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Abstract: Cloud Computing refers to the use of memory and computing capabilities of computers and servers
around the world, so the user has considerable computing power without the need for powerful machines. The
probability of failure occurring during the execution becomes stronger when the number of nodes increases; since
it is impossible to fully prevent failures, one solution is to implement fault tolerance mechanisms. In this work, we
have developed a fault tolerant service based on the checkpointing in cloud computing. Our fault tolerance service
uses a semi-coordinated checkpointing that minimizes the consumed energy and the overhead by decreasing the
time of the coordination phase. Our service also decreases the rollback cost. The experimental results show the
effectiveness of our proposition in term of execution time, energy consumption of SLA violation.

Key–Words:Fault tolerance, Cloud computing, Virtualization, Checkpointing, Overhead, Rollback, Coordination,
Recovery line, SLA violation, I/O.

1 Introduction

Cloud is a type of parallel and distributed system con-
sisting of a collection of interconnected and virtual-
ized computers. The latter is dynamically provisioned
and represented as one or more unified computing re-
sources based on service level agreement (SLA) es-
tablished through the negotiation between the service
providers and consumers. Cloud computing is a term
that involves delivering hosted services over the Inter-
net. By using the virtualization concept, cloud com-
puting can also support heterogeneous resources and
achieved flexibility. Another important advantage of
cloud computing is its scalability. Cloud computing
has been under growing spotlight as a possible so-
lution for providing a flexible on demand comput-
ing infrastructure for a number of applications. All
these factors increase the popularity of cloud comput-
ing. The services are broadly divided into three cat-
egories Infrastructure-as-a-Service (IaaS), Platform-
as-a-Service (PaaS) and Software-as-a-Service (SaaS)
[1]. On the other hand, the reliability of Cloud com-
puting still remains a major concern among users.
Due to economic pressures, these computing infras-
tructures often use commodity components exposing
the hardware to scale and conditions for which it is not
originally designed [2]. As a result, significantly large
number of failures manifest in the system and seem-
ingly imposes high implications on the hosted appli-

cations, impacting their availability and performance.
For example, a computing system with 200,000 nodes
will experience a mean time between failures (MTBF)
of less than one hour, even when the MTBF of an indi-
vidual node is 5 years [3]. In this context, the applica-
tions require fault tolerance abilities so that they can
overcome the impact of system failures and perform
their functions correctly when failures take place [4].
In this case, the fault tolerance is an important issue
to ensure the cloud reliability; however, the choice of
fault tolerance technique remains a critical problem
especially with the SLA and energy parameters. In
this paper, we provide the fault tolerance as a SaaS
based on the checkpointing technique. In the check-
pointing, the system records its state in checkpoints
files. When a task fails, it is restarted, instead of
initiating from beginning, from the recently checked
pointed state. The checkpointing is widely used in
the cloud environment [5, 6, 7, 8, 9]. And beside
the fault tolerance, the checkpointing can be used for
other important purposes such as: migration, debug-
ging, load balancing or even improving other fault
tolerance strategies [10, 11]. The goal of the check-
pointing is creating a consistent state stored in a stable
memory [9, 12]. A consistent state can not contain any
orphan messages. And the state is strongly consistent
if it is transit message free (beside the orphan mes-
sages) [13]. The orphan message is a message whose
its receive eventis recorded in the checkpointing file,
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but itssend eventis not recorded. In case of the recov-
ery, the destination node would receive this message
twice, which could result in unpredictable application
behaviour. The transit message is a message whose
its send eventis recorded, but itsreceive eventis not
i.e. the message is lost after the rollback. To create a
consistent state; the literature proposes two different
checkpointing categories [14]:

• Coordinated (synchronized) checkpointing: the
nodes (where the tasks are executed) communi-
cate with each other and coordinate their efforts
to create a consistent state.

• Uncoordinated (independent) checkpointing:
when the checkpointing interval expires, each
node records its state independently from the
other nodes.

Considering the cloud characteristic and each
checkpointing category, the independent checkpoint-
ing is scalable, but it is cannot ensure a consistent
state and it increases considerably the overhead be-
cause of the domino effect. In a domino effect,
unbounded, cascading rollback propagation can oc-
cur during the process of finding a consistent global
checkpoint, which makes the recovery cost unaccept-
able and garbage collection complex be implemented
[15]. The coordinated checkpointing ensures the de-
sired consistency; however, it is very expensive in
term of overhead and energy consumption because of
the coordination among the system nodes [16]. Our
paper improves the classical coordinated checkpoint-
ing to ensure a strong consistency with the minimum
overhead by minimizing the number of participants
in the coordination phase and the rollback process.
The classical coordinated checkpointing forces all the
VMs (Virtual Machines) to coordinate and record
their states. In case of failure detection, all those VMs
will execute a rollback to ensure the strong consis-
tency. The classical coordinated checkpointing char-
acteristics make it inappropriate for the cloud comput-
ing since it consumes more resources and energy. It
also increases considerably the overhead which makes
the user unsatisfied with the system performances.
However, in our approach, only the VMs communi-
cating with the initiator during the last checkpointing
interval will be involved in checkpointing creation and
in case of failure, only the VMs communicating with
the failed VM during the last checkpointing interval
will roll back to their last states. In this case (our ap-
proach), the problems of classical checkpointing will
be eliminated or at least reduced. Our strategy is also
fault tolerant which decreases the damages in case of
checkpointing failure or cancellation.

The remainder of the paper is organized as fol-
lows. Section 2 reviews some related works. Section
3 describes the system model and explains in details
our fault tolerance service based on semi-coordinated
checkpointing. Section 4 shows some experimental
results and analysis of performance of the proposed
approach. Finally, a summary and some perspectives
are given in Section 5.

2 Related works

In a cloud environment, the checkpointing is used
for many purposes such as: fault tolerance, migra-
tion, load balancing and debugging. Since the ma-
jor problem of the checkpointing is the overhead,
several works propose many techniques dealing with
this problem. We can distinguish three axes of re-
searches: checkpoints sizes, number of checkpoint-
ing and checkpointing protocol. The first axe aims
at reducing the checkpointing size. By decreasing the
amount of data recorded during the checkpointing, the
storage time and theI/O overhead will be also de-
creased. The paper [17] uses the incremental check-
pointing where only those memory pages (or VM data
chunks) that are modified over the time interval will
be saved. The compression is also another technique
reducing the size of checkpointing files [19].

The second axe’s goal is minimizing the number
of checkpoints by optimizing the checkpointing inter-
val. The paper [19] proposes a checkpointing interval
based on the overhead and the mean time to interrup-
tion (MTTI). The interval used in [19] is a reference
for many works in this field [20]. It uses the failure
rate to control the checkpointing frequency. However,
in the cloud computing other critical parameter which
is the SLA violation should be considered. In [6],
an authors use two kinds of thresholds: price thresh-
old and time threshold to optimize the checkpointing
interval. In this strategy, a coordinator manages the
communication between the user and the instance to
decrease SLA violation. The work in [6] uses the price
history of spot instances and the desired task reliabil-
ity to make decisions about when the checkpointing
should be executed.

The last researching axe focuses on the improve-
ment and the optimization of checkpointing proto-
col. Beside the overhead, the consistent state should
be ensured by using checkpointing protocols such
as: coordinated, uncoordinated or hybrid strategies.
Since each strategy has its negative effects, it must
be improved or combined with other techniques. The
checkpointing technique is widely studied and used
in a distributed systems (grid computing and mobile
networks). The paper [21] proposes a coordinated
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checkpointing in distributed environment. It suggests
blocking the communication during the checkpointing
creation to ensure a consistent state (a state without
any orphan messages). However, in this work all the
processes participate in the checkpointing which in-
creases the overhead and the blocking time. In order
to limit the number of nodes involved in the coordi-
nation, the authors of [15] use a Quasi-Asynchronous
protocol in mobile networks. The proposed protocol
coordinates between only the communicating nodes
during the last checkpointing interval; the other nodes
create their checkpoints in an asynchronous way. But
in the work [22], the authors describe some scenar-
ios to prove that the Quasi-Asynchronous protocol can
create inconsistent states. Other protocols use the time
based coordinated checkpointing to decrease the co-
ordination rate during the state recording, such as the
papers [23, 24, 25, 26, 27, 28]. In time based check-
pointing, it is assumed that the clocks are approxi-
mately synchronized with a certain drift. So when
the checkpointing interval expires, all the nodes create
their checkpoints at the same time and the consistency
is ensured by blocking the communication during the
clock/timer drifts. However, the re-synchronization
cost is very expensive [28]. The non-blocking co-
ordinated checkpointing is proposed in [29]: it does
not block the communication during the checkpoint-
ing, but deals with the orphan messages by storing
and piggybacking them with a lot of data. Despite
that the checkpointing is widely used in cloud com-
puting, the majority of existing works focus only on
the first and second axes of researches (size and inter-
val of checkpointing). In [30, 31], the authors used the
uncoordinated checkpointing to ensure the fault tol-
erance without considering the VMs communications
created by the task dependencies. In this case, the pos-
sibility of creating an inconsistent state exists and the
cost of the rollback can be very expensive because
of the domino effect. The paper [7] creates a new
topology called VIOLIN that uses a classical coordi-
nated checkpointing [29]. However, the used strategy
suffers from many problems such as: the need for a
high rate of coordination to ensure consistency and
termination detection. The only objective of paper [7]
is proving that the classical checkpointing strategies
used in other distributed systems can be used in the
cloud environment. Unibus proposed in [2] uses Dis-
tributed Multi-Threaded CheckPointing (DMTCP). In
DMTCP, all the processes are blocked until the stor-
age of checkpoint files, then they resumed their work.
In addition, DMTCP in [2] is applied in all cloud level
(process, VM and servers) which decreases scalabil-
ity.

3 Our Contribution

The cloud applications (such as e-commerce and sci-
entific applications) consist typically of several tasks,
which communicate with each other [31]. A task con-
sists of some computation and communication phases.
Since the tasks are executed in VMs, the communi-
cation between tasks is executed by their VMs. In
this case, the transit and orphan messages can ex-
ist during the creation of checkpoints. Most existing
works on checkpointing in cloud computing focus on
the checkpointing size or the checkpointing interval
rather than the checkpointing technique itself. In this
paper, we propose a fault tolerance service based on
Semi-Coordinated Checkpointing (SCC). The system
model is a set of servers (Hosts) that contain many
virtual machines (VM). The user’s job will be divided
into tasks. These tasks are deployed onm virtual ma-
chines running atn servers, each VM is running one
task at the moment. The servers or the VMs are in
accordance with fail-stop model [16].

3.1 System Model

To ensure the fault tolerance, we added a fault toler-
ance service based on the checkpointing (See Figure
1). This service is implemented inside each data cen-
ter and it contains four modules (sub-services):

• Checkpoint module: this module is responsible
for recording the system state. When the check-
pointing intervalTCP expires, the checkpointing
module selects an initiatorVMinit. When the
involved VMs in the checkpointing are selected,
this module records their states by saving all the
data necessary to ensure the consistent state and
the correct rollback in case of failure. The check-
point files are stored in a stable memory.

• Supervisor module: this module ensures the
atomicity and the correctness of the checkpoint-
ing.

• Error processing module: This module captures
the system state by detecting the failed VM or
host. When failure appears, this module selects
the checkpoint file in question and triggers the
rollback module. The error processing module
can also control the checkpointing intervalTCP

depending on the failure rates (adaptive check-
pointing interval).

• Rollback module: this module ensures that the
failed VM will resume its execution correctly us-
ing the checkpointing file selected by the Error
processing module.
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Figure 1: Fault Tolerance Service Architecture

In Figure 1, VM2 fails, so it will be replaced by
another VM. This new VM will resume VM2 execu-
tion using the checkpoint fileCPVM2.

3.2 Checkpointing Protocol

The independent (uncoordinated) checkpointing does
not need any coordination among VMs; however, it
causes an extra-overhead during the rollback recov-
ery because of the domino effect. It also needs to
store all the checkpointing files during the job life
time, which increases the resource consumption. The
coordinated checkpointing ensures consistency and it
needs to store only the last checkpoint file in the stable
memory. However, the coordination phase increases
the overhead. The creation of a strong consistent state
means the elimination of any orphan or transit mes-
sages. These types of messages (transit/orphan) can
be created only between the communicating VMs.
The VMs that do not communicate with each other
cannot create transit or orphan messages because there
are no message exchanges. On the basis of this obser-
vation, our Semi-Coordinated Checkpointing (SCC)
reduces the number of VMs involved in the check-
pointing by forcing only the communicating VMs dur-
ing the last checkpointing round to create their check-
points or to rollback, the other VMs continue their ex-
ecution. The SCC is also two phases blocking coor-
dinated checkpointing. SCC phases are the creation
of tentative checkpoints (TCP) and then convert them
to permanent checkpoints (PCP). The TCP is a check-
point file stored in the local memory. The PCP is a
TCP stored in the stable memory. The goal of the
two phases is reducing the damages in case of check-
pointing cancellation or failure. This means that if the
checkpointing is failled or cancelled, the VMs cancel
only the local TCP stored in the local memory with-

out affecting the consistency of the last checkpoint
file stored in the stable memory and without anyI/O
overhead (if the system uses only PCP, it will execute
I/O to eliminate this PCP from the stable memory
and the last checkpoint will be unavailable). SCC en-
sures also a strong consistency by:

• Ensuring that the orphan messages cannot be
created during the checkpointing. This can be
done by blocking the communication during the
checkpointing process. Blocking the communi-
cation in our approach means just freezing this
communication, i.e. during the checkpointing,
the VM continues its execution until it finds a
Send or a Receive event.

• Ensuring that the transit messages are all stored
in the checkpoint file. In this case, and during
the rollback, the VM can ask the other VMs to
re-send to it the transit messages.

To decrease the overhead caused by the coordina-
tion phase, we minimize the number of VMs involved
in the checkpointing in each period. Each VM uses a
Boolean vector to track all the VMs communicating
with it during the last checkpointing interval. When
an initiator is selected, only the communicating VM
with this initiator during the last checkpointing inter-
val will be forced to create its checkpoints. Each time,
when the VM creates its checkpoint, it initializes its
dependency vector; it will also increment its check-
pointing sequence number (csn). The csn is an integer
number that will be incremented each time the VM
creates its checkpoint file and it is initialized at0 in
the beginning of job execution.

The first step in the SCC algorithm is the selec-
tion of the initiatorVMinit. In many existing works in
the literature, the checkpoints approaches do not focus
on the choice of the initiator [14, 15, 22]. The paper
[32] shows that the initiator choice affects the system
performances considerably. In our work, the initiator
is the VM with the minimum csn and the best per-
formances (the bandwidth, the processor speed). The
first criterion allows the system to avoid the problem
of famine (only some VMs create their checkpoints
during the job life) and it reduces the csn differences
among the VMs. And by choosing the most perform-
ing VM (the second criterion) the checkpointing pro-
cess will be accelerated. After selecting the initia-
tor VMinit, theVMinit collects the dependency vec-
tors of the VMs and creates the dependency matrix.
The dependency matrix identifies all the VMs that
have communicated with the initiator directly or tran-
sitively during the last checkpointing interval. Those
VMs are included in theListCPinit list. The SCC
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uses several messages exchanged between the initia-
tor and the concernedVMi ∈ ListCPinit to ensure
the atomicity and the correctness of the checkpoint-
ing:

• REQUEST: sent by the initiatorVMinit to all
VMi ∈ ListCPinit.

• RESPONSE: sent byVMi ∈ ListCPinit to the
initiator VMinit to confirm the creation of local
Tentative Checkpoints TCP. The tentative check-
points are created in the local memory.

• COMMIT: sent by the initiatorVMinit to
VMi ∈ ListCPinit when it receives the ”RE-
SPONSE” of all the involved VM. The initiator
uses a counterNR to calculate the number of re-
ceived RESPONSE. When theVi ∈ ListCPinit

receives this message, it converts its tentative
checkpoint to permanent checkpoint by storing
it (the TCP) in the stable memory.

• ABORT: sent byVMi ∈ ListCPinit to the ini-
tiator to inform it that this VM can not or it re-
fuses to create its checkpoint.

• DISCARD: sent by the initiatorVMinit to
VMi ∈ ListCPinit. When a VM receives this
message, it removes its last tentative checkpoint
from the local memory. The ”DISCARD” mes-
sage is used to cancel the checkpointing process
when the initiator does not receive all the ”RE-
SPONSE” of allVMi ∈ ListCPinit or the ini-
tiator has received at least one ”ABORT” mes-
sage.

Figure 2 explains the process of our Semi-
coordinated Checkpoint (SCC). SCC algorithm is the
following: during the failure free execution, the fault
tolerance service (checkpointing module) selects the
initiator VMinit. When the checkpointing interval
TCP expires, the initiatorVMinit collects the depen-
dency vectors and identifies the participant VMs and
add them to theListCPinit list. TheVMinit sends the
”REQUEST” to all theVMi ∈ ListCPinit. When the
VMi receives this message, it can accept or refuse to
create its checkpoints. IfVMi accepts the request, it
freezes its communication and creates the TCP (ten-
tative checkpoint) then it sends the ”RESPONSE” to
the initiatorVMinit. TheVMinit uses a timeoutTout

and a counterNR to calculate the number of received
RESPONSE. TheVMinit compares theNR with the
cardinality of theListCPinit, if the initiator has re-
ceived all the RESPONSE before theTout expires
(NR = ]ListCP(init)

∧
Tout > 0) then theVMinit

sends toVMi ∈ ListCPinit a COMMIT message.
If VMi receives the COMMIT message, it stores the

Figure 2: Checkpointing Protocol

TCP in stable memory (PCP). It also continues the
task execution and sends the RESPONSE to the ini-
tiator. The number of RESPONSE received by the
VMinit indicates the checkpointing termination.

If a VMi ∈ ListCPinit cannot create its check-
points after receiving the REQUEST, it sends the
”ABORT” message to the initiator. The initiator uses
a Boolean Flag to indicate if a ”ABORT” message is
received (Flag=0) or not (Flag =1). In case of receiv-
ing the ”ABORT” message, and to ensure the check-
pointing atomicity, theVMinit cancels the check-
pointing by sending the DISCARD message to the
otherVMi ∈ ListCPinit . At the reception of DIS-
CARD message, theVMi removes the TCP from the
local memory without anyI/O overhead. The check-
pointing can be cancelled if the timeoutTout expires
before receiving all the RESPONSE (for example, a
VMi ∈ ListCPinit failed during the checkpointing).

The fault tolerance service uses the Error process-
ing module to capture the data center state. In case of
failure detection (Host or VM), this module uses the
dependency vectors of the other VMs to identify the
VMs concerned by the rollback. The concerned VMs
are the VMs that have communicated with the failed
VM during their last checkpointing interval. The roll-
back module downloads the checkpoints files from the
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Table 1: Simulation Parameters
Parameters Values

Number of datacenter 1
Number of host 20
Number of Cloudlet 1262
Cloudlet length 120000 bytes
Buffer size 100 Ko (Kilo bytes)
Checkpoint Interval 200 seconds

stable memory and ensures the correct rollback of the
concerned VMs.

4 Simulations

In order to evaluate our approach semi-coordinates
checkpoint (SCC) and to compare it with a classical
coordinated checkpointing approach (CC) proposed
in DMTCP [2], we used the well known simulator
CloudSim [33]. Several simulation parameters (see
Table1) and several scenarios are proposed to experi-
ment the impact of each parameter. In our experimen-
tations, the job is a sequence of tasks and the task is
represented by cloudlet.

In this first simulation, we measured the Input
/ Output during the time in both approaches SCC
and CC. The results are shown in Figure 3. We no-
tice that over time, the use of our approach semi-
coordinated checkpoint (SCC) reducesInput/Output
unlike the approach coordinated checkpoint (CC) by
almost 49.80%.

The second experimentation studies the scalabil-
ity by studying the impact of the number of VMs on
theI/O overhead. According to the results presented
in Figure 4, the number of VMs increases theI/O
overhead in both strategies. However, in our approach
SCC, the increasing rate is very low. Since SCC is
a two phases checkpointing, the TCP minimizes the
I/O overhead specially in case of checkpointing fail-
ure or cancellation. And since the only communi-
cating VMs create their checkpoints, the number of
generated files will be reduced and there for theI/O
needed of writing those files will be decreased.

In the third simulation, we measured the overhead
caused by each checkpoint approaches during the ex-
ecution time and with several checkpointing rounds
(approximately 120 checkpointing during 10000 sec-
onds). This simulation was performed with the same
parameters listed in Table 1. The results are shown
in Figure 5. According to the result, the use of our
SCC approach reduces the overhead during the time
contrary to CC. Therefore, our approach permits to

Figure 3: I/O over Time

Figure 4: Impact of VMs number on I/O

reduce the load of Hosts and therefore all the system
will be less overloaded.

In the fourth experimentation, we vary the num-
ber of VMs to test the scalability in term of overhead.
Increasing the number of VMs increases always the
overhead in both checkpointing strategies (see Fig-
ure 6). In this work, the overhead is the difference
between an execution time of a system without the
fault tolerance service and the execution time of a sys-
tem that uses our approach of checkpointing during
the failure free time (without any failure). In SCC,
if the initiator for ith checkpointing round isVMinit

then the involved VMs will be in theListCPinit list,
and#ListCPinit ≤ N whereN is the number of
VMs. So, increasing the number of VMs affects only
the time needed to collect the dependency data but
the checkpointing itself is related more to the size of
ListCPinit list.

The communication rate is an important issue to
deal with during the checkpointing. So, we proposed
the fifth experimentation where we fixed the number
of VMs (N ) and varied the communication rate. Ac-
cording to the results presented in Figure 7, the com-
munication rate does not infect considerably the CC
because all the VMs (N VMs) will be forced to cre-
ate the checkpoints; and the lazy overhead increas-
ing (See Figure 7) is due to the number of messages
needed to be stored in the checkpointing file to ensure
a strong consistency (number of transit messages).
However, in our approach SCC, it is not the communi-
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Figure 5: The Overhead over Time

Figure 6: Impact of VMs number on the Overhead

cation rate that infects the performances, but it is the
number of different VMs communicating with each
other. We can explain the results using two examples:

• In the first example, the communication rate
is 200 messages per minute, but only between
three different VMs{VM1,VM2,VM3}. If the
VM1 is chosen as an initiator (VMinit=VM1),
so ListCPinit= {VM2,VM3 } (just two VMs
are involved).

• In the second example, the communication rate is
only 50 messages per minute but the concerned
VMs are{VM1,VM2,VM3,. . . ,VM25}.
If VMinit=VM1, then 24 other VMs will
be involved in the checkpointing (ListCPinit=
{VM2,VM3,. . . ,VM25}).

In the sixth simulation, we measured the energy
consumed during the checkpointing for the two ap-
proaches. The results of this simulation are shown
in Figure 8. We notice that the use of our approach
SCC reduces the energy consumption during the time
contrary to CC approach. The reason of this result is
explained in previous experimentations (less overhead
and lessI/O). So, we can classify it among the ap-
proaches of IT Green.

In the cloud computing, SLA (Service Level
Agreement) is a very important and critical metric; it

Figure 7: Impact of the Communication rate on the
Overhead

Figure 8: Energy Consumption over Time

represents the satisfaction degree for the user to the
services offered by the cloud. In our system model,
we suppose that the user can accept some violation
threshold and our goal is not exceeding this thresh-
old. In the seventh simulation, we measured the
SLA violation caused by both checkpointing strate-
gies. SLAviolation caused by the checkpointing ser-
vice andλ failure rate is calculated using Formula 1:

SLAviolation(CP ) = 1−
SLACP (λ6=0)

SLAN

(1)

And SLA violation (SLAviolation) caused by a
system without a checkpointing service andλ failure
rates.

SLAviolation(C̄P ) = 1−
SLAC̄P (λ6=0)

SLAN

(2)

Where:

• SLAC̄P (λ6=0) isSLA resulted from a system with
λ failures and without using any fault tolerance
service.

• SLAN : is SLA resulted from a normal execu-
tion without a fault tolerance service and without
any failure (λ=0). SLAN starts from 100% and it
decreases each violation until the end of the job
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Figure 9: Impact of Failure Rate on the SLA Violation

execution. So, if ?SLA?N=60% then the user
satisfaction can be estimated at 60%.

• SLACP (λ): is SLA resulted from a system that
use a checkpointing strategy with the failure rate
λ.

For example, ifSLAN=90% andSLACP=70%
then:SLAV iolation=1-70/90∼= 23%
Formula 1 gives an idea about the SLA overhead using
the checkpointing compared to SLA resulted from a
normal execution without failure. The result presented
in Figure 9 summarizesSLACP caused by: SCC
and CC. We also calculated theSLAviolation(C̄P )
(the violation without using any checkpointing tech-
nique). TheSLAviolationC̄P is very high since the
system does not use any fault tolerance service, so
the tasks cannot be executed correctly in case of fail-
ure. SLA violation increases in both SCC and CC.
The SCC reduces the number of involved VMs in
the checkpointing and it selects the initiator based on
some criteria, so itsSLAviolation(CP ) is less than
SLAviolation(CP ) caused by CC.

5 Conclusion, Limitations and Fu-
ture Research

In this paper, we have proposed a fault tolerance ser-
vice in cloud computing based on the checkpointing.
Our checkpointing strategy named Semi-Coordinated
Checkpointing (SCC) is two phases blocking coor-
dinated checkpointing. It improves the classical co-
ordinated checkpointing by reducing the number of
VM involved in the checkpointing and the rollback.
The SCC is fault tolerant and scalable, which makes
it adequate for the cloud environment. The experi-
mental results prove that the SCC decreases consid-
erably the overhead and SLA violation, compared to
the classical coordination checkpointing which makes
it contagious for the users. On the other hand, SCC
decreases also the energy and resource consumption,
which makes it the best choice for the cloud provider.

Nevertheless, the proposed approach is far from
complete, we can mention some limitations:

• Currently our proposal has been tested on the
simulator CloudSim, we have no guarantee of its
behavior in a real environment such as Eucalyp-
tus [34], for example;

• With the current version presented in this paper,
we found that our proposal does not seek to bal-
ance the physical machine charges;

• A complementary of our approach, we wish to
extend a replication service to improve its perfor-
mance advantage, quality of service and energy
consumption;

• During the different simulations launched to
study the behavior of our approach, we found
that the number of backups and restorations in-
formation about check pointing in the stable
memory requires a very thorough study, it is the
reason that led us to take this into account in our
work in parallel.;

• We also found during our experiments that the
choice of the initiator of the approach of check
pointing affect performance either response time
or energy consumption.
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