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Abstract: -In this paper, a novel model of 3D elastic mesh is presented for image segmentation. The model is 
inspired by stress and strain in physical elastic objects, while the repulsive force and elastic force in the model 
are defined slightly different from the physical force to suit the segmentation problem well. The self-balancing 
mechanism in the model guarantees the stability of the method in segmentation. The shape of the elastic mesh 
at balance state is used for region segmentation, in which the sign distribution of the points’ z coordinate values 
is taken as the basis for segmentation. The effectiveness of the proposed method is proved by analysis and 
experimental results for both test images and real world images. 
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1 Introduction 
Self balancing is a mechanism exists in many 
natural systems. In such phenomena, a system has 
the mechanism of counteracting the external 
influence to weaken the change brought by those 
external interventions. For example, when a solid 
elastic object deforms due to external force, there 
will be internal force (stress) between the local parts 
inside the object emerging simultaneously with the 
deformation [1-4]. The stress resists the effect of the 
external force, which may prevent further more 
deformation if they reach equilibrium [1-4]. A 
simple demonstration is shown in Fig. 1.  

 
(a) original shape of the elastic grid without any external force 

 

 
(b) the deformation of elastic grid caused by the external force, 

and the effect of stress 
 

Fig. 1 A simple demonstration of stress on an elastic grid 
 

Another example can be found in chemical 
reversible reaction [5]. When increasing the amount 
(or density) of one reactant, the reaction will be 
promoted to the direction of consuming more 
reactant whose amount has just been increased until 
new balance is reached, which is also the effect of 
weaken the change brought by external influence 
with balancing mechanism. Similar phenomena can 
be found in other natural systems such as gas or 
solution diffusion, balance of food chain, etc. 

In the self balancing mechanism mentioned 
above, the system’s state at new balancing point 
depends on the external influence (such as the 
number and amplitude of external forces, the 
amount of reactant added, etc.). In another word, the 
internal change (such as the deformation of an 
elastic object under forces) reflects the feature of the 
external influence. This idea may be the inspiration 
(or starting point) of designing novel methods for 
problem solving, if the self balancing mechanism 
matches the nature of the problem well. 

Image segmentation is a basic and important 
problem in image processing, which is fundamental 
for many practical tasks [6-8]. There have been 
extensive studies about image segmentation, and it 
is still one research focus in image processing. 
Many research efforts focus on this topic each year, 
and different methods have been invented for 
different practical tasks [6-12]. Practically, different 
segmentation methods suit different image types 
respectively. Image segmentation has been mapped 
to various solution frameworks such as 
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classification, optimization, or nature-inspired 
methods [6,11-18].  

In the authors’ previous work, a virtual elastic 
grid limited on 2D image plane was proposed for 
image segmentation, which limited the grid nodes 
only to move on the 2D image plane [12]. In order 
to obtain better segmentation results, and also to 
extend method’s adaptability for different image 
types, a novel method is presented in this paper, 
which can be regarded as the reformation of the 
previous method in [12]. A novel 3D elastic mesh is 
presented in the new method imitating the physical 
mechanism of stress and strain, which allows the 
nodes in the mesh to move in 3D space. In another 
word, the new method maps the segmentation 
problem to the deformation of a virtual 3D elastic 
mesh with analogy to the physical stress and strain 
in elastic objects.  
 
 

2 The Virtual Elastic Mesh on Digital 
Image 

Consider the problem of judging whether two 
adjacent image points belong to the same region. 
There are two aspects to be considered. First, if the 
features of the two pixels (such as greyscale, colour, 
etc.) are quite different, it is more likely that they 
belong to different regions. The more the difference 
between two adjacent pixels, the more likely they 
should be separated from each other in segmentation. 
In this paper, for an adjacent pixel pair, a virtual 
force is defined to represent the difference between 
adjacent pixels, which is named the “repulsion 
force”: 

1 ( )r aF K g g= ⋅ −                    (1) 

where Fr is the virtual repulsive force applied on a 
point by its adjacent neighbour point; g and ga are 
the greyscale values of the point and its neighbour 
respectively; K1 is a positive coefficient predefined. 
Here the positive direction of force is along the z 
coordinate axis in space. And the greyscale is taken 
as the feature for segmentation. The more greyscale 
difference, the larger the repulsion force between 
adjacent pixels. Moreover, if g is larger than ga (i.e. 
the point has larger greyscale value than its adjacent 
neighbour), it is pushed upward by its neighbour (i.e. 
its z coordinate will increase); otherwise, it will be 
pushed downward.  

Secondly, regions are always local parts in 
images, which indicates that pixels close to each 
other may belong to the same region. Usually, this 
assumption is reasonable for most part of the image, 
except the region borders. Therefore, another virtual 
force is defined to represent the possible connection 

between adjacent pixels, which is named the “elastic 
force”: 

2 ( )s aF K z z= ⋅ −                         (2) 

where Fs is the virtual elastic force (the force of 
stress) applied on a point by its adjacent neighbour; 
z and za are the z coordinate values of the point and 
its adjacent neighbour respectively; K2 is a 
predefined positive coefficient. If there is 
displacement between two adjacent pixels with 
respect to their original positions, the elastic force 
has the effect of pulling them closer. The larger the 
displacement, the larger the elastic force. Moreover, 
if z is larger than za (i.e. the point is lower than its 
neighbour on z coordinate), it will be pulled upward 
by its neighbour; otherwise it will be pulled down. 
In either case, the difference of z coordinate will be 
decreased by the elastic force. It should be noted 
again that for both the virtual repulsive force and the 
elastic force, the force direction is along the z 
coordinate axis in space for simplicity in simulation. 
A simple demonstration of the repulsive and elastic 
force for two adjacent pixels in image is shown in 
Fig. 2, where the pixels are represented by squares 
with corresponding greyscale value, and their 
heights represent the values of z coordinates. In Fig. 
2, A and B are two adjacent pixels, and A has larger 
greyscale value than B. There is repulsive force 
between A and B, which is represented by FrAB and 
FrBA. And there is also elastic force, which is 
represented by FsAB and FsBA. In another word, the 
forces on A applied by B are FrBA and FsBA 
respectively. 

 
Fig. 2 A demonstration of the repulsive and elastic force in 

digital image 
 

Based on the above two virtual forces, a virtual 
elastic mesh for image segmentation can be 
established based on an analogy of physical strain 
and stress. All the image points are considered as 
the points in the mesh, and there are elastic 
connections between adjacent image points. Initially, 
all the points are on the same image plane. The 
space position of each point is described by three 
coordinates: x, y and z, where x and y are the point’s 
positions on the image plane. For each point, it 
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applies two kinds of virtual force on its adjacent 
points: the “repulsion force” and the “elastic force”, 
which will cause the points to move. For simplicity, 
it is supposed that all the points can only move 
vertically (i.e. perpendicular to the image plane). 
Therefore, in the dynamic deformation of the mesh 
shape, the x and y coordinates of each point keep 
unchanged, and only the z coordinate can change by 
the virtual force. 

 

3 Image Segmentation Based on the 
Virtual Elastic Mesh 

 
3.1 The simulation process 
The two kinds of virtual forces between adjacent 
points are analyzed as follows. For any pair of 
adjacent points A and B, if A has larger greyscale 
than B, A applies a virtual repulsive force to push B 
down; otherwise, A applies a repulsive force to push 
B up. The larger the greyscale difference, the larger 
the repulsive force. In either case, the repulsive 
force causes the adjacent points to get away. On the 
other hand, for any pair of adjacent points A and B, 
if A has a larger value of z coordinate than B, A 
applies a virtual elastic force to pull B up; otherwise, 
A applies an elastic force to pull B down. In either 
case, the elastic force causes the adjacent points to 
get closer. The opposite effects of the repulsive and 
elastic force may reach balance for an image after a 
dynamic process, and the shape (i.e. the z 
coordinates of the image points) of the virtual mesh 
may become stable at balance, which may reveal 
some feature of image structure. 

There is a difference between the repulsive force 
and the elastic force: the repulsive force depends 
totally on the greyscale difference between adjacent 
pixels, and keeps unchanged for a pair of adjacent 
points; while the elastic force depends on the height 
difference (i.e. the difference between the z 
coordinates) of adjacent points, which is changing in 
the process. 

Since the method is an artificial simulation 
imitating the physical strain and tress in elastic 
materials, there are several simplifications in the 
above process compared to the actual physical 
system. First, the movement of points is limited to 
the vertical direction, i.e. only the z coordinate is 
changed in the process. Second, the virtual elastic 
force is defined as proportional to the difference of z 
coordinates between adjacent points, not the three-
dimensional distance between them. Third, the 
change of a point’s z coordinate is defined as 
proportional to the total force on it: 

3 netz K FΔ = ⋅                             (3) 

where Δz is the variation of the point’s z coordinate 
due to the resultant force Fnet by summing up all 
the repulsive and elastic forces from its adjacent 
points; Fnet is the resultant force considering all the 
adjacent points; K3 is a predefined positive 
coefficient. However, in physics the total force 
only determines the change of velocity. Because 
the model is an artificial one which exploits the 
physical mechanism of self balancing, the above 
simplification is reasonable for simulation, and the 
effectiveness can be proved by the experimental 
results shown in following sections. 

The steps of the simulation process are as 
follows: 
Step1 Initialize the z coordinates of all the points as 

zero; 
Step2 Calculate the repulsive force for each pair of 

adjacent points according to their greyscale 
difference; 

Step3 Calculate the elastic force for each pair of 
adjacent points according to their z coordinate 
difference; 

Step4 For each image point, calculate the net force 
Fnet by summing up all the repulsive and 
elastic forces from its adjacent points (4-
connection adjacent points); 

Step5 For each point, update its z coordinate with 
the calculated Δz; 

Step6 If the mesh is close enough to the balance 
state, stop the simulation; otherwise, return to 
step3. The stop condition can be implemented 
by comparing the average change of z to a 
predefined small threshold. 

 
 

3.2 Model analysis and simulation results for 
simple test images 

A detailed analysis of the above process is as 
follows. At the beginning, all the points are on the 
same image plane, and there is only repulsive force 
but no elastic force between adjacent points. The 
repulsive force causes the adjacent points with 
greyscale difference to separate in z coordinate. The 
vertical height difference in turn causes the 
emergence of elastic force, and the deforming of the 
mesh shape begins. The virtual elastic mesh deforms 
its shape until a balance state is reached. 

The effect of the above dynamic process can be 
analyzed for two different cases. The first case is for 
adjacent pixel pairs of large greyscale difference, 
such as the points at the region borders. In such case, 
the repulsive force is strong because of the large 
greyscale difference. The relatively large repulsive 
force can causes large difference in z coordinate 
between adjacent pixels, and the height difference in 
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turn causes the elastic force to counteract the mesh 
deformation. In this case, the strong repulsive force 
is the dominant factor. As a consequence, for the 
pixel pair, the z coordinate of one pixel will become 
positive while the other will become negative. In 
another word, the pixel with higher greyscale will 
be pushed up above the image plane, while the one 
with lower greyscale will be pushed down below the 
image plane. This just represents the differentiation 
of two different regions. 

The second case is for adjacent pixel pairs with 
small greyscale difference, such as adjacent pixels 
within the same region. Here the repulsive force is 
weak due to the small greyscale difference. 
Therefore, the dominant factor in this case is the 
elastic force, especially when there is obvious height 
difference between adjacent points. The elastic force 
tends to decrease the height difference between 
adjacent points. It counteracts the deformation of the 
mesh, and tends to draw the adjacent points back to 
the same height. As a consequence, the points 
within a same region tend to have the same sign of z 
coordinate (i.e. all above or all below the image 
plane within the same region).  

A brief demonstration of the above process is 
shown in Fig. 3. The arrows in Fig. 3 represent the 
repulsive force or elastic force defined in Section 2. 
As shown in Fig. 3, the eight pixels (or nodes) on 
the left side have higher greyscale value than those 
eight pixels on the right side, therefore there is 
greyscale difference between the two sides. Fig. 3(a) 
shows the initial state of the virtual mesh, in which 
all the points in the image have the same value of z 
coordinate (i.e. the same height), and the only force 
in the mesh is the repulsive force at region borders 
(i.e. no elastic force at beginning). It can be seen in 
Fig. 3(a) that all the nodes of the mesh are on the 
same plane (i.e. x-y plane or image plane). In Fig. 
3(b), the height difference occurs across the region 
boundary due to the repulsive force, which in turn 
causes elastic forces between adjacent points. Fig. 
3(c) shows the ideal final state of the virtual mesh at 
balance, in which the repulsive and elastic forces are 
at balance at region borders, and the heights of the 
points become identical (i.e. no force exists) inside 
each homogeneous region of uniform greyscale. It 
can be seen in Fig. 3(c) that the nodes on the right 
have been lifted above their original position on z 
direction, while the nodes on the right have been 
pressed down below their original position on z 
direction. The mesh shape at balance state can 
provide clues for segmentation, because the adjacent 
regions have opposite sign of z coordinate (i.e. 
opposite sign of height value). 

 

 
(a) the initial state of the virtual mesh 

 

 
(b) the deforming process of the virtual mesh 

 

 
(c) the final ideal state of the mesh at balance 

 
Fig. 3 Demonstration of the evolving process of the virtual 

elastic mesh on digital computer 
 

The difference between the above two cases just 
satisfies the requirement of differentiating adjacent 
regions. At the boundary of two different regions, 
the points’ z coordinate difference is large, and the 
sign of the z coordinate reverses across the boundary 
after mesh deforming, because at one side the points 
are pushed up above the image plane, while at the 
other side the points are pushed down below the 
plane. However, the z coordinate of points within a 
same region has a tendency of uniform distribution 
by the effect of elastic force. The final result of 

WSEAS TRANSACTIONS on COMPUTERS Xiaodong Zhuang, N. E. Mastorakis, Jieru Chi, Hanping Wang

E-ISSN: 2224-2872 808 Volume 14, 2015



 

 

mesh deforming may reflect the differentiation of 
adjacent regions, which will provide clues for 
segmentation.  

The simulation experiments have been carried 
out for a group of simple but typical test images by 
programming in C. Some of the results are shown in 
Fig. 4 to Fig. 9.  

Fig. 4 shows the simulation results of the mostly 
simple case: the left and right half of the image are 
of different greyscale, which can specifically reveal 
the effect of the model on region borders. In order to 
demonstrate the process of mesh deforming step by 
step, the intermediate results at several specific 
simulation step numbers are recorded. In Fig. 4(b) to 
Fig. 4(f), the white and black points represent the 
positive and negative sign of height (i.e. z 
coordinate) respectively, and the gray points 
represent that the height is zero (i.e. not a definite 
sign yet). In Fig. 4(b), it can be seen that shortly 
after the simulation starts, only the points close to 
the region border have a definite sign of height. 
From Fig. 4(c) to Fig. 4(f), it is clear that the part of 
definite sign of height expands with the increasing 
of simulation time. Finally, in Fig. 4(f) each point 
has a definite sign (positive or negative) of height, 
and the final result of sign distribution just 
corresponds to the segmentation of the two halves of 
the image by different sign of height. 

 

 
(a) Test image 1 

 
 

 
(b) sign distribution of net carrier after 5 simulation iterations 

 
 

 
(c) sign distribution of net carrier after 10 simulation iterations 

 

 
(d) sign distribution of net carrier after 20 simulation iterations 

 

 
(e) sign distribution of net carrier after 40 simulation iterations 

 

 
(f) sign distribution of net carrier after 80 simulation iterations 

 
Fig. 4 The experimental results for Test image 1 

 
 
Fig. 5(a) shows another test image, which has a 

rectangle region. The intermediate results are shown 
from Fig. 5(b) to Fig. 5(f). It is clear that the 
positive sign part expands outward from the 
rectangle border, while the negative sign part 
expands inward with the increasing of simulation 
time. Similarly, the final result of sign distribution 
of heights in Fig. 5(g) can also support a definite 
segmentation of the Test image 2. 
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(a) Test image 2 

 

 
(b) sign distribution of net carrier after 5 simulation iterations 

 

 
(c) sign distribution of net carrier after 10 simulation iterations 

 
 

 
(d) sign distribution of net carrier after 20 simulation iterations 

 

 
(e) sign distribution of net carrier after 40 simulation iterations 

 
 

 
(f) sign distribution of net carrier after 60 simulation iterations 

 

 
(g) sign distribution of net carrier after 100 simulation iterations 

 
Fig. 5 The experimental results for Test image 2 

 
 

In order to give a clear and visible impression of 
the deforming elastic mesh, the height (i.e. z 
coordinate) of each point is recorded in the 
experiment. Fig. 6 shows mesh shape in 3D view for 
Fig. 5(g) after 100 simulation iterations. The x and y 
coordinate in Fig. 6 are the coordinates of points on 
the image plane (i.e. the x-y plane with z=0 
corresponds to the image plane). The z coordinate 
represent the height of the mesh nodes. Since the 
rectangle region in Fig. 5(a) has lower greyscale 
than the background region, it can be clearly seen 
that the rectangle region corresponds to a valley of 
low height in Fig. 6. The points within that valley 
have negative sign of z coordinate, while the points 
outside it have positive height values. That can 
provide the basis for the segmentation. 

Fig. 7(a) shows a test image which has three 
regions of different shape and greyscale. The 
intermediate results are shown from Fig. 7(b) to Fig. 
7(e). The process of region formation by the mesh 
deformation step by step can be clearly seen. In Fig. 
7(f), the three regions in Test image 3 have negative 
sign of height value, but the background has 
positive height value. 

In the experiment for Test image 3, the height 
(i.e. z coordinate) of each point is recorded. Fig. 8 
shows the mesh shape in 3D view for Fig. 7(f) after 
80 simulation steps. The x and y coordinate in Fig. 8 
are the coordinates of points on the image plane. 
The z coordinate represent the height of points. It 
can be clearly seen that the regions of circle, triangle 
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and rectangle correspond to three valleys of low 
height in Fig. 8. The points within the three valleys 

have negative sign of z coordinate, while the points 
outside them have positive height values.  

 
 
 

 
Fig. 6 The shape of the elastic mesh after 100 simulation iterations for Test image 2 

  
 

 
(a) Test image 3 

 

 
(b) sign distribution of net carrier after 5 simulation iterations 

 
 

 

 
(c) sign distribution of net carrier after 10 simulation iterations 

 

 
(d) sign distribution of net carrier after 20 simulation iterations 
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(e) sign distribution of net carrier after 40 simulation iterations 

 

 
(f) sign distribution of net carrier after 80 simulation iterations 

 
Fig. 7 The experimental results for Test image 3 

 

 
Fig. 8 The shape of the elastic mesh after 80 simulation iterations for Test image 3 

 
 
In order to quantitatively investigate the mesh 

deformation process, the average of the absolute 
value of Δz for all the points is calculated and 
recorded as a measurement of mesh shape variation 
(i.e.  the convergence degree to the balance state). 
Fig. 9 shows the relationship between that average 
value and the simulation time. In Fig. 9, the 
variation of mesh shape decreases with the 
increasing of simulation time, which indicates the 
mesh approaches the balance state with the 
simulation going on. 
 

 
the number of simulation iteration 

 
Fig. 9 The relationship between the average change of height 

and the simulation time (for Test image 3) 
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Here another feature of the proposed model is 
discussed as follows. Although the virtual repulsive 
force and elastic force are defined locally for each 
pair of adjacent points, the mesh is integrated as a 
whole by elastic connections between adjacent 
pixels. With the elastic connection, the interaction 
between local adjacent pixels can affect other image 
areas gradually by the evolving of the system. 
Finally, balance can be reached at both local and 
global level, and a certain shape of the mesh can 
emerge, which is useful to image segmentation. 
 
3.3 Segmentation of real world images based 

on the virtual elastic mesh 
In the above experimental results for the test images, 
it is shown that the sign of height values are 
opposite in two different adjacent regions, which 
can provide the basis of region separation. In order 
to obtain the segmentation result from the sign 
distribution of the height value, a region clustering 
approach is proposed as following: 
Step1: Implement the simulation of elastic mesh 

deformation as proposed in section 3.1; 
Step2: Obtain the sign distribution of the height 

value (i.e. z coordinate) in the mesh; 
Step3: Group the adjacent points with the same sign 

of height value into connected regions. In the 
region clustering process, the adjacent pixels 
of the 4-connection (i.e. the upper, lower, 
left and right pixels) for an image point p is 
investigated. If any of the four adjacent 
pixels has the same sign of height value as p, 
it is grouped into the region which p belongs 
to. The obtained connected regions are the 
result of region segmentation. 

The obtained set of connected regions is the result 
of region segmentation. Fig. 10 to Fig. 12 show the 
region clustering results for Fig. 4(f), Fig. 5(g) and 
Fig. 7(f), where different regions are represented by 
different gray-scale values. 
 
 
 

 
Fig. 10 The region clustering result for Fig. 4(f) 

 

 
Fig. 11 The region clustering result for Fig. 5(g) 

 

 
Fig. 12 The region clustering result for Fig. 7(f) 

 
However, real world images are much more 

complex than the simple test images. To investigate 
the effect of the proposed method on real world 
images, experiments are carried out for a series of 
real world images. For demonstration, some of the 
results are shown in Fig. 13 to Fig. 18, which are for 
the broadcaster image, the peppers image, the 
locomotive image, the flower image and the medical 
heart image. The experimental results indicate that 
the proposed method can obtain large amount of 
regions (more than a hundred) because of the 
complexity of real world images. There are 169 
regions obtained for the broadcaster image, 101 for 
the peppers image, 309 for the locomotive image, 
943 for the flower image, and 400 for the medical 
heart image. 

To obtain practically useful segmentation result, 
a region merging method is proposed for the above 
segmentation results of real world images based on 
the gray-scale similarity of adjacent regions. First, 
an expected number of remaining regions after 
merging is given (usually by trail). Then the 
following steps are carried out to merge regions 
until the expected region number is reached: 
Step1: For each region in the image, calculate its 

average gray-scale value. 
Step2: Find the pair of neighboring regions with the 

least difference of the average gray-scale, and 
merge them into one region. 

Step3: If current region number is larger than the 
expected region number, return to Step1; 
otherwise, end the merging process. 

In Fig. 13 to Fig. 17, the figures show the 
original image, the sign distribution of height value 
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in the deformed mesh, the region segmentation 
results by clustering, and also the result of region 
merging by the method proposed above. In the sign 
distribution of height value, the white points 
represent positive z coordinate, and black points 
represent the negative height value. In the region 
segmentation results and region merging results, 
different regions are represented by different 
greyscale values. 

 

    
(a) the broadcaster image            (b) the sign distribution of net  

carrier at balance state 
 

   
(c) the region segmentation       (d) the merging result for (c)  
     result for (b) 
 

Fig. 13 The experimental result for the broadcaster image 
 

For the broadcaster image, the number of 
remained regions after merging is 20 in Fig. 13(d). 
Because the hair and the suit are both black, they are 
segmented as one region in Fig. 13(d). The eye and 
brow, nose and mouth are well segmented in the 
merged result.  

 

   
(a) the peppers image                 (b) the sign distribution of net  

carrier at balance state 
 

   
(c) the region segmentation       (d) the merging result for (c)  
     result for (b) 
 

Fig. 14 The experimental result for the peppers image 
 
 
For the peppers image, the number of remained 

regions after merging is 50 in Fig. 14(d). Because 
the objects in this image pile up and are obscured, 
only some front objects are segmented completely 
in the merged results. It is reasonable to expect a 
better segmentation result for the colour version of 
the peppers image, because colour provides much 
richer information which may differentiate overlaid 
objects well. 

 

   
(a) the locomotive image           (b) the sign distribution of net  

carrier at balance state 
 

   
(c) the region segmentation       (d) the merging result for (c)  
     result for (b) 
 

Fig. 15 The experimental result for the locomotive image 
 
 
For the locomotive image, the number of 

remained regions after merging is 100 in Fig. 15(d). 
The locomotive is well segmented from the 
background sky and land, but the background trees 
are not well separated from the locomotive. The 
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separation of the locomotive and the tree can be a 
typical case to be further studied to improve the 
effectiveness of the proposed method. 
 
 

 
(a) the flower image 

 
 

 
(b) the sign distribution of net carrier at balance state 

 
 

 
(c) the region segmentation result for (b) 

 

 
(d) the merging result for (c) 

 
Fig. 16 The experimental result for the flower image 

 
For the flower image, the number of remained 

regions after merging is 100 in Fig. 16(d). Because 
the leaves have similar low greyscale as the dark 
background, only the front white flowers are well 
segmented in the merged results. Like the peppers 
image, it is also reasonable to expect a better 
segmentation result for the colour version of this 
image. 

 
(a) the flower image 

 

 
(b) the sign distribution of net carrier at balance state 
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(c) the region segmentation result for (b) 

 

 
(d) the merging result for (c) 

 
Fig. 17 The experimental result for the medical heart image 

 
In Fig. 17(d), the number of remained regions 

after merging is 100. Fig. 17(d) clearly shows the 
heart structure. Moreover, in each iteration of 
simulation, the average of the absolute value of Δz 
for all the points is calculated and recorded as a 
measurement of the convergence degree to the 
mesh’s balance state, which is shown in Fig. 18. Fig. 
18 indicates that the mesh approaches the balance 
state with the simulation going on. 

 
the number of simulation iteration 

 
Fig. 18 The relationship between the average change of height 

and the simulation time (for the medical heart image) 

In implementation of the above region-merging 
process, a ‘flag matrix of adjacency’ was used as an 
efficient representation of relationship between 
regions, where each matrix element aij represents 
whether the i-th region and the j-th region are 
adjacent or not (e.g. aij =1 means they are adjacent, 
while aij =0 means they are not). The optimization 
in algorithm implementation guarantees the 
computational efficiency. In the experiments the 
method shows nearly real-time performance by 
programming with VC++ on a platform of Intel 
Core i3 3.6G CPU. 

The above experimental results indicate that the 
proposed method is effective in segmentation of real 
world images. In the experiments, relatively large 
amount of regions can be obtained by grouping (or 
clustering) the sign of point’s height due to the 
complexity of real world images. From the results, it 
can be seen that main object regions can be well 
segmented, and some regions are segmented in good 
detail. However, sometimes, at some part of object 
borders, two objects are not well separated due to 
reasons like greyscale similarity. For such cases, the 
greyscale feature alone may not be sufficient for 
accurate segmentation. It is indicated that other 
image features such as colour and texture may be 
introduced into segmentation for improvements. 

Moreover, some comparison is shown in Fig. 19 
between the new method in this paper and the 
previous method in [12]. The segmentation results 
for Fig. 13(a) and Fig. 14(a) are shown as examples 
for comparison. Fig. 19(a) and (c) are the results of 
previous method in [12], while Fig. 19(b) and (d) 
are the results of the new method in this paper. 

        
 (a)                                                        (b)  

        
(c)                                                      (d)  

Image (a) and (c) are results of previous method in [12], while image (b) 
and (d) are results of new method in this paper 

Fig. 19 The comparison between the segmentation results of the 
new method and the previous on in reference [12]  
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Although currently the evaluation of 
segmentation results often alters for different types 
of images, some preliminary evaluation can still be 
done by subject perception on the above 
segmentation results. By comparison of the results 
in Fig. 19, the new method proposed in this paper 
produced more accurate details of segmentation 
(such as the regions of eyes and mouth in the 
broadcaster image). 

In order to investigate the intrinsic feature of the 
proposed method, the comparison has also been 
done with another well-known nature-inspired 
method – the watershed algorithm for image 
segmentation. The watershed algorithm takes the 
image as natural terrain or landform with hills and 
valleys, and it segments the image by imitating the 
rainfall or water-logging process to find the 
watershed lines between the water pools. Besides 
their common feature of nature-imitating, the two 
methods can both segment images into large 
amounts of preliminary regions without some pre- 
or post-processing steps. In order to compare their 
intrinsic feature, experiments were done to obtain 
the segmentation results of the two methods without 
any pre- or post-processing. Example results are 
shown in Fig. 20, where the preliminary 
segmentation results for Fig. 13(a) and Fig. 14(a) 
are shown as (a),(b) and (c)(d) respectively. The 
preliminary regions are shown by their borders. 

                
(a)                                                               (b) 

              
(c)                                                               (d) 

 
Fig. 20 The comparison between the preliminary regions 

obtained by the watershed algorithm and the proposed method  
(a) and (c) are the results of the watershed algorithm; (b) and (d) are the 

results of the proposed method 

 
From Fig. 20, it can be seen that the 

segmentation results of the two methods have quite 
different characteristics. The preliminary regions 
obtained by the proposed method are close to the 

ideal final segmentation results. However, those 
obtained by the watershed algorithm are relatively 
far from expected final segmentation results, 
although the border lines of the main objects can be 
identified by careful observation. Therefore, the 
watershed method surely needs more complex pre- 
or post- processing to reach a degree of practical use. 

Experiments have also been done to compare the 
proposed method with the K-means method, which 
is widely and frequently used in data classification. 
Example results are shown in Fig. 21, where the 
segmentation results for Fig. 13(a) and Fig. 14(a) 
are shown respectively. The results indicate that the 
proposed method has better performance because 
the K-means method obtained relatively more 
cracked sub-regions within integral objects. 

               
(a)                                                               (b) 

               
(c)                                                               (d) 

 
Fig. 21 The comparison between the segmentation results by the 

K-means segmentation method and the proposed method 
 (a) and (c) are the results of the K-means method; (b) and (d) are the 

results of the proposed method 

  

4 Conclusion and Discussion 
The dynamics of strain and stress is a basic and 
important topic in physics. The external force and 
the internal stress force caused by the object’s 
deformation constitute the elements in a self-
balancing mechanism. And self-balancing may be a 
required or even essential feature in solving many 
problems, which can make the method stable and 
produce meaningful and useful results.  

In this paper, a model of virtual elastic mesh on 
the digital image is presented for region 
segmentation. In the model, the virtual repulsive 
force and the elastic force are defined by imitating 
the physical force but with slight difference to 
facilitate the segmentation problem. The repulsive 
force is defined according to greyscale difference 
between adjacent points, which is a “differentiation 
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factor” representing the difference between adjacent 
regions. On the other hand, the elastic force is the 
“balancing factor”, which homogenizes the height 
of the points within the same region where greyscale 
difference is small, at the same time counteracts the 
repulsive force at region borders where the 
greyscale difference is large. The final shape of the 
mesh at balance state is a representation of the 
image structure. And based on the sign distribution 
of the points’ height, the region segmentation can be 
easily implemented by grouping or clustering the 
adjacent points of the same sign of height (i.e. z 
coordinate in the mesh). 

The experimental results prove the effectiveness 
of the proposed method for several types of images, 
which is a preliminary but practical proof of the 
method’s adaptability and robustness. On the other 
hand, the result comparison between the authors’ 
previous work also proves the improvement brought 
by extending the model of virtual 2D grid to 3D 
mesh. For improvement of the method, detailed 
properties of the proposed model will be studied in 
future. In future study, experiments will be carried 
out to investigate the segmentation results under 
different set of parameters of the method, such as 
the constants defined for the simulation. And 
possible merging process which may be more 
reasonable will also be investigated as a necessary 
post-processing step to obtain better results of 
region merging. 
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