles to read from RAM (LDS
instruction).

2.2 Existing solutions for faster speed
There are ongoing discussions about the digital
I/O efficiency in Arduino, dating for many
years back in the community, for example in
[12] and [13]. These discussions seem to
concentrate on two possible approaches. One is
the approach used currently in Arduino library,
which results in slow I/O operations no matter
if the pin number is given as a constant known
when the program is compiled (compile-time
constant) or as a variable. The second approach
uses preprocessor macros and results in a fast
digital read and write if the pin number is
compile-time constant and slow code if the pin

WSEAS TRANSACTIONS on COMPUTERS Jan Dolinay, Petr Dostálek, Vladimír Vašek

E-ISSN: 2224-2872 821 Volume 14, 2015

number is a variable. This second version is
used in the Wiring framework [14], which is the
predecessor of Arduino. It provides very fast
operation for constant pins (0.2 microseconds)
but is slow (5 microseconds) for pin numbers
stored in variables. The first option, currently
adopted in Arduino, is slow (5 microseconds) in
both cases.
From this short summary it would seem that the
latter method is better, but the implementation
is more complicated and also the effort needed
to switch the Arduino software from existing
approach to a different one would be
considerable.
While the discussions concentrate on arguments
for or against one of the above mentioned
approaches, neither of these methods provides
fast results for pins stored in variables. We
realized there is a third method which could
solve this problem. This method is based on
encoding the information about pin and port
mapping into the pin name–which we used and
which proved to provide fast code both for
constant and non-constant pin numbers. The
implementation and performance of our library
based on this method is described below.

3 Problem Solution
In general, the translation of linear pin number used
in Arduino to the port and pin as used in the actual
hardware requires time. This time can be spent
during the execution of the program (in the
runtime), as it is in current Arduino implementation,
or it can be spent during compilation of the
program, as it is in the Wiring implementation in
case the pin number is a compile-time constant.
Obviously, the latter is better; the program can run
much faster if the relatively low-performance MCU
processor is not required to perform any calculations
while writing or reading pins. However, this latter
approach does not improve the situation for
programs which do not use the pin as a compile-
time constant but as a variable. In such case the
translation must be again performed by the MCU in
runtime.
In our implementation we aimed to minimize the
need for computing power in the MCU and the
result of experiments with various options showed
that the best choice is to encode the port and pin
information into the input argument of the digital
I/O functions. We call this input argument pin code.

Apparently, if the input argument of the I/O
functions is a simple integer 0 thru N, as it is in the
Arduino library, it is not possible to encode any
information into it. There needs to be one level of
indirection added so that the input argument for the
functions is not the pin number directly, but some
symbolic name which can internally represent any
value.
The native input argument for our I/O functions is
therefore a symbolic name of the pin, such as DP1.
Even though it should be very easy for the
programmers to use pre-defined names for pins
instead of simple integers, for example, writing
digitalWrite(DP1, HIGH)
instead of
digitalWrite(1, HIGH),
we realize that it could be off-putting for some
users. Therefore we created also I/O functions
which take pin number directly as it is common in
the Arduino library. This additional layer performs
translation of the simple pin number into the pin
code used in the lower level. This translation is
performed in the runtime, but is very simple
(mapping one integer to another), so the resulting
speed is still considerably higher than in the
standard Arduino implementation.
Our functions are organized into library called DIO2
and described in the following section.

3.1 Implementation of the DIO2 library
As mentioned earlier, we encode the port
address and pin number into a single number,
called pin code. Our functions for digital I/O
receive this pin code from the caller and parse it
to obtain the appropriate port register address
and pin mask. Describing details of the
implementation in C language is beyond the
scope of this article. Let us just outline the basic
principles here.
In general, the pin code is an integer, but it is
more suitable to use enum data type in C
language and define the available pins for given
board this way. Required size of the pin code
depends on the MCU architecture; it needs to
hold the address of an I/O registers of the MCU
(or suitable offset from some common base
address) and also the pin bit mask. For the 8-bit
Atmel AVR microcontrollers used in Arduino
Uno and Mega boards, 16-bit size of pin code is
sufficient. For 32-bit MCUs the size could be
32-bits without affecting the performance.

WSEAS TRANSACTIONS on COMPUTERS Jan Dolinay, Petr Dostálek, Vladimír Vašek

E-ISSN: 2224-2872 822 Volume 14, 2015

Figure 3 shows the structure of the pin code for
the AVR microcontroller:

Fig. 3 Structure of the pin code used in our DIO2 library

As can be seen in the figure, the lower byte
stores the address of the port register and the
upper byte holds the bit mask for the pin within
this register.
For example, Arduino pin 13 (where LED is
connected on the standard board) is actually pin
5 on port B in the microcontroller namespace
(pin PB5). The address of the data register for
port B is 25 hexadecimal (25h). The bit mask
for pin 5 is 00100000 in binary, which is 20h.
The resulting pin code for pin 13 is therefore:
2025h.
It is worth mentioning that the decision to store
pin bit mask rather than pin number in the pin
code is based on the fact that the seemingly
simple operation of bit shift for obtaining pin
mask from pin number is costly in terms of
CPU time if the pin number is not known at
compile-time. This is because it results in a loop
with number of repetitions (shifts) depending
on the (variable) pin number.
As stated earlier, there is also additional layer in
the library which allows using the new
functions in the same way as the original ones,
i.e. with simple integer pin numbers. At this
level, pin number is converted into pin code
using array in program memory where the index
of the element is the pin number and the value
stored in this element is the pin code. This
decreases the speed, but the functions are still
significantly faster than the original I/O
functions in the Arduino library.

3.2 Speed comparison
To evaluate the speed of our library, we
performed speed tests with the digitalWrite
function from our library and with the standard
Arduino implementation of this function. These
tests were carried out with the standard Arduino
Uno board and the Arduino Mega board. These

are the only two Arduino variants for which the
library is currently available.
It should be mentioned that the tests are
intended to show the speed of the two
implementations relative to each other rather
than to measure the exact time it takes to
execute the functions. As we are working with
deterministic digital computer system, the speed
of the functions would be accurately given in
number of clock cycles and this number of
clock cycles would be obtained by analyzing
the resulting assembly code for the functions.
By measuring absolute time we would be
actually measuring the variation of the
frequency of the clock generator and other
components of the system, which will
dependent on many external factors such as
input voltage, temperature, etc. Measuring the
execution time is therefore not a good method if
the purpose was to provide precise timing
information, but it is easy to perform and for the
purpose of comparison, it is acceptable.
The comparison of digitalWrite function in our
DIO2 library and the standard Arduino
implementation is given in Figure 4. The results
were obtained using simple program which
toggles output pin at full speed and measuring
the resulting signal on the pin with oscilloscope
Owon HDS1022M. The graph shows how long
it takes to execute the digitalWrite function
once, i.e. set an output pin high or low. The
times on the horizontal axis are given in
microseconds.

Fig. 4 Comparison of the time it takes to perform single
digitalWrite

WSEAS TRANSACTIONS on COMPUTERS Jan Dolinay, Petr Dostálek, Vladimír Vašek

E-ISSN: 2224-2872 823 Volume 14, 2015

The meaning of the labels used in the figure is
as follows:
• Arduino – standard implementation as it is

included in the Arduino library.
• Arduino modified – standard

implementation in Arduino but without
code which checks whether given pin is
used by a timer. This check is part of the
standard Arduino digitalWrite
implementation even though it seems
unnecessary. It is not implemented in our
library, so we measured the speed of the
standard Arduino implementation also
without this check to provide fair
comparison.

• DIO2 integer pin – our functions with the
additional layer which allows calling these
functions with simple pin number in the
same way as the standard Arduino
functions.

• DIO2 native pin – our functions without
the additional layer; these functions take
pin code instead of simple integer.

For the DIO2 functions there are always two
values given: one for the case when the pin is
known at compile-time (constant) and the other
for pin not known at compile-time (variable).
For the Arduino version only one value is
given, because the speed is the same for both
compile-time constant pin numbers and pin
numbers stored in variables.
As can be seen in the figure, it takes about 5
microseconds to change the output pin level
with the default Arduino implementation. With
our implementation, it is possible to achieve
less than 0.2 microseconds if constant pin code
is used – which is possible in most applications.
In this case the code of digitalWrite function
translates into single processor instruction after
compilation so the function is as fast as if one
used direct register manipulation.The program
used for testing is shown in figure 5.

3.3 Use of the library
The library offers the same digital I/O functions
as the standard Arduino library, with “2” added
to the name: digitalRead2, digitalWrite2 and
pinMode2.

Fig. 5 Program used for comparison of the speed of the
DIO2 and standard Arduino digitalWrite.

These functions are fully compatible with
Arduino version, taking pin number as input
argument. The faster, native functions which
take pin code as input argument have “f” added
to the name: digitalRead2f, and so on.
Typical way of extending the Arduino software
is using the Arduino library mechanism
available in the IDE. Therefore the DIO2 is
available as a library, which the user can import
into his or her Arduino installation. However,
there is one extra step required – a file with
definition of the pin codes for each board needs
to be copied into appropriate location in the
Arduino directory structure. This is because in
the Arduino library mechanism there is no
compile-time information about the board
selected and no way to place board-specific
files in some subfolder within the library’s
folder. Alternatively, the user can copy all the
DIO2-library files directly into the Arduino
directory structure and bypass the library
mechanism.
The usage of the DIO2 function in user program
is the same as with the original functions, only
the names are slightly different, as described

WSEAS TRANSACTIONS on COMPUTERS Jan Dolinay, Petr Dostálek, Vladimír Vašek

E-ISSN: 2224-2872 824 Volume 14, 2015

above. When using the faster (native) functions
with pin code, the variables for storing pins
must be declared with the proper type instead of
the int type used normally in Arduino. The
following figure shows program which blinks
LED on pin 13 using the faster functions:

Fig. 6 Example program using the presented DIO2 library

4 Conclusion
In this article we described our library for the
Arduino platform which allows performing
operations on digital pins faster than the standard
version shipped with the platform, while remaining
easy to use and portable. It is currently implemented
for three Arduino variants, Uno, Mega and micro,
but porting to other boards is simple.
The library makes it possible to use the same
functions in whole range of applications, without the
need to resort to direct register access when the
standard Arduino digital input and output functions
are too slow for given task. Given the fact that
Arduino is now widely used both in computer
education and scientific experiments, the library can
contribute to easier and more reliable realization of
these activities. In addition, we believe that the
method for abstracting access to general purpose
pins of a microcontroller described in this article
represents solution which leads to good performance
in any library with this purpose and can therefore be
interesting to anyone who needs to implement such
a library, for example when creating his or her own .

The work was performed with financial support of
research project NPU I No. MSMT-7778/2014 by
the Ministry of Education of the Czech Republic
and by the European Regional Development Fund
under the Project CEBIA-Tech No.
CZ.1.05/2.1.00/03.0089.

References:
[1] Arduino, Open-source electronics prototyping

platform, Available: http://arduino.cc.
[2] P. Jamieson, Arduino for Teaching Embedded

Systems. Are Computer Scientists and
Engineering Educators Missing the Boat?,
Available:
www.users.muohio.edu/jamiespa/html_papers/f
ecs_11.pdf, 2015.

[3] P. Bender, K. Kussmann, Arduino based
projects in the computer science capstone
course, Journal of Computing Sciences in
Colleges, Vol. 27, No. 5, 2012, pp. 152-157.

[4] J. Oxer, H. Blemings, Practical Arduino: Cool
Projects for Open Source Hardware, New
York, Springer-Verlag, 2009.

[5] M. Banzi, Getting Started with Arduino,
O'Reilly Media Inc., Sebastopol, 2009.

[6] E. T. da Costa, M. F. Mora, P. A.Willis, C. L.
do Lago, H. Jiao, and C. D. Garcia, Getting
started with openhardware: Development and
control of microfluidic devices.
Electrophorensis 35 (2014), pp. 2370–2377.

[7] A. D’Ausillio, Arduino: A low-cost
multipurpose lab equipment. Behavior
Research Methods, 2011, 44, 305-313.

[8] J. A. Kornuta, M. E. Nipper, J. B. Dixon, Low-
cost microcontroller platform for studying
lymphatic biomechanics in vitro, Journal of
Biomechanics, 2013, 46, pp. 183-186.

[9] B. M. Hoffer, Satisfying STEM Education
Using the Arduino Microprocessor in C
Programming, 2012, Electronics Theses and
Disertations, Paper 1472.

[10] S. Jacques, Z. Ren, S. Bissey, A. Schellmanns,
N. Batut, T. Jacques, E. Pluvinet, An
innovative Solar Production Simulator to better
teach the foundations of photovoltaic energy to
students, WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION,
Vol. 11, 2014, pp. 11-20.

[11] Why Arduino is not the right educational tool,
Available:
http://www.hackvandedam.nl/blog/?p=762.

[12] Arduino, Arduino Issues list, Available:
https://code.google.com/p/arduino/issues/detail
?id=140.

[13] Arduino, Arduino forum, Available:
http://arduino.cc/forum/index.php/topic,46896.
0.html.

[14] Wiring, Home page, Available:
http://wiring.org.co.

WSEAS TRANSACTIONS on COMPUTERS Jan Dolinay, Petr Dostálek, Vladimír Vašek

E-ISSN: 2224-2872 825 Volume 14, 2015

