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Abstract: Embedded systems are increasingly pervasive, interdependent and in many cases critical to our every
day life and safety. As such devices are more and more subject to attacks, new protection mechanisms are needed
to provide the required resilience and dependency at low cost. Remote attestation (RA) is a software-hardware
mechanism that securely checks the internal state of remote embedded devices. This protocol is executed by:
(1) a prover that, given a secret key and its actual state, generates a result through an attestation algorithm; (2)
a verifier that, given the key, the expected prover actual state, accepts or rejects the result through a verification
algorithm. As the security of a protocol is only as good as its weakest link, a comprehensive validation of its
security requirements is paramount. In this paper, we present a methodology for formal verification of hardware
security requirements of RA architectures. First we perform an analysis and a comparison of three selected RA
architectures, then we define security properties for RA systems and we verify them using a complete framework
for formal verification.
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1 Introduction
Remote attestation (RA) is the process of securely ver-
ifying the internal state of a remote hardware plat-
form. It can be performed either statically (at boot
time) or dynamically, at run-time in order to establish
a dynamic root of trust1.

In this paper we focus on three RA architectures
SMART [1] , Sancus [2] and TrustLite [3], as they are
interesting w.r.t. formal verification aspects.

SMART is a simple approach, based on
hardware-software co-design, for establishing a dy-
namic root of trust in a remote embedded device.
SMART focuses on low-end micro-controller units
(MCU) that lack specialized memory management or
protection features. It requires minimal changes to ex-
isting MCUs, while providing concrete security guar-
antees, and assumes few restrictions on adversarial ca-
pabilities [1].

Sancus can remotely attest to a software provider
that a specific software module is running undamaged,
and it can authenticate messages from software mod-
ules to software providers. Software modules can se-
curely maintain local state, and can securely inter-
act with other software modules that they choose to
trust. Sancus achieves these security guarantees with-
out trusting any infrastructural software on the device.

1The term dynamic root of trust refers to approaches for pro-
viding evidence for a trustworthy platform state, i.e., root of trust,
at more arbitrary points in time than just start-up, i.e., dynamic.

The Trusted Computing Base (TCB) on the device is
only the hardware. Moreover, the hardware cost of
Sancus is low [2].

TrustLite presents mechanisms for secure excep-
tion handling and communication between protected
modules, enabling seamless interoperability with un-
trusted operating systems and tasks. TrustLite scales
from providing a simple protected firmware run-
time to advanced functionality such as attestation and
trusted execution of userspace tasks. In contrast with
the previous approaches, it also solves the problem of
handling memory access violations and hardware in-
terrupts. Like Sancus, TrustLite is an FPGA proto-
type showing that the above capabilities are achiev-
able even on low-cost embedded systems [3].

Following the work presented in [4] we propose a
methodology for formal verification of hardware secu-
rity requirements in RA architectures. The key insight
is that many security requirements can be formulated
as taint-propagation properties, since this is the most
natural way of expressing properties related to infor-
mation flow and access control. A taint-propagation
property has the following elements:

• source (src) : RTL signals “seeded” with the taint

• destination (dest) : signals not to be reached by the
taint in order to satisfy the security requirements

• conditions: temporal logic expressions that must be
true at various points in the taint propagation, e.g.,
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when the taint starts or when it ends

Using this notation, confidentiality requirements can
be verified by setting a hardware secret as the src and
the data bus of an external interface as the dest. Sim-
ilarly, integrity can be verified by setting an untrusted
interface as the src and a sensitive signal as the dest.

In this work, we perform formal analysis of taint-
propagation properties using PdTrav [5] [6] and VIS
(Verification Interacting with Synthesis) [7] formal
verification tools. The formal verification tool we
used analyzes taint-propagation properties and either
proves each property or finds a counterexample show-
ing a functional path from src to dst. To sum up
we translate several high-level security requirements
into taint-propagation properties and prove them us-
ing PdTrav and VIS.

Our approach entails the following major contri-
butions:

• performing a thorough analysis and a comparison
of the RA architectures mentioned previously w.r.t.
security and formal verification aspects

• defining security properties that represent the core
security requirements for RA architectures

• presenting a complete framework for performing
verification of formal security properties related to
RA architectures

• showing the verification results of security proper-
ties on one of the selected RA architectures, com-
paring different model checkers and verification
techniques. Whenever a security property verifica-
tion fails, we present the corresponding attack that
could affect the security of the system

The rest of the paper is organized as follows. Sec-
tion 2 presents background notions. Section 3 de-
scribe the guidelines to define taint-properties for RA
architectures. Section 4 presents a complete formal
verification framework, in order to verify previously
defined taint-properties. Section 5 illustrates experi-
mental results. Finally, Section 6 concludes the paper
with some summarizing remarks.

2 Background
2.1 RA Notations

Since our interest is to apply formal methods to verify
security properties of Remote Attestation architec-
tures, in this section we describe all the background
information of these different areas.

Definition 1 - Remote attestation protocol: we
use the term Remote Attestation to denote a protocol,

whereby a Verifier verifies the internal state of another
device called a Prover. This protocol is executed
over a network. The goal of the protocol is to allow
a not damaged Prover to create an authentication
token, that convinces the Verifier that the former
is in some well-defined (expected) state. Whereas,
if the Prover has been damaged and its state has
been modified, the authentication token must reflect
this. The generic RA protocol is presented in Figure 1.

Figure 1: Remote attestation protocol

Definition 2 - Infrastructure Provider (IP):
IP, owns and administers a (potentially large) set
of microprocessor-based systems. A variety of
third-party Software Providers SPs are interested in
using the infrastructure provided by IP. They deploy
Software Modules SMs on the nodes administered by
IP.

Definition 3 - Trusted Computing Base (TCB):
The TCB of a task is the set of components (hardware
and software) that must be secure to assure the
unmodified execution of that task.

Definition 4 - Trustlet: trusted tasks which
are designed to accomplish a particular security
mechanism.

2.2 RA architectures
In the following we highlight the peculiarities of the
RA architectures under analysis.

SMART: In the SMART architecture the attes-
tation algorithm uses the hashing algorithm HMAC,
which is located in a Trusted Region TR in ROM;
whereas the secret key k is stored in a particular
RAM location. To enable secure Remote Attesta-
tion SMART implements two control accesses on the
memory bus controller: 1) k can be accessed only by
the instructions located in the TR 2) an instruction can
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accesses TR only from the initial TR address and it can
leaves TR only from its last address.

As a result, the secret key is only accessible by the
trusted code stored in ROM and (except for first in-
struction in TR) if the actual Program Counter points
into the TR region, then the previous Program Coun-
ters value must point also into TR.

Sancus: This RA architecture consists of
an Infrastructure Provider IP that manages a set
of microprocessor-based nodes N and a Software
Provider SPi that deploys Software Modules SM into
N : these software modules contain a text section (pro-
tected code and constants) and protected data section.
IP generates (exploiting the key generation functions)
and it manages three types of secret keys: 1) KN ,
shared between node N and IP 2) KN,SP , shared be-
tween a provider SP and node N 3) KN,SP,SM , shared
between a node N and a provider SP, only accessible
by SM. A software provider SP can employ Remote
Attestation to verify that the correct software mod-
ule SM is running on an expected node N through the
module key KN,SP,SM . The attestation code is saved
into the text section of SM and the memory access
control logic (bus controller) ensures that: 1) The pro-
tected data section of module is only accessible while
code in the text section of that module is begin exe-
cuted 2) The code in the text section can only be exe-
cuted by jumping to a well-defined entry point.

TrustLite: the TrustLite platform consists of a
SoC that includes a set of trustlets with their critical
data regions and a Memory Protection Unit (MPU)
that ensures access controls on all memory acesses:
memory is organized into a number of protected re-
gions with associated access permissions, kept in lo-
cal registers available to the MPU. Trustelets can use
Remote Attestation to inspect and validate the local
platform states.

These selected RA architectures will be analyzed
and used in the following sections as case studies for
formal security properties verification.

2.3 Model checking notation

Considering the formal verification aspects, we ad-
dress systems modeled by labeled state transition
structures and represented implicitly by Boolean for-
mulas. From our standpoint, a system M is a triplet
M = (S, S0, T ), where S is a finite set of states,
S0 ⊆ S is the set of initial states, and T ⊆ S × S
is a total transition relation. The system state space
is encoded with an indexed set of Boolean variables
X = {x1, . . . , xn}, so that a state s ∈ S corresponds
to a valuation of the variables in X , and a set of states
can be represented with a Boolean formula over X . A
literal is a Boolean variable or its negation. A clause

is a disjunction of literals. A CNF formula is a con-
junction of clauses. Most modern SAT solvers [8, 9]
adopt clauses as their main representation and manip-
ulation formalism for Boolean functions. Whenever
necessary, given a Boolean function F , we will use
notation FCNF for its CNF representation.

Given a sequential system M and an invari-
ant property p, SAT-based Bounded Model Checking
(BMC) [10] is an iterative process to check the valid-
ity of p up to a given bound. To perform this task, the
system transition relation T is unrolled k times

T k(X0..k) =
∧k−1

i=0 T (Xi, Xi+1)

to implicitly represent all state paths of length k. Af-
ter that, BMC tools may implement variants of SAT
checks, such as:

bmck(X0..k) = S0(X0) ∧ T k(X0..k) ∧
∨k

i=0 ¬p(Xi)

The check looks for counterexamples (of length ≤ k)
falsifying p, starting from set of the initial states S0.

Although BMC tools are effective at finding bugs,
even in large designs, their verification method is
not complete, since it only guarantees the correct-
ness of a property up to the given bound. Therefore,
specific techniques are required in order to support
Unbounded Model Checking (UMC). The ability to
check reachability fix-points is thus the main differ-
ence (and additional complication) between BMC and
UMC. All UMC approaches basically rely on one or
more methods able to detect that the forward, back-
ward or mixed reachability analysis and/or circuit un-
rolling they perform is complete.

3 Defining Security properties for
RA architectures

We analyzed the architecture and design of a generic
RA hardware and selected three broad areas to verify,
we converged on a set of properties which represent
the core security requirements for each area. In Sec-
tion 5 we report security properties for the selected
RA architectures and present the verification results.

Key Secrecy: Key is the encryption or descrip-
tion key, used in RA application flows. Prover and
verifier can use Key for encryption or decryption by
configuring a crypto-engine to get the key directly
from HW. However, to reduce the attack surface, the
user is not allowed to read the Key.

In the SMART architecture the secret key k is
stored in a particular memory location in RAM and
it is only accessible by the attestation code, saved in
a trusted region TR in ROM. All controls relative to
key secrecy are implemented in BUS CONTROLLER
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and concern the Program Counter PC. More in de-
tails, when some operation wants to read k, BUS
CONTROLLER monitors PC checking if it belongs
to trusted region TR; as the result, k can be accessed
only from within ROM-resident SMART code. But
this control is not enough to guarantee key secrecy. In
fact, during SMART code running, some intermediate
results are saved in the CPU registers: it is necessary
to prevent key leakage during attestation code execu-
tion; an attacker can stop SMART during its running
and retrieve essential information about k through bits
inside registers. Therefore another control is added
inside BUS CONTROLLER: SMART code cannot be
interrupted before its end and it can be only invoked
at its beginning.

In the Sancus architecture three types of keys
KN ,KN,SP , KN,SP,SM are managed. All keys are
produced by the infrastructure provider IP, using
key generation functions kdf s, that, using a pseudo-
random function, derive secret keys from a master key
or in general, from a secret value such as a password
or a pass-phrase; this secret value can be used in con-
junction with parameters that are not secret or com-
mon to a group of users. Kdf s are broadly utilized be-
cause their use can avoid that an attacker, who owns
the derived key, learns considerable information about
the secret value in input. To guarantee key secrecy it
is possible to find different strategies that consider the
generation of some node master keys. 1) In a first op-
tion a single node master key is employed for all nodes
of the system that are protected through the same key;
this strategy is very simple but not very reliable, be-
cause an endangerment of the node master key can
alter the security of entire system 2) A second option
includes the presence of a node master key also, but,
in this case, it is derived from a master key of the IP,
through a key derivation function that uses the identi-
fier of the node (when a node and a software provider
are registered in the infrastructure, they receive unique
public identifiers N and SP respectively) 3) A third op-
tion is the most common one among Sancus architec-
tures. It consists in generating different random keys
for each node. These keys are securely saved in IP.
As a result, the master node key KN is only managed
by IP and the hardware. When a software provider is
registered, it receives its key KN,SP = kdf (KN ,SP)
from IP which can then be used by the node N to cre-
ate KN,SP,SM = kdf (KN,SP ,SM) that is specific to the
module SM loaded on N by SP. Note that: 1) KN is
only known by IP; 2) KN,SP is known by IP and SP;
3) KN,SP,SM is known by IP, N (each node keeps a
protected storage area for all these keys) and it can be
computed by SP since it received KN,SP from and
since it knows the identity SM of the software module.

The TrustLite architecture performs Remote At-

testation using trustlets. Trustlets ensure that the OS
or other software cannot manipulate the outcome of
memory read accesses of the MPU register set or other
trustlets code regions. Then, at least two kinds of keys
are managed: 1) Kt, shared between two trustlets. It
is used by a trustlet to inspect and validate the status of
other trustlets on the common platform and to estab-
lish a mutually authenticated and confidential commu-
nication channel. 2) Ks, shared between a trustlet and
MPU, used to validate the memory state of the local
MPU. The structures of the MPU and of the trustlets
guarantee simply that the access to their keys can be
performed exclusively by themselves.

Mode Separation: In RA architectures the ex-
ecution of some routine, e.g. the attestation code,
should be done only in supervisor mode. Some opera-
tions and resources in the SMART architecture are ac-
cessible by the supervisor only, to guarantee key iso-
lation, memory safety and atomic execution of ROM
code. The main goal of controls inside the BUS CON-
TROLLER is to avoid key leakage; in other words, in
user mode it is never possible to read the secret key
stored in RAM: the access to this address is allowed to
SMART code only. Any user’s software has the total
control of RAM memory, except for key location, af-
ter and before SMART code, can modify any writable
code, learn any secret that is not explicitly protected
by BUS CONTROLLER and it can invoke SMART
whenever it wants, but it cannot interrupt ROM code,
which must be executed atomically and cannot be in-
voked partially. Therefor the passage from user mode
to supervisor mode occurs when a user’s application
calls SMART code in ROM and finishes with the end
of itself.
Focusing on the Sancus architecture, it is clear that
a distinction between user and supervisor mode is
necessary within the software modules SM inside the
nodes N. The attestation code, as it has already been
stated, is saved inside software modules (text section)
and it can be used by a software provider to verify that
a SM is the one expected on node N through the secret
key KN,SP,SM (kept into data section). In this way,
any user cannot access to the protected data of soft-
ware module; this area is accessible during supervisor
mode only, specifically while the attestation code, in
the text section, is running. Moreover each node se-
curely saves all keys KN,SP,SM in a protected storage
area, which can be read and modified exclusively by
the super-user. Therefore any user can manipulate all
software on the nodes, except the protected storage
area; he can also run the attestation code, but only by
jumping to a well-defined entry point, then moving to
supervisor mode.
In the TrustLite architecture the MPU performs the
important task controlling user accesses to system
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memory and detecting protection violation from them.
This is possible thanks to a write-protected table
called Trustlet Table that records data regions with as-
sociated access permissions. Thus, the MPU can be
programmed by the OS for the next respective task to
be scheduled. Obviously, the controls (in the MPU
and trustlets), that use this table, are focused to avoid
that, during user mode, it is possible to read or modify
the secret keys necessary to attestation and to avoid
violation caused by not-permitted access in some pro-
tected regions.

Avoiding Denial of Service (DoS) Attacks :
A primary concern is to avoid Denial-of-Service At-
tacks: in order to achieve it, sensitive transactions
from untrusted Infrastructure Providers shall not be
able to write to internal registers, to reset the CPU or
to sweep all RAM memory. A further issue is that
a transaction initiated by local user software is con-
sidered untrusted too. Considering the SMART ar-
chitecture, if a verifier wants to execute a RA proce-
dure, it sends some information to the User Applica-
tion (UA) in execution on the prover, which will save
these inputs in a predefined location in the RAM and
will execute the SMART code (stored inside a Trusted
Region TR located in the ROM), in order to output
the final checksum C. Assuming that the attacker
has complete control over the communication channel
(between prover and verifier) and over the prover (be-
fore and after executing SMART), DoS attacks could
be achieved in three different scenarios:

1. the attacker, pretending to be the verifier, sends
manipulated input values, like assigning to the re-
turn address of the SMART procedure an address
belonging to the attestation code (located in ROM)
given that the Bus Controller monitors only the
Program Counter, this attack causes an infinite
loop (without any security property violation)

2. the attacker could manipulate all the input param-
eters stored in RAM, before the execution of TRs
code, in order to invalidate the final result

3. after the execution of the SMART procedure, the
attacker could manipulate the final value of C, if it
is performed before UA reads it.

It is clear that these attacks exploit data sent by the
verifier.

4 Verification Framework for RA ar-
chitectures

In this section we present a complete model checker
tool and the verification methodologies useful to ver-
ify the class of properties introduced in the previous

section.
The “Politecnico di Torino” Reachability Analysis
and Verification (PdTRAV) package is a set of MC
engines oriented to evaluate and to benchmark new
algorithmic ideas. It may represent a good starting
point for experimental evaluation and comparison, as
it won some of HWMCC [11] competitions. PdTRAV
supports several symbolic reachability and MC meth-
ods:

• BDD-based representations and traversals, includ-
ing forward, backward, combined (approximate)
forward/ (exact) backward algorithms [12, 13] par-
titioned BDDs and/or image computation proce-
dures [14, 15]

• Interpolant-based verification, with ad-hoc abstrac-
tion and tightening techniques [16, 17], integrated
SAT-based approaches [18, 19], Interpolant reduc-
tion techniques [20] and Guided Refinement [21]

• Property Directed Reachability (PDR) verification
strategies [22]

• Inductive reasoning (inductive invariants [23])
and symbolic manipulation of And-Invert Graphs
(AIGs [24]), with circuit-based quantification [25]

• BMC with AIG-based circuit compaction (before
moving to CNF-based SAT calls) but without in-
cremental SAT

The tool also supports model transformations and
reductions, typically activated as pre-processing steps
of MC procedures.
We use PdTRAV’s different verification strategies to
verify the properties described in the following.

To simplify the properties presentation we first
define some variables:

1. addrf and addrl represent respectivily the first
and the last address of the ROM memory (sROM).

2. is in sROM = (PC ≥ addrf ∧ PC ≤
addrl); PC belongs to the sROM address space

3. was in srom =
(PPC ≥ addrf ∧ PPC ≤ addrl); PC
for the previous instruction pointed to the sROM

Key Secrecy The key is stored in a specific RAM
location that is protected by SMART features. More-
over the Key location can be read by an instruction
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present in the sROM address space only. As described
in Section 3 the key is required for the attestation
and should be secret to avoid treats. The key secrecy
property is guaranteed using the bus controller in two
stages: (1) by monitoring the address bus, in order to
find out unauthorized accesses to the key location; (2)
by checking the actual program counter, in order to
attest if the current instruction belongs to the sROM
address space and have the rights to read the key.

To verify the above property, we formalize it in
LTL logic:

G((is in sROM ∨¬(address bus = key address))

We finally present a property to enforce the key secu-
rity. We first model the crypto engine as follows:

attres = Ω(K, inputsxored, memxored)

then:

K = Ω(inputsxored, memxored, attres)

where:

• Ω is a cryptography operator and Ω his inverse

• inputsxored is the xor of all inputs provided to the
SMART procedure

• memxored is the memory xor of locations specified
as inputs to SMART

• attres is the result of the attestation procedure
stored in the RAM memory

We state that a generic user cannot obtain the key as
result of the above attestation procedure. The corre-
sponding LTL property is:

G(attexec ∧ (RAM [resloc] 6= Ω(inputsxored, memxored, K)))

where:

• attexec boolean value indicating the execution of
the attestation routine

• resloc is the memory location attestation result

This property is satisfied as long as the Ω operator
is a not reversible.

Mode separation In RA architectures the execu-
tion of the attestation code should be performed only
in supervisor mode. This property is satisfied by the
bus controller checking accesses to the sROM. The ac-
cess is valid as long as the ROM is accessed at the first

location. The first instruction present in ROM disables
the interrupts. The context switching is allowed only
if the attestation is completed.

The property is formalized in LTL logic and
checks all the possible access configurations. All
possible access configurations are represented as a
conjunction of clauses. In the following we present
the list of clauses.
Statement 1
The current program counter PC and the previous
program counter PPC are both inside the RAM and
not in the sROM:

¬is in sROM ∧ ¬was in sROM

Statement 2
The current program counter PC and the previous
program counter PPC are both inside the sROM and
not in the RAM:

is in sROM ∧ was in sROM

Statement 3
PC is in the sROM and the PC address is the first
of the sROM. In other words this means that the
program is entering in the sROM:

is in sROM ∧ address Bus = addrl

Statement 4
The actual instruction is outside the sROM and the
previous instruction was in the sROM but at the last
location:

¬ is in sROM ∧ was in sROM ∧ PPC = addrl

In Section 5 we report, for some properties, the
verification results and the corresponding threats in
case of fails.

Avoiding DoS attacks In Section 3 we described
properties that can prevent DoS attacks. Moreover
we defined three kinds of properties in order to detect
DoS attacks. In the following, using the notations and
the methodology described in Section 3, we formalize
the above properties using LTL logic:

¬is in sROM ∨ (X, a, b, out)locations ∈ RAM

This property considers the following scenario: a
malicious code tries to modify the SMART input pa-
rameters, in order to alter the state of the attestation
execution. More in details, if X belongs to the ROM
address space, SMART will be executed continuously
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with no violation exceptions. Inputs a and b and out
should be valid RAM addresses.

¬(PC ∈ RAM ∧wrop ∧ attexec)∨¬(addrbus = out)

The above property considers the modification of
the output of the attestation result. Modifying the re-
sults the attestation procedure can be violated.

In Sancus the IP corresponds to the Verifier of
the SMART architecture, whereas the SP and N cor-
respond to the Prover. For this reason the properties
defined for SMART can be applied to the Sancus ar-
chitecture, taking into account that in the Sancus ar-
chitecture the crypto-engine is the kdf function and
we need to manage three keys instead of one.

Finally, the architecture of the Trustlite Secure
Loader is similar to the SMART’s one, then the pre-
vious considerations can be applied also on TrustLite
architecture.

5 Experimental Results

We implemented a prototype version of the SMART
RA architecture on top of a simple CPU model pro-
vided by VIS-model checker. This CPU model is in-
spired to MIPS CPUs. Starting from this model the
instruction set has been extended and other modules
like Memory (RAM and ROM), as shown in Figure 2
, interrupt controller and an interrupt generator have
been designed.

The crypto-engine is simulated using XOR oper-
ations, for this reason this model is vulnerable to some
very simple attacks and then represents a good bench-
mark for our model checkers. In order to implement
SMART functionalities, a bus controller, containing
all the informations to detect security violation, has
been implemented. Figure 3 shows our model archi-
tecture details.

We verified security properties using PdTrav and
VIS tools. All our experiments ran on a Quad-core
workstation, with CPU frequency at 2.5 GHz and
equipped with 16 GB of main memory. The time
and memory limits were always set to 1800 seconds
and 4 GB, respectively. Section 5.1 shows verifica-
tion results of RA security properties and compares
PdTrav with VIS model checkers, in terms of verifi-
cation time. Section 5.2 compares different PdTrav
verification strategies.

Figure 2: RA memory architecture

Figure 3: RA architecture model

5.1 RA Model checking

Given the security properties for the RA architec-
tures, defined in the core sections of this paper, we
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present verification results for PdTrav and VIS. We
verified the SMART model described previously, we
also present an attack to discover the secret key in user
mode.

We first perform Bounded Model Checking
(BMC) setting the Bound according to properties and
model characteristics.

Table 1 reports for each security property (column
Property) the verification best time for VIS (column
VIS Time) and PdTrav (column PDT Time) tools and
the corresponding result (column Verif Result). No-
tice that 3 properties fail and the first one is related to
the key secrecy feature. In order to prove the consis-
tency of our verification result we performed an attack
related to key prop 2. We have assumed that the ad-
versary has complete control over the software state,
code and data of the prover before and after SMART
execution: the attacker can modify and know any se-
cret that is not protected by the MCU on the prover.
Among the several attacks that can be performed on
the SMART architecture, we choose one in which the
secret key can be obtained eluding the controls im-
plemented in the BUS CONTROLLER. This software
attack is based on two statements:

1. The memory address space of RAM and ROM is
contiguous: any program in RAM can make a jump
operation to the first location of the SMART code

2. The SMART code in ROM reads from RAM not
only the key, but also other parameters that are not
protected. Any program in RAM can modify these
parameters, and it is able to perform DoS attacks
and to get the key.

A critical input parameter for SMART code
is X, that is the return address of the attestation
procedure: this value is not protected by the BUS
CONTROLLER, therefore it can be changed by any
program in RAM; for instance, if X has a value be-
longing to address space of SMART code in ROM, an
infinite loop is caused when it is running. Moreover
the operations implemented by the SMART code are
well known: first a memory HMAC produces the
results output test memory, a cryptographic checksum
of a region [start address, end address] in prover’s
memory; then this result, the key and the others input
parameters saved in RAM (A, B, X, n, out, x flag) are
used to compute the final result. In particular n is
posted by verifier to prover to avoid replay attacks,
x flag value determines if jump or not on X after
attestation, in is an input parameter optionally used

by prover, and, finally, out is the output address where
to store the final checksum C, which is returned
to verifier. The latter verifies correctness of C by
recomputing it using the same parameters and the
symmetrically secret key.
Algorithm 1 presents our bad code performing the
attach described above. The output test memory value
is computed using start address and end address
values. Notice that computing the key is not a heavy
task as the input values can be easily modified.

1: start address = 0;
2: end address = 1;
3: n = 0;
4: out = 0;
5: xflag = 0;
6: X = malicious code first instruction;
7: output test memory=executeSmart(A,B);
8: KEY=A⊕B ⊕ output test memory

Algorithm 1: Key discover attack

To sum up, the idea is to modify suitably the in-
put parameters and to obtain k through final result of
HMAC.

Finally we present verification results using the
Unbounded Model Checking verification technique.
Table 2 shows best verification time for PdTrav (col-
umn PDT Time) and VIS (column VIS Time). Notice
that Verif Result column reports the same results pre-
sented in Table 1. This prove that the model checker
under tests provides reliable results.

5.2 Verification strategies

This section shows the results unbounded model
checking runs adopting different verification strate-
gies, implemented in PdTrav. We compare differ-
ent techniques on the given set of properties and the
SMART model described above.

Table 3 reports verification results considering
three different unbounded model checking strategies:
interpolation (ITP column), binary decision diagram
reachability (BDD column) and Property Directed
Reachability strategy (PDR column). Results shows
that the most suitable strategies for security properties
verification are ITP and PDR (see Section 4 for further
details).
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Property VIS Time [s] PDT Time [s] Bound Verif Result
key prop 1 12.4 6.27 800 PASS
key prop 2 2.86 1.43 60 FAIL
mode prop 26.54 10.7 800 PASS
dos prop 1 1.3 0.5 20 FAIL
dos prop 2 8.34 4.32 400 FAIL

Table 1: Bounded Model Checking best results for VIS and PdTrav

Property VIS Time [s] PDT Time [s] Verif Result
key prop 1 66.76 23.58 PASS
key prop 2 40.77 13.43 FAIL
mode prop 127.34 47.45 PASS
dos prop 1 40.25 20.78 FAIL
dos prop 2 70.67 31.89 FAIL

Table 2: Unbounded Model Checking best results for VIS and PdTrav

PROP ITP PDR BDD Verif Result
key prop 1 27.43 23.58 57.34 PASS
key prop 2 13.43 16.64 36.48 FAIL
mode prop 50.63 47.45 105.27 PASS
dos prop 1 25.46 20.78 35.32 FAIL
dos prop 2 35.67 31.89 64.42 FAIL

Table 3: Unbounded Model Checking - verification PdTrav strategies results

6 Conclusions
This paper first analyzes and compares RA architec-
tures w.r.t. security and formal verification aspects,
then it presents new approaches to define and ver-
ify RA security properties. Our main contribution is
to provide a methodology to verify RA architectures
along with a complete framework tuned to address
the model checking problem using an integrated ap-
proach, that improves over RA security verification.
Overall, our framework shows good performances and
flexibility, as reported in the experimental results sec-
tion. Future work consists verifying complex mi-
crocontrollers and models including the Sancus and
Trustlite architectures.
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